
An approach to verifying consistency of software refactoring process
Thi-Huong Dao, Hong-Anh Le, Ninh-Thuan Truong
College of Technology, Vietnam National University, Hanoi

Contact Information:
Information Technology
College of Technology, Vietnam National University, Hanoi
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Email: huongdt.di12@vnu.edu.vn

Abstract
The combination of refactoring and design patterns has established revo-

lution approach in software re-engineering. However, it raises the problem of
inconsistency between original model and its evolution. This paper proposes
an approach to dealing with those aspects, especially preserving behavior of the
system. To this aim, we employ Unified Modeling Language to modeling sys-
tem, and Object Constraint Language to represent the system requirement. In
additional, we construct a set of consistent rule which uses to checking whether
system can preserve its behavior or not. Furthermore, we illustrate the check-
ing approach in a case study of Adaptive Road Traffic Control System.

Introduction

In software engineering, software evolution is the process of develop-
ing software initially, then repeatedly updating it. Techniques used in
this process are commonly re-engineering and/or refactoring of soft-
ware code or models.

Refactoring is a powerful technique, it is used to improve the quality
of the software by changing the internal structure of software without
altering its external behavioral properties, but it needs to be performed
carefully. The main danger is that errors can inadvertently be intro-
duced, especially when refactoring is done manually.

A design pattern [1] is a general reusable solution to a commonly
occurring problem within a given context in software design.

Any evolution software system should be optimized by discovering
opportunities to use design patterns to improve its source code or de-
sign model.

However, a big problem with design patterns in refactoring process
is that we can not assure the consistency between the existing design
model and its evolution.

Main Objectives

1. Constructing a set of consistent rules.

2. Checking static and dynamic behavioral consistency between initial
model and it evolution.

Approach to checking consistency

Framework Overview

There are three constituent processes which have been identified in
the framework overview, indicates in Fig. 2, mainly (1) modeling, (2)
refactoring, and (3) checking consistency process.

Original Model

Evolution Model

Refactoring

System

Requirements

Pre/Post-Conditions

Computation

Pre/Post-Conditions

Computation

Checking

Consistency

Output

Modeling

Consistent

Rules

Result?

Figure 1: The framework of checking consistency

Formal representation of a UML model
• Clarify some concepts: Invariant, Precondition, Postcondition.
• Define new concepts: Scenario precondition, Scenario postcondi-

tion.
• Formalize these concepts: Model, Class, Abstract operation precon-

dition, Abstract operation postcondition, Scenario, Scenario opera-
tion, Scenario precondition, Scenario postcondition, Refactor.

• Propose a set of consistent rule: Static preservation, Total dynamic
consistency, Partial dynamic consistency, Model inconsistency.

Results
Applying the approach on a case study: Adaptive Road Traffic Control
(ARTC) System which use to optimize the traffic congestion in towns
and cities. The model before and after refactoring as follows:

Detector

-detectorID: String

-location: String

-roadID: Integer

-vehicleCount: String

-crossTime: Time

-vehicleSpeed: Integer

+active()

+deactive()

+sendTrafficFlow()

+detectVehicle()

TrafficController

-controllerID: String

-location: String

-speedLimit: Integer

-roadID: String

+getTrafficFlow()

+analyzeTraffic()

+setSignal()

+setTime()

Road

-roadID: String

-roadName: String

-roadLocation: String

-trafficFlow: Object

+setRoadDetail()

+getRoadDetail()

Optimizer

-amberTime: Integer

-greenTime: Integer

-state: STATE

-signal: SIGNAL

-duration: Integer

-cycleTime: Integer

+analyzeSignal()

+analyzeTimeLimit()

+analyzeAdjacent()

Figure 2: Initial class diagram of ARTC system

Detector

-detectorID: String

-location: String

-roadID: Integer

-vehicleCount: String

-crossTime: Time

-vehicleSpeed: Integer

+active()

+deactive()

+sendTrafficFlow()

+detectVehicle()

TrafficController

-controllerID: String

-location: String

-speedLimit: Integer

-roadID: String

+getTrafficFlow()

+analyzeTraffic()

+setSignal()

+setTime()

Road

-roadID: String

-roadName: String

-roadLocation: String

-trafficFlow: Object

+setRoadDetail()

+getRoadDetail()

OptimizerStrategy

-amberTime: Integer

#greenTime: Integer

#state: STATE

#signal: SIGNAL

#duration: Integer

#cycleTime: Integer

+optimizeTraffic()

SignalOptimizeStrategy

+optimizeTraffic()

AdjacentOptimizeStrategy

+optimizeTraffic()

TimeLimitOptimizeStrategy

+optimizeTraffic()

Figure 3: Class diagram of ARTC system after applying Strategy pattern

From the values of preconditions and postconditions, we conclude
that the scenario is strongly preserved all the attributes of the model.

Conclusions

• We have proposed an approach to checking the consistency in refac-
toring process which is performed by design patterns in software
models.

• We have also proposed consistent rules to verify if the specification
of the initial model is consistency with the new one (after applied
design patterns) in evolution software process.

• To demonstrate the approach, we have constructed a model of an
ARTC system in UML. In the case study, we just illustrated only the
consistency verification when applying Strategy pattern in the only
a pair of scenario, respectively in the both models, others scenarios
may be done in a similar way for the more complex system. The
last result of checking consistency external behaviors between mod-
els depends on the conjunction of all the checking result in every
pair of scenario in these models. If just only exist a proven incon-
sistent, as the sequence, the checking consistency is considered to
inconsistency.

• As illustrated in the case study, we can see that the formaliza-
tion process and the process of verifying the consistency are time-
consuming and error-prone if we check by manually.

Forthcoming Research
• For the future works, we will adopt tools to help formalize and verify

automatically the model evolution process.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-

terns: Elements of Reusable Object-oriented Software. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education,
2004.

[3] C. Zhao, J. Kong, and K. Zhang, “Design pattern evolution and
verification using graph transformation,” in System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International Conference on,
pp. 290a–290a, Jan 2007.

[4] P. Bottoni, F. Parisi-Presicce, and G. Taentzer, “Coordinated dis-
tributed diagram transformation for software evolution,” Electronic
Notes in Theoretical Computer Science, vol. 72, no. 4, pp. 59 – 70,
2003. Workshop on Software Evolution Through Transformations
- Toward Uniform Support Throughout the Software Life-Cycle
(First International Conference on Graph Transformation).

[5] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers, “Us-
ing description logic to maintain consistency between uml mod-
els,” in UML 2003 - The Unified Modeling Language. Modeling
Languages and Applications (P. Stevens, J. Whittle, and G. Booch,
eds.), vol. 2863 of Lecture Notes in Computer Science, pp. 326–
340, Springer Berlin Heidelberg, 2003.

[6] J. Dong, Y. Sheng, and K. Zhang, “A model transformation ap-
proach for design pattern evolutions,” in Engineering of Computer
Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on, pp. 10 pp.–92, March 2006.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refac-
toring: Improving the Design of Existing Code. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[8] A. Angeli, “A pattern language,” 1977.

Acknowledgements
This work is partly supported by the research project entitled Verifica-
tion of equivalence between software models, No. QG.14.07 granted
by Vietnam National University, Ha Noi.

