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Abstract
This paper introduces a framework for modeling and verifying safety properties of component-based systems (CBS) by extracting
their models from designs in form of UML 2.0 sequence diagrams. Given UML 2.0 sequence diagrams of CBS, the framework
extracts regular expressions exactly describing behaviors of the system. From these expressions, the proposed framework then
generates accurate models represented by labeled transition systems (LTSs). After that, these models are used to modular check
whether given designs satisfy required safety properties by using the assume-guarantee reasoning paradigm. This framework is not
only useful for modeling and verifying designs at design phase, but also for effectively rechecking CBS in the context of software
evolution. Implemented tools and experimental results are also presented in order to show the feasibilities and effectiveness of the
proposed framework.

1. Introduction

The approaches for specification and verifica-
tion nowadays plays an important role in guar-
anteeing software quality. The assume-guarantee
verification [3] has been considered as a poten-
tial method for solving the state space explosion
problem when checking of large scale CBSs. It
can be applied at both of design and implemen-
tation phases. However, the current researches in
regards to this method often assume that the mod-
els of system under checking are already available.
This makes them difficult to be applied in practice
because generating models for systems is a hard
problem. The method presented in [23] had men-
tioned a way of using the model generated from
the design artifacts to check safety properties of
the system implementation. However, this paper
did not describe in details how to use what kind
of artifacts of design level to generate component

models to use. In [24], the author proposed a real
time way to check consistencies of software de-
signs by a set of consistency rules defined by users.
In regards to the system verification, the research
carried out in [25] also addresses the problem of
verifying properties of systems by given UML 2.0
sequence diagrams. However, that is for each of
the separate fragments and properties are written
in PPTL. It has not solved the whole sequence dia-
grams when all of the fragment are integrated. Al-
though the mentioned researches have addressed an
important part of the verification process, they have
not shown a complete method of how to do design
verification of CBSs.

On the other hand, there are other studies that
focus on generating models for CBS. Neverthe-
less, they have not been integrated with any veri-
fication method. The method proposed in [13] is
used to generate models from sets of traces by do-
ing experiment on components and bases on the
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Thompson algorithm [10]. The model generation
method in [22] is used to retrieve extended fi-
nite state machines from interactive traces. The
work presented in [20] generates finite state mod-
els from source code of software programs written
in Java. While these researches have great contri-
bution about model generation, they still have not
been integrated the generated models with any ver-
ification method.

From the above reason, this paper proposes a
framework to integrate model generation methods
with verification ones in order to apply in the real
software development world. The framework gen-
erates regular expressions of behaviors of CBS
from sequence diagrams. It then parses these ex-
pressions to create models in form of LTSs that
exactly describe system behaviors. In the end, it
applies the assume-guarantee reasoning paradigm
to check if the system satisfy a given property.
This method of verification prevents us from hav-
ing state explosion problem. This framework is
not only useful in design phase but also in system
maintenance when the design is changed.

The paper is organized as follows. At first,
we present some background definitions which are
used in this paper in Sect. 2. The overview of the
framework is described in Sect. 3. The section 4
shows algorithms to generate regular expressions
from given sequence diagrams. The mechanism
models are generated from the result regular ex-
pressions of Sect. 4 is shown in the Sect 5. The
generated models are then used in automatic veri-
fication in Sect. 6. The implemented tool and ex-
perimental results are shown in Sect. 7. Finally, we
conclude the paper in Sect. 8.

2. Background

In this section, we present some basic concepts
which are used in this paper.
LTSs. This paper uses Labeled Transition Systems
(LTSs) to model behaviors of components. LetAct
be the universal set of observable actions and let
τ denote a local action unobservable to a compo-
nent’s environment. We use π to denote a special
error state. A LTS is defined as follows.

Definition 1. (LTS). A LTS M is a quadruple
〈Q, αM, δ, q0〉 where:

• Q is a non-empty set of states,

• αM ⊆ Act is a finite set of observable actions
called the alphabet of M,

• δ ⊆ Q × αM ∪ {τ} × Q is a transition relation,
and

• q0 ∈ Q is the initial state.

Traces. A trace σ of an LTS M is a sequence of
observable actions that M can perform starting at
its initial state.

Definition 2. (Trace). A trace σ of a LTS M
= 〈Q, αM, δ, q0〉 is a finite sequence of actions
a1a2...an, such that there exists a sequence of states
starting at the initial state (i.e., q0q1...qn) such that
for 1 ≤ i ≤ n, (qi−1, ai, qi) ∈ δ.

Note 1. The set of all traces of M is called the lan-
guage of M, denoted L(M). Let σ = a1a2...an be a
finite trace of a LTS M. We use [σ] to denote the
LTS Mσ = 〈Q, αM, δ, q0〉 with Q = {q0, q1, ..., qn},
and δ = {(qi−1, ai, qi)}, where 1 ≤ i ≤ n.

Parallel Composition. The parallel composition
operator ‖ is a commutative and associative oper-
ator that combines the behavior of two models by
synchronizing the actions common to their alpha-
bets and interleaving the remaining actions.

Definition 3. (Parallel composition opera-
tor). The parallel composition between M1 =

〈Q1, αM1, δ1, q1
0〉 and M2 = 〈Q2, αM2, δ2, q2

0〉,
denoted M1‖M2, is defined as follows. If M1 =

∏
or M2 =

∏
, then M1‖M2 =

∏
, where

∏
denotes

the LTS 〈{π}, Act, ø, π〉. Otherwise, M1‖M2 is
a LTS M = 〈Q, αM, δ, q0〉 where Q = Q1×Q2,
αM = αM1∪αM2, q0 = (q1

0, q
2
0), and the transition

relation δ is given by the following rules:

(i)
α ∈ αM1 ∩ αM2, (p, α, p′) ∈ δ1, (q, α, q′) ∈ δ2

((p, q), α, (p′, q′)) ∈ δ
(1)
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(ii)
α ∈ αM1\αM2, (p, α, p′) ∈ δ1

((p, q), α, (p′, q)) ∈ δ
(2)

(iii)
α ∈ αM2\αM1, (q, α, q′) ∈ δ2

((p, q), α, (p, q′)) ∈ δ
(3)

Safety LTSs, Safety Property, Satisfiability and
Error LTSs.

Definition 4. (Safety LTS). A safety LTS is a deter-
ministic LTS that contains no π states.

Definition 5. (Safety property.) A safety property
asserts that nothing bad happens. The safety prop-
erty p is specified as a safety LTS p = 〈Q, αp, δ, q0〉

whose language L(p) defines the set of acceptable
behaviors over αp.

Definition 6. (Satisfiability). a LTS M satisfies
p, denoted as M |=p, if and only if ∀σ ∈ L(M):
(σ↑αp) ∈ L(p).

Note 2. When we check whether a LTS M satisfies
a required property p, an error LTS, denoted perr,
is created which traps possible violations with the
π state. perr is defined as follows:

Definition 7. (Error LTS). An error LTS of a prop-
erty p = 〈Q, αp, δ, q0〉 is perr = 〈Q∪{π}, αp, δ′, q0〉,
where δ′ = δ ∪ {(q, a, π) | a ∈ αp and 6∃q′ ∈ Q :
(q, a, q′) ∈ δ}.

Remark 1. The error LTS is complete, meaning
each state other than the error state has outgoing
transitions for every action in the alphabet. In or-
der to verify a component M satisfying a property
p, both M and p are represented by safety LTSs,
the parallel compositional system M‖perr is then
computed. If the state π is reachable in the com-
positional system then M violates p. Otherwise, it
satisfies p.

Assume-Guarantee Reasoning. An assume-
guarantee formula/rule is defined as follows.

Definition 8. (Assume-guarantee formula/rule).
Let M be a component, p be a property, and A(p)
be an assumption about M’s environment. An
assume-guarantee formula/rule is a triple 〈A(p)〉
M 〈p〉 representing the compositional formula
A(p)‖M‖perr.

Note 3. We use the formula 〈true〉 M 〈A〉 to rep-
resent the compositional formula M‖Aerr. The for-
mula 〈A(p)〉 M 〈p〉 is true if whenever M is part of
a system satisfying A(p), then the system must also
guarantee p. In order to check the formula, where
both A(p) and p are safety LTSs, we compute the
compositional formula A(p)‖M‖perr and check if
the error state π is reachable in the composition.
If it is, then the formula is violated, otherwise it is
satisfied.

Definition 9. (Assumption). Given two models M1
and M2, and a required safety property p, A(p) is
an assumption if and only if it is strong enough
for M1 to satisfy p but weak enough to be dis-
charged by M2 (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉 M2
〈A(p)〉 both hold). Equivalently, A(p) is an as-
sumption if and only if L(A(p)‖M1)↑αp ⊆ L(p) and
L(M2)↑αA(p) ⊆ L(A(p)).

3. Framework architecture

Regex 
generation

Model 
generation

Sequence diagrams (xmi, xml)

Regular 
expressions AG-

Verification
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Figure 1: The proposed framework for verifying designs in
form of sequence diagrams

The Fig. 1 shows the architecture of the pro-
posed framework. Sequence diagram designs of
systems are in forms of an xmi file. They are an-
alyzed to generate corresponding regular expres-
sions. These expressions then are used to generate
models. Finally, the framework uses those mod-
els and assume-guarantee reasoning paradigm to
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do modular check to see if given systems satisfy
predefined properties. If designs satisfy properties,
the assumption is returned. Otherwise, they violate
properties, a counter example is also returned. De-
tails about each of the process are described in the
section 4.

4. Generating Regular Expression from Se-
quence Diagrams

In this section, we present algorithms that
generate regular expressions of software com-
ponents’ actions from sequence diagrams of
design phase. Given a UML 2.0 sequence di-
agram in form of xmi file, it is analyzed to
get basic fragments such as opt, break, etc.
The corresponding regular expressions of some
of them are then generated. These fragments
are opt, break, critical, strict, consider, ignore.
Algorithms for generating regular expres-
sions corresponding to the other fragments of
loop, alt, par/seq can be found in [14].

4.1. Analyzing Sequence Diagrams

Given a sequence diagram in form of xmi file,
we use the algorithm 1 to analyze it to have a list
of fragments and their relationships.

The algorithm 1 describes the process to analyze
the sequence diagram in an xmi file. The result
data is an array of Fragment or Message sorted
by the time of execution and an array of life line
(li f eline). At first, the algorithm initiates a stack
that contains an Operand (line 2), this Operand
is used to store the array of fragment or message
in the data structure. Next, the algorithm initi-
ates an array of Li f eLine and an array of messages
(line 3). When parsing the xmi file, if the algo-
rithm meets an open tag (line 5), it bases on the
tag’s type to process. If the tag type is Fragments
(line 9) or Operand (line 11), add these objects
to stack. If the tag type is Li f eLine (line 7) or
Message (line 13), add object to the corresponding
array. If the tag is EventOccurrence (line 15) or
Constraint (line 17), add these objects to the ob-
ject that is on top of the stack. If the algorithm
meets a close tag (line 20) that is Operand (line

Algorithm 1: Analyze sequence diagram

1 begin
2 create stack with an Operand on top
3 create array li f elineList and array

messageList
4 forall element in xmi file do
5 if meet open tag then then
6 switch element do
7 case Li f eLine do
8 create new lifeline and add

to li f elineList; break
9 case Fragment do

10 create new fragment and
push to stack; break

11 case Operand do
12 create new operand and

push to stack; break
13 case Message do
14 create new message and

add to messageList;break
15 case EventOccurrence do
16 create new

eventoccurrence and add
to the Operand on the top
of stack; break

17 case Constraint do
18 create new constraint and

add to the Fragment on
the top of stack; break

19 end
20 else if meet close tag then
21 if element is Operand then
22 op = stack.pop()
23 add op to the Fragment on top

of stack
24 else if element is Fragment then
25 f m = stack.pop()
26 add f m to the Operand on the

top of stack
27 end
28 end
29 end
30 end
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21) or Fragment (line 24), get these object from
the top of stack and then add them to the object on
the top of stack. After reading all of the elements
in the xmi file, we have an array of Fragments and
events inside operands on the top of stack, an array
of the Li f eLine and an array of messages. The cou-
ple of events will be replace by the corresponding
messages.

4.2. Generating Sub-Regular Expressions for opt
Fragments

The algorithm 2 describes the regular expres-
sion generation process for the opt fragment. The
opt fragment contains only one operand which can
be executed or not. Therefore, the regular expres-
sion corresponding to the opt fragment contains the
regular expression of operand concatenate with “|”
and λ, where λ is a special character represents the
empty regular expression.

Algorithm 2: Generate sub regular expression
for opt Fragments

1 begin
2 create regex is empty
3 regex = regex + operand.getRegex() + | +

λ

4 return regex
5 end

4.3. Generating Sub-Regular Expressions for
break / critical / strict Fragments

The algorithm 3 describes the regular expres-
sions generation process for the break, critical
and strict fragments. The break fragment is only
meaningful when it is embedded in the loop frag-
ment. Therefore, the break’s regular expression is
the concatenation of the operands inside the break.
The same with the critical and strict fragments.
The fragment critical only has meaning when em-
bedded in the par fragment. The strict frag-
ment describes the sequences of actions. There-
fore, the result regular expression includes the con-
catenation of sub-expressions corresponding to the
operands inside the strict.

Algorithm 3: Generate sub regular expression
for break/critical/strict Fragments

1 begin
2 create regex is empty
3 forall operand in f ragment do
4 regex = regex + operand.getRegex()
5 end
6 return regex
7 end

4.4. Generating Sub-Regular Expressions for
consider Fragments

The algorithm 4 describes the process of gen-
erating regular expression for the consider frag-
ment. The consider fragment contains a list of
messages need to be kept. If messages in the
consider operands are not in this list, they are re-
moved. From line 3 to line 7 is the process of find-
ing and removing messages not in considerList.
From line 8 to line 10 is the process of creating
regular expression after removing unneeded mes-
sages. The regular expression of the consider frag-
ment consists of the sub-regular expressions corre-
sponding to operands belong to consider fragments
concatenated to each other.

4.5. Generating Sub-Regular Expressions for
ignore Fragments

The algorithm 5 describes the process of gener-
ating the corresponding regular expression for the
ignore fragments. The ignore fragment contains a
list of messages that need to be removed. If mes-
sages of operands are included in this list, they
need to be removed. The removing process is from
line 3 to line 7. From line 8 to line 10 is to gen-
erate the corresponding regular expressions of the
ignore fragments. The resulting regular expression
is the concatenation of the sug-regular expressions
corresponding to operands.

5. Generating Models from Regular Expres-
sions

From the regular expressions returned by the
previous section, we can apply several algorithms
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Algorithm 4: Generate sub regular expression
for consider Fragments
Input : considerList is an array which

contains messages that need to be
kept

Output: The regular expression corresponding
to the consider fragment

1 begin
2 create regex is empty
3 forall element in consider fragment do
4 if element is message and not in

considerList then
5 remove element
6 end
7 end
8 forall operand in consider fragment do
9 regex = regex + operand.getRegex()

10 end
11 return regex
12 end

to generate the corresponding component models.
In our study, we applied three algorithms to gen-
erate software models in forms of LTSs from the
given regular expressions retrieved from the previ-
ous step. These algorithms are: Thompson [10],
L∗ [1] and CNNFA [11, 12]. Each algorithms has
its own advantages and disadvantages. We should
consider using which algorithm bases on our spe-
cific scenarios.

5.1. Generating Models using Thompson Algo-
rithm

Thompson algorithm is a very simple and easy
to understand way to build models of components
in forms of NFAs from given regular expressions of
observable behaviors. The details of the algorithm
can be found in [13, 10]. Given a regular expres-
sion RL, the Thompson algorithm will generate a
corresponding ε − NFA as follows:

• If a ∈ Σ is a symbol of the alphabet, then a is
an atomic regular expression. The NFA that

Algorithm 5: Generate sub regular expression
for ignore Fragments
Input : ignoreList is an array which contains

messages that need to be ignored
Output: The regular expression corresponding

to the ignore fragment

1 begin
2 create regex is empty
3 forall element in ignore fragment do
4 if element is message and in

ignoreList then
5 remove element
6 end
7 end
8 forall operand in ignore fragment do
9 regex = regex + operand.getRegex()

10 end
11 return regex
12 end

recognizes the regular language of {a} is gen-
erated as shown in Fig. 2, where i is the ini-
tial state, f is the final state and (i, a, f ) is the
unique transition of the NFA.

i f
a

Figure 2: Generating a NFA that recognizes {a}.

• Suppose that N(s) and N(t) are non-
deterministic finite automata corresponding to
the regular expressions s and t respectively,
then

– (s).(t) is a regular expression that rep-
resents the language L(s).L(t). The au-
tomaton accepting this language is built
as shown in Fig. 3. The initial state is
the initial state of N(s), the final states
are the final states of N(t) and the algo-
rithm adds empty transitions from the fi-
nal states of N(s) to the initial state of
N(t).
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i f
N(s) N(t)

Figure 3: A NFA recognizes regular expression (s).(t).

– (s) + (t) is a regular expression that rep-
resents the language L(s) ∪ L(t). An
ε − NFA that corresponds to the regu-
lar expression (s) + (t) is built as shown
in Fig. 4. In this case, the initial state
called i and ε − transitions from i to the
initial states of N(s) and N(t) are added
to the automaton. After that, it adds a
final state called f and ε − transitions
from the final states of N(s) and N(t) to
f . As a result, we have the ε −NFA that
is the union of N(s) and N(t).

i f

ε

N(s)

ε

ε N(t) ε

Figure 4: A NFA recognizes regular expression (s) + (t).

– (s∗) is a regular expression that repre-
sents the language L(s∗). An ε − NFA
that corresponds to the regular expres-
sion (s∗) is built as shown in Fig. 5. In
this case, the initial state is called i. An
ε−transition from f to the initial state of
i is added to the automaton. As a result,
we have the ε − NFA that is the N(s∗).

i f

ε

N(s)

Figure 5: A NFA recognizes regular expression (s∗).

5.2. Generating Models using L∗ Algorithm
The L∗ is used to generate the M models that can

describe the behaviors of the component C. In or-
der to generate models, the L∗ algorithm depends
on a Teacher that answers two kinds of question.
The first kind is the membership question. With
σ ∈ Σ∗, Teacher answer true if σ ∈ L(C) and
vice versa. Next, Teacher answers the equivalence
query. That is whether the Mi model can describe
the whole behavior of the component C or not. If
the model can describe the model exactly, Mi be-
comes the model of C. Otherwise, Teacher pro-
vides a counter example cex to L∗ to learn again
(e.g: cex ∈ L(C) \ L(Mi) or cex ∈ L(Mi) \ L(C)) in
order to generate new model that can describe the
component better.

In order to represent behaviors of models, the L∗

algorithm uses the table V,W,T that is defined as
follows:

• V ∈ Σ∗ is a set of prefixes. Prefixes represent
classes or states.

• W ∈ Σ∗ is a set of suffixes. Suffixes represent
the differences of languages.

• T : (S ∪ S .Σ).E → {true, f alse}, where the
operator “.” means that given two sets of se-
quences P and Q, P.Q = {pq|p ∈ P, q ∈ Q},
where pq presents the concatenation of the
event sequences p and q. With a string s in Σ∗,
T (s) = true means s ∈ U, otherwise s < U.

The algorithm 6 describes the model generation
process using the L∗ learning algorithm. The algo-
rithm requires the component (C) and a maximum
length of sequence of actions in the component (n).
At first, the algorithm initiate the OT with V = {λ},
W = {λ}, T = TC and Σ = ΣC (λ is the empty
string) (line 2). Next, the table is updated by using
the component C to answer whether a specific ac-
tion can be performed on the component (line 4).
After updating, the algorithm check whether the
table is closed or not. If the table is not closed,
va is added to V where v ∈ V, a ∈ Σ (line 6) and
the table is updated again (line 7). After the table
updating process, we have a corresponding model
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candidate that represents the behaviors of the com-
ponent. The OT table is used by VC algorithm
[2] to check whether the corresponding model can
represent the behaviors of the given component or
not (line 9). If the model can represent the compo-
nent, that model is returned by the algorithm (line
12). Otherwise, a counter example is provided by
VC to the learning process to generate a new better
model. The counter example is analyzed to find the
smallest suffix that is not in the suffixes set of the
OT table (line 14). The found suffix is added to the
set of suffixes W. The OT table is then updated and
the algorithm L∗ generates a new better model (line
4).

Algorithm 6: Generate models using L∗ algo-
rithm
Input : Component C, maximum length n

1 begin
2 OT = (V,W,T ) with V = {λ},

T = TC ,Σ = ΣC

3 while true do
4 Update OTi by T
5 while OTi is not closed do
6 add va to V (v ∈ V, a ∈ Σ)
7 update OTi by T to make it closed
8 end
9 con f orm = VC(OTi,C, n)

10 if con f orm = true then
11 create LTS Mi from OTi

12 return Mi

13 else
14 v′ = minimum suffix(conform) that

is not in W
15 Add v′ to Mi of OTi

16 end
17 end
18 end

5.3. Generating Models using CNNFA algorithm
The key idea when using the CNNFA algorithm

to generate models corresponding to regular ex-
pressions is that it uses an algorithm to parse the
given regular expression into basic and non-basic

blocks. A basic block is a valid sub-regular ex-
pression that contains at least one symbol in the
alphabet. Non-basic blocks are parts of the regular
expression separated by basic blocks. While do-
ing that, it constructs the CNNFA representations
for basic blocks and perform reduction steps (from
line 4 to line 20). When the algorithm halts, if there
is only one CNNFA representation, we can build
the corresponding models for the given regular ex-
pression. Otherwise, the given regular expression
is not valid. The algorithm uses a stack (line 1)
of elements, each of them is either a symbol from
R, or a record Np that stores a CNNFA represen-
tation of the corresponding sub-regular expression.
Detailed information about the models generation
process using CNNFA algorithm can be found in
[15]. The parsing algorithm is shown in algorithm
7.

Algorithm 7: Generate models using CNNFA
algorithm

1: Initialize the stack to empty.
2: for each input symbol c in a left-to-right scan

through R do
3: Push c onto the stack.
4: repeat
5: if topmost elements of the stack = λ then
6: Replace by CNNFA representation of λ.
7: else if topmost elements of the stack = a, an

alphabet symbol then
8: Replace by CNNFA representation of a.
9: else if topmost elements of the stack = NJ |NK

then
10: Replace by CNNFA representation of NJ|K .
11: else if topmost elements of the stack = NJ NK

then
12: Replace by CNNFA representation of NJK .
13: else if topmost elements of the stack = N∗J

then
14: Replace by CNNFA representation of NJ∗ .
15: else if topmost elements of the stack = (NJ)

then
16: Replace by NJ .
17: else
18: break;
19: end if
20: until the above steps can no longer be applied
21: end for
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5.4. Discussion

From the details of the above algorithms when
generating models, we can see that the generated
models are not optimal. We need to perform ad-
ditional tasks to optimize the generated models.
These tasks are converting models from NFAs to
DFAs, then minimizing the returned DFAs to have
the optimal models. You can also noticed that the
result models are not LTSs while the required input
of the assumption generation process are LTSs. We
notice that if the state of the component is accept-
ing state every time an action is performed, then all
states of the generated models are accepting states.
Therefore, those models are LTSs. We can used
them in the assumption generation process. An-
other important point here is that in [13], the gener-
ation process is limited by a MaxLength represent
for the longest testable trace against the component
under checking. Generally, using Thompson algo-
rithm [10] to parse regular expressions to gener-
ate the corresponding models is not limited by any
MaxLength. Therefore, in the table 3, we don’t
have any MaxLength information for the model
generation method using Thompson algorithm.

6. Assume-Guarantee Verification of
Component-Based Software

Let M1,M2, ...,Mn be models of the system un-
der checking. These models are generated from the
section 5. We need to verify whether the system
satisfy a predefined safety property p or not. In
this paper, we use assume-guarantee reasoning ap-
proach proposed in [3, 6] to do this (e.g., to check
the formula M |= p, where M = M1‖M2‖...‖Mn).

For this purpose, the models are divided into
two classes (e.g., fixed and extensional compo-
nents). Let M1,M2, ...,Mi be fixed components and
Mi+1, ...,Mn(0 < i < n) be extensional compo-
nents, M f = M1‖M2‖...‖Mi and Me = Mi+1‖...‖Mn

are compositional models of the fixed and exten-
sional components, respectively. These composi-
tional models and the property p are inputs of the
assume-guarantee verification method in order to
check the system.

The goal of the assume-guarantee verification
method is to verify whether the system satisfies
the property p without composing M f with Me.
For this purpose, an assumption A(p) is gener-
ated by applying the L* learning algorithm [1, 9]
such that A(p) is strong enough for M f to sat-
isfy p but weak enough to be discharged by Me

(i.e., 〈A(p)〉 M f 〈p〉 and 〈true〉 Me 〈A(p)〉 both
hold, called assume-guarantee rules) [3, 6]. From
these assume-guarantee rules, this system satisfies
p without verifying on the whole system.

In order to obtain such appropriate assumptions,
this method applies the assume-guarantee rules in
an iterative process presented in Fig. 6. At each
iteration i, a candidate assumption Ai is produced
based on some knowledge about the system under
checking and the results of the previous iterations.
The following two steps of the assume-guarantee
rules are then applied. Step 1 checks whether M f

satisfies p in an environment that guarantees Ai by
computing the formula 〈Ai〉 M f 〈p〉. If the result
is f alse, it means that this candidate assumption is
too weak for M f to satisfy p. The candidate as-
sumption Ai therefore must be strengthened with
the help of the produced counterexample cex. Oth-
erwise, the result is true. In this case, Ai is strong
enough for the property to be satisfied. Then the
step 2 is applied for checking whether the com-
ponent Me satisfies Ai by computing the formula
〈true〉 Me 〈Ai〉. If this step returns true, the prop-
erty p holds in the compositional system M f ‖Me

and the algorithm terminates. Otherwise, this step
returns f alse. In this case, a further analysis is re-
quired to identify whether p is indeed violated in
the system M f ‖Me or the candidate Ai is too strong
to be satisfied by Me. Such analysis is based on
the produced counterexample cex. For the purpose,
the L* algorithm must check whether the coun-
terexample cex belongs to the unknown language
U = L(AW), where AW is the weakest assumption
which restricts the environment of M f no more and
no less than necessary for p to be satisfied [4]. If
it does not, the property p does not hold in the sys-
tem M f ‖Me. Otherwise, Ai is too strong for Me to
satisfy. The consequence of this is the candidate
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Figure 6: Framework for the L*-based assumption generation.

assumption Ai must be weakened (i.e., behaviors
must be added with the help of cex) in the next it-
eration i + 1. A new candidate assumption may of
course be too weak, and therefore the entire pro-
cess must be repeated.

7. Experimental Results

In order to show the feasibility of the proposed
framework, we implemented tools to support it.
We have tested the method for several systems that
contain typical fragments in sequence diagrams un-
til generating the corresponding assumptions. The
regular expression generation time is shown in the
table 1.

We then test the model generation process by
using the three algorithms of L∗, Thompson, CN-
NFA. The generation time is presented in the ta-
ble 2. The size of generated models is shown in
the column |M|. The columns |δ| shows the num-
ber of transitions in generated models. The gener-
ated time (in milliseconds) is shown in the column
Time(ms). The maxlength in case of generating
models using L∗ methods is shown in the column
MLen. “Out” in the columns Time means “Out of
memory”, this is the case we could not generate the
model using the corresponding algorithm.

From the table 2, we have the following obser-
vations:

• Using these testing systems, generating mod-
els using Thompson algorithm is faster than

Table 1: Regular expression generation time

No. System Time (ms)
1 Mod channel M1 2.0
2 Mod channel M2 2.0
3 Mod1 M1 4.0
4 Mod1 M2 40.0
5 Mod2 M1 5.0
6 Mod2 M2 4.0
7 Read Write M1 2.0
8 Read Write M2 2.0
9 Simple channel M1 1.0

10 Simple channel M2 2.0
11 Two channel M1 1.0
12 Two channel M2 2.0
13 GasOverControler 9.0

the other two methods using L∗ and CNNFA
algorithm.

• With the big system (GasOverControler), us-
ing L∗ algorithm cannot generate the models
of the system due to out of memory.

• Using the L∗ algorithm to generate the model
of system is limited by the maxlength of the
traces recognized by the models.

The time of the assumption generation process
is shown in table 3.

8. Conclusion

We have presented the framework for automated
design verification for component-based softwares.
The method generates regular expressions from
one of the outputs of the design phase (sequence
diagrams). Models corresponding to these regu-
lar expressions are then generated. These models
are used to verify whether the design satisfies the
predefined property or not. The whole process can
be re-executed when the design is changed. Ex-
perimental result shows that this method is feasible
with the time of the verification process.

Although the proposed framework can help us
to automatically verify system designs in form of
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Table 2: Model generation time

No. Test data
L∗ Thompson CNNFA

|M| |δ| MLen Time |M| |δ| Time |M| |δ| Time
1 Mod channel M1 4 3 3 01.44 3 3 00.17 3 3 00.39
2 Mod channel M2 5 5 4 20.29 3 4 00.26 3 4 11.68
3 Mod1 M1 6 6 3 16.09 5 6 00.75 5 6 26.61
4 Mod1 M2 7 8 4 53.00 5 7 00.83 5 7 233.51
5 Mod2 M1 6 6 3 15.81 5 6 00.75 5 6 76.79
6 Mod2 M2 7 9 4 48.41 5 8 01.02 5 8 421.91
7 Read Write M1 4 3 3 11.63 3 3 00.24 3 3 00.59
8 Read Write M2 4 3 3 14.55 3 3 00.20 3 3 00.74
9 Simple channel M1 4 3 3 11.06 3 3 00.22 3 3 01.73

10 Simple channel M2 4 3 3 15.05 3 3 00.20 3 3 00.74
11 Two channel M1 6 6 3 16.06 5 6 00.80 5 6 25.59
12 Two channel M2 6 6 3 18.55 5 6 00.76 5 6 27.66
13 GasOverControler - - 9 Out 6 10 66.28 7 14 4,668.43

Table 3: Assumption Generation Result

No. System Verification result Time (ms)
1 Read Write acquireRead.acquireWrite 05.50
2 Mod1 OK 13.58
3 Mod2 OK 05.68
4 Mod channel in.send.send.in 00.54
5 Simple channel OK 09.21
6 Two channel OK 02.26
7 GasOverControler OK 13.11

sequence diagrams, it still contains several issues.
The first issue is that it is still slow when testing
with large systems. The second is that the models
generated and used during verification is in form
of LTSs. This is only one kind of model specifi-
cation. Currently, the framework is not for other
kinds. Last but not least, the framework is only
applied for safety properties. What about liveness
and fairness ones. Besides, the framework can be
extended to generate test paths, test cases and help
testing automatically. It can be very helpful for
such organizations that not have much testing re-
sources.

We are finding the way to apply the method to
some practical and larger systems to prove its effec-
tiveness. We are also extending the method using

other kinds of output of design phase (e.g., class di-
agrams, state-chart diagrams, etc.) so that the given
system can be verified in all aspects of design au-
tomatically.
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