
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

A Method for Automated Test Cases Generation from
Sequence Diagrams and Object Constraint Language for

Concurrent Programs

Thi Dao Vu∗

Academy of Cryptography of Techniques,

141 Chien Thang street, Tan Trieu, Thanh Tri, Hanoi, Vietnam

Pham Ngoc Hung, Viet Ha Nguyen
Faculty of Information Technology,

VNU- University of Engineering and Technology,
E3 Building, 144 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

Abstract

This paper proposes an automated test cases generation method from sequence diagrams, class diagrams,
and object constraint language. The method supports UML 2.0 sequence diagrams including eight kinds of
combined fragments describing control flow of systems. Test cases are generated with respect to the given
concurrency coverage criteria. With strong concurrency coverage, generating exhaustive test cases for all
concurrent interleaving sequences is exponential in size. The key idea of this method is to create selection of
possible test scenarios in special case of exploring the message sequence with their possible interleaving in parallel
or weak sequencing fragments. Test data for testing loop fragments are also generated. We implement a tool to
automate the proposed method and studied its feasibility and effectiveness. Experimental results show that the
method can generate test cases on demand to satisfy a given concurrency coverage criterion and can detect up to
74.5% of seeded faults.

Received 05 December 2015, revised 22 December 2015, accepted 31 December 2015

Keywords: Model based Testing, Test Scenario, Test Data, Test Case, Sequence Diagram, Class Diagram, Object
Constraint Language

1. Introduction

Model- based testing plays a significant role
in practice and a lot of researches on it has
been investigated in recent years due to great
benefits. There are some approaches for model-
based testing: test data generation, test cases
generation from behavior models and test scripts
generation from abstract tests [1]. Generation
of executable test cases from Unified Modeling

∗ Corresponding author. Email: vtdao@bcy.gov.vn or
vuthidao@gmail.com

Language (UML) sequence diagrams and Object
Constraint Language (OCL) is one of major
approaches. It is easier to obtain the accurate
behavior models in order to apply in practice
in the software companies. In this approach,
the translation of a sequence diagram into an
intermediate graph [2, 3] is mandatory for all
possible scenarios generation. The scenarios
denote abstract test cases that will help to
find errors during implementation of software
systems.

Many works have proposed in order to show

28

T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42 29

that approach. However, some methods did not
address different types of combined fragments
and in case nested combined fragments [4, 5].
An approach in [2] dealt with five combined
fragments such as repetition (loop), selection
(alt/opt/break) and concurrencies (par) in UML
2.0 [6], but it only executed one iteration in loop
fragment. Therefore, it needs to generate more
test scenarios in testing loops. This approach
did not also generate all possible test scenarios
(in special case of parallel fragment). Some
problems such as deadlocks and synchronization
in concurrent systems are solved in [7, 3], but this
method did not handle test data generation.

When generating tests from UML sequence
diagrams and OCL, we first need to construct
a set of test scenarios, which represent a
sequence of performed operations in a software
system. The system to be tested is complex,
the number of test scenarios may be huge, and
therefore, one challenging task is how to derive
a comprehensive test scenario suite. Clearly,
automatic test scenario generation would be
particularly desirable, but automatic test cases
generation from UML sequence diagrams and
OCL faces the following difficulties:

• Concurrency in a sequence diagram is
attributed by weak sequencing (seq) or
parallel (par) fragments. Concurrent
program may behave nondeterministically
and it may result in different outputs when
repeated with the same inputs in different
runs. Therefore, test cases generation
in concurrent programs have a degree of
nondeterminism that sequential programs do
not have.

• Coverage of concurrency and branch
features could lead to a huge number of test
scenarios, not all of which could be tested,
because some infeasible test scenarios
correspond to unreachable paths.

• Test data are generated in testing loop
fragments while some approaches [2, 5]
solves this problem with the body of the loop
is only executed once.

This paper proposes a method in order to deal
with the above issues. The method generates test
scenarios from UML sequence diagrams 2.0 and
OCL (in class diagram) according to a coverage
criterion for concurrent flows. The key idea of
this method addresses selection of possible test
scenarios to avoid the test scenarios explosion.
Next, test data are created from the constraints
by using one predicate at a time and reducing
domains of variables step by step. The new point
is test data generation in testing loop fragments.
Therefore, it helps to detect errors in testing
loop and concurrency errors such as safety and
liveness property of the systems. Comparing with
[8], we develop test case generation algorithm
with respect to the given concurrency coverage
criteria and implement the tool to automate the
proposed method. The main contributions of this
paper, together with its preliminary version [8],
are fourfold:

(i) We propose the method for generating
test scenarios with respect to concurrency
coverage criteria for testing concurrent
behaviors.

(ii) We propose test data generation procedure
for each test scenario, special in case of
loops.

(iii) We develop a tool to automate the proposed
method with analysing sequence diagrams in
xmi file.

(iv) We conduct a case study to validate the
feasibility and effectiveness of the proposed
method.

The rest of this paper is organized as follows:
Section 2 introduces some of the basic concepts
that used in this research. A brief control-
flow graph generation from UML 2.0 sequence
diagrams and class diagrams is given in Sect. 3.
Sect. 4 describes the improved method to test
scenarios generation with respect to concurrency
coverage criteria. Sect. 5 describes the proposed
test data generation. Sect. 6 presents the tool
developed to implement the proposed method
and a case study to validate the feasibility and

30 T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

Fig. 1: The model-based testing process.

effectiveness of the method. Finally, we conclude
the paper and discuss future works in Sect. 7.

2. Background

In this section, we introduce some of the
underlying concepts of model- based testing,
concurrency coverage criterion and mutation
analysis.

2.1. Model–based testing
Model–based testing (MBT) automates the

detailed design of the test cases and the
generation of the traceability matrix [1]. More
precisely, instead of manually writing hundreds
of test cases (sequences of operations), the
test designer writes an abstract model of the
system under test (SUT), and then the MBT tool
generates a set of test cases from that model. The
overall test design time is reduced, and an added
advantage is that one can generate a variety of
test suites from the same model simply by using
different test selection criteria. The MBT process
can be divided into the following five main steps,
as shown in Figure 1.

The first step of MBT is to write an abstract
model of the system that we want to test. It should

focus on just the key aspects that we want to test
and should omit many of the details of the SUT.
The second step of MBT is to generate set of
abstract tests, which are sequences of operations
from the model. The coverage reports some
indications of how well the generated test set
exercises all the behaviors of the model. The first
two steps distinguish MBT from other kinds of
testing. In online MBT tools, steps two through
four are usually merged into one step whereas in
offline MBT, they are separate. The third step
of MBT is to transform the abstract tests into
executable concrete tests. This may be done by a
transformation tool, which uses various templates
and mappings to translate each abstract test case
into an executable test script. The fourth step is
to execute the concrete tests on the SUT. With
online MBT, the tests will be executed as they
are produced, so the MBT tool will manage the
test execution process and record the results. The
fifth step is to analyze the results of the test
executions and take corrective action that means
comparing the actual results with expected ones.
By making the model explicit, in a notation that
can be used by MBT tools, we are able to generate
tests automatically (which decreases the cost of
testing), generate an arbitrary number of tests,
as well as obtain more systematic coverage of
the model. These changes can increase both the
quality and quantity of test suite.

2.2. Concurrency coverage criteria

Generating test scenarios is a key step in the
generation of test cases. Because it is usually
impossible or infeasible to test all possible paths
(due to limited testing resources), three coverage
criteria have been proposed in [9, 10] as follows.

(i) Weak concurrency coverage: test scenarios
are derived to cover only one feasible
sequence of parallel processes, without
considering the interleaving of messages
between parallel processes.

(ii) Moderate concurrency coverage: test
scenarios are derived to cover all feasible
sequences of parallel processes without

T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42 31

considering the interleaving of messages
between parallel processes.

(iii) Strong concurrency coverage: test scenarios
are derived to cover feasible sequences of
messages and parrallel processes having the
interleaving of messages between parallel
processes.

Clearly, these concurrency coverage criteria
require that the derived test scenarios cover
each parallel process at least once. Both weak
and moderate concurrency coverage test the
messages and control flows within a parallel
process in a sequence way. Strong concurrency
coverage considers the crossing of messages and
control flows from parallel processes, which may
result in a huge number of test scenarios, and
thus may be impractical. We propose a test
scenarios generation algorithm to satisfy possible
interleaving of messages in parrallel processes,
and it also avoids messages sequence exploration.

2.3. Mutation analysis
Mutation analysis has been widely employed

to evaluate the effectiveness of various software
testing techniques [11]. Mutation testing is a
fault-based testing technique which hypothesizes
certain types of faults that may be injected by
programmers and then designs test cases targeted
at uncovering such faults. Faults are introduced
into the program by creating a set of faulty
versions, called mutants. These mutants are
created from the original program by applying
mutation operators, which describe syntactic
changes to the programming language. Test cases
are used to execute these mutants with the goal of
causing each mutant to produce incorrect output.
The mutation score (MS) measures the adequacy
of a set of test cases that is defined as follows:

MS (p, t) =
Nk

Nm−Ne
where p refers to the program being mutated,

t is the test suite, Nk is the number of killed
mutants, Nm is the total number of mutants,
and Ne is the number of equivalent mutants.
An equivalent mutant is one whose behavior
is the same as that of p, for all test cases.
The automatically generated mutants can be very

similar to real-life faults [12], making MS a
good indicator of the effectiveness of a testing
technique [11]. We therefore use the MS to
evaluate our proposed method.

3. Control–Flow Graph Generation

Given UML 2.0 sequence diagrams describes
behavior of SUT and class diagrams declares all
method signatures and class attributes. Control-
flow graph (CFG) generation from sequence
diagrams is used by a proposed recursive
algorithm, and constraints of variables are derived
from class diagram to generate test data.

A CFG is a directed graph that represents a
corresponding sequence diagram. Each node is
either a block node (BN), a decision node (DN), a
merge node (MN), a fork node (FN) or a join node
(JN). The edges represent control flows among
nodes. Edges from DNs are labelled with a
predicate.

A BN represents a message mi or a sequence
of messages. Each message mi contains type
information of the receiver class from class
diagram and is structured as (mi, parameterList,
returnValue) and each parameter of message mi

may be a class attribute involved with constraints
(OCL expressions).

A DN represents a conditional expression such
as boolean expression that needs to be satisfied
for selection among operands of a fragment. A
MN represents an exit from the selection behavior
(for example, an exit from an alt or an opt
fragment). A FN represents an entry into a par
or a seq fragment. A JN represents an exit from a
par or a seq fragment.

First of all, the generation of sequence
diagram data structure creates queue which
includes message, fragment and operand. The
proposed iterative process is processElement*
for generating different kinds of nodes from the
queue. At each iteration, it analyzes each element
of queue to create corresponding exit node,
connect edge from current node to exit node, then
exit node is considered current node. Because the
parameters of a message in the sequence diagram
lack the constraint and type information, the

32 T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

additional information (constraints of variables)
is derived from the class diagram and is appended
to each message. The algorithm 1 can analyze
all of sequence diagrams where any combined
fragment can contain of the support fragments
in UML 2.0. The proposed technique requires
sequence diagrams in xmi file. We use the
analysis of xmi sequence diagram to create
corresponding queue [13]. The data structure
of sequence diagram is an array of elements
including message, fragment and operand. All
elements are sorted by time taken in the diagram.
The termination of loop (line 7), we have a data
structure queue that is equivalent to the input xmi
file. The processElement returns correspoding
exit node x (line 8). CFG is generated by
connecting initial node in to the order of exit
nodes created by the function, then the last edge
is made from x to final node fn (line 11).

Algorithm 1 Generating CFG
Input: D:Sequence diagram;CD:Class diagram
Output: Graph G: (A, E, in, F) where A is a set

of nodes (consisting BN, DN, MN, FN, JN);
in denotes the initial node and F denotes a set
of all final nodes representing terminal nodes
of the graph; E is a set of control edges such
that E = {(x, y)|x, y ∈ A ∪ F}.

1: create initial node in, node x;
2: create empty queue;
3: create curPos point at start element of

sequence diagram D in xmi;
4: repeat
5: curPos read each element of D

to add to queue //used in [13]
6: curPos move to next Element;
7: until curPos meets end element of xmi file
8: x = processElement(queue,CD,in);
9: if x , f inalNode then

10: create final Node f n ∈ F;
11: Connect edge from x to f n;
12: end if
13: return G;

Algorithm 2 analyzes each element of queue
to return different kinds of nodes. Starting in
node is considered current node (curNode), each

element of queue is taken (queue.pop()). The
function is iteratively called to be transformed.
There are five kinds of corresponding nodes in
the graph that are BN, DN, MN, FN and JN.
In addition, with each element of the sequence
diagram, we distinguish two nodes- entry node
and exit node. The entry node is the current node
which is connected to the outside by incoming
edges and therefore supplied as input to the
function. The exit node is the node which is
connected to the outside by outgoing edges and
hence returned as output of the function. When
the element derived from the sequence diagram
that is message m, then the receiver class of the
message is consulted. The method signature
corresponding to the method call is then derived
using the function ReturnMessageStructure.
For the OCL constraints, type and attribute
(the structure including (mi, parameterList,
returnValue)) are appended to the messge mi,
and the code to perform it is the function call
AttachConstraintInfo(). After creating the
corresponding node, the current node will be
connected to the created node, and then this node
is considered the current node. In this way, CFG
is generated from the sequence diagram with any
nested combination of fragments.

Comparing with [2], a sequence of messages
in operands of par fragments is equivalent with
a BN while in this technique each message
corresponds to a BN. The isAsyn property is
attached to each BN if the corresponding message
of operands in seq or par fragment have sharing
data or lock mechanism (line 29). Therefore,
a method in Sect. 4 can generate all possible
scenarios by exploring the message sequence
with their possible interleaving of operands in
seq or par fragments. In addition strict and
critical fragments are also applied to generate
CFG (Fig. 2 and Fig. 3).

Algorithm 2 Analyzing elements of queue
Input: Class diagram CD,queue q, curNode ∈ A
Output: exitNode ∈ A

function processElement (q: queue, CD: class
diagram, curNode:A) :A
1:while queue != empty do

T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42 33

Fig. 2: General structure of CFG (for par, seq fragments).

2: x= queue.pop();
3: if(x==fragment) and (x.type==’opt’ or ’alt’
or ’break’ or ’loop’) then
4: Create a DN ;
5: ConnectEdge(curNode,DN);
6: else if (x==message) then
7: begin
8: BN=CreateBlockNode()//BN is message
8: or a set of messages
9: for each message m ∈ B
10: get receiver class in r.clasName
11: msg=returnMsgStructure(CD,r.clasName,m)
12: attr=returnAttributeStructure(CD,r.clasName)
13: for all variables in m
14: attachAttributeInfor(attr,m);
14: //attach constraint c[i] to msg
15: end for
16: end for
17: ConnectEdge(curNode,DN);
18: exitNode =BN;
19: end;
20: else if(x==operand)and(x.guard!=null)then
21: attachGuardtoEdge()
22: curNode = DN;
23: else if(x==frag)and(x.type==’par’or’seq’)then
24: Create forkNode FN;
25: ConnectEdge(curNode,FN);
26: curNode = FN;
27: for each operand

Fig. 3: General structure of CFG (for strict and critical
region fragments).

28: create BN to coressponding msg;
29: isAsynToBN()//attach isAsyn to BN
30: end for
31:else if(x==’EOF’andx.type==’alt’or’opt’)then
31: //termination condition of frag alt or opt
32: Create merge node MN
33: ConnectEdge(curNode,MN);
34: exitNode =MN;
35:else if(x==’EOF’andx.type==’par’or’seq’)then
36: Create join node JN
37: ConnectEdge(curNode,JN);
38: exitNode =JN;
39:else if (x==’EOF’ and x.type==’loop’) then
40: attachLoopstoEdge()
40: //attach number of loops to Edge
41: ConnectEdge(curNode,DN);
42: curNode=DN;
43:end if
44:return exitNode;
45:end while;

4. Test Scenarios Generation

Input of the test scenarios generation is CFG
(as discussed in Sect. 3). The test scenarios
denote abstract test cases which represent
possible traces of executions. The output from
the scenario generation is a finite set of scenarios
which are complete paths starting from the initial

34 T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

node to the final node. Because it is usually
impossible or infeasible to test all possible
paths (due to limited testing resources), three
concurrency coverage criteria are given above
to choose that depending on the characteristics
of each project software. Both weak and
moderate concurrency coverage test the messages
and control flows within a parallel process in a
sequence way. If the systems do not address the
issues of the synchronization and sharing data,
we can select the weak or moderate coverage
criteria. The weak concurrency coverage is one
of case of the moderate coverage, so we propose
Algorithm 3 to generate test scenarios following
the moderate coverage. Basic paths generated
using the Algorithm 3 are suitable for node
coverage and edge coverage of graph, but do not
address the issues of the synchronization and data
safety. When using that algorithm, we cannot
explore the message sequence with their possible
interleaving of operands in par or seq fragments.

The proposed Algorithm 4 generates test
scenarios to improve the strong concurrency
coverage from CFG to solve that problem. The
algorithm constructs a path for each thread of
execution. At each step it appends BN to the path
t if curNode is BN. When a DN is reached then
on the basis of result of decision guard condition,
the path t is appended respective true/false part
up to MN. If curNode is FN then sub paths
representing each thread of execution for that fork
are activated. The messages of operands in seq or
par fragment (having isAsyn property is true) is
a switch point of sub paths. The point changes
for the sub paths when BNs are appended to the
path t. That addition will stop until all active sub
paths for a given FN are empty. When curNode
is reached a final node (f ni), the path t is updated
collection of test scenarios T.

Comparing with depth first search (DFS)
and breadth first search (BFS) algorithm, these
new generated paths are given as test scenarios
for testing concurrency errors in sequence
diagram. In par or seq fragment, selection of
adequate switch points for message interleaving
of operands among queues is more important. If
there is no switch point for each concurrent thread

Algorithm 3 Generating the test scenarios
following the moderate concurrency coverage
Input: Control-flow Graph G with initial node in

and final nodes are f ni

Output: T is a collection of test scenarios, t is a
test path

1: T = ∅; t = ∅;
2: curNode = in; //current node starts from in
3: repeat
4: move to next node;
5: if curNode == BN then
6: t.append(BN);
7: end if
8: if curNode == DN then
9: Append true part of BN up to MN in t

10: Append false part of BN up toMN in t
11: end if
12: if (curNode == FN) then
13: create sub path ti for each fork out flow;
14: append BN of each fork flow up to JN
15: in respective sub path ti;
16: end if
17: if (curNode == f ni) then
18: T = T + {t};
19: end if
20: until Graph end

then messages will execute one after another in
sequence. This sequencing will lose concurrent
nature among messages. If there is a switch
point after each message in queue then number
of concurrent paths will be exponential. In case of
concurrent threads that neither share any common
data nor need any casual order between messages
of different threads can be interleaved in any
sequence. Therefore, it will not lead to any
concurrency or synchronization error. But the
messages of concurrent threads have the share
common data or need any casual order among
them in different threads that can be interleaved
in restricted way. These types of threads are
called synchronized threads. The synchronized
threads need careful selection of switch point in
queues to generate adequate test scenario. A
proper selection of switch point will generate
a feasible concurrent test sequence in presence
of concurrency. A shared data of messages in

T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42 35

Algorithm 4 Generating the test scenarios to
improve the strong concurrency coverage
Input: Control-flow Graph G with initial node in

and final nodes are f ni

Output: T is a collection of test scenarios, t is a
test path

1: T = ∅; t = ∅;
2: curNode = in; //current node starts from in
3: repeat
4: move to next node;
5: if (curNode == BN) then
6: t.append(BN);
7: end if
8: if (curNode==DN and Branch is TRUE)

then
9: Append t with true part BN to MN;

10: else
11: Append t with false part BN to MN;
12: end if
13: if (curNode == FN) then
14: active all sub paths of FN;
15: repeat
16: Select random sub path;
17: Append t with node up to before or

after node having isAsyn //message
having isAsyn (true) is a switch point

18: until all sub paths are empty
19: end if
20: if (curNode == f ni) then
21: T = T + {t};
22: end if
23: until Graph end

operand or threads using locking mechanism in
par or seq fragment need synchronized access.
To capture data safety errors, a switch point is
selected before a sharing data, after a sharing
data, before locking and after locking (for
example, bank transaction has two threads in par
fragment: Lock1-withdraw1-Unlock1; Lock2-
deposit2-Unlock2). These switch points try to
capture casual ordering errors and data safety
errors in the concurrent thread implementation.
A test scenarios generated by algorithm 4 should
be able to uncover data safety error, concurrent
execution should able to detect inconsistent state
of shared data due to specific interleaving of

execution. A possible technique to generate
such interleaving is to switch execution of thread
inside critical section. A test sequence that
provides such specific interleaving, which check
for data inconsistency, is having data safety error
uncover capability. Therefore, we could find the
concurrency errors such as safety and liveness
property of systems. The proposed method is
applied to systems for test scenarios generation
and found to be very effective in controlling the
test scenarios explosion problem.
All variables in the block node are associated
with constraint information which is taken in
class diagram. One representative value for each
variable on the test scenario is to be selected.
Therefore, messages in block nodes along the test
scenario correspond to a parameterized operation
call. Each outgoing edge from a decision node
contains one predicate. Each test scenario must
satisfy all predicates along its path. Sect. 5
proposes a method to generate test data for each
the scenario, special in case of loops.

5. Test Data Generation

The test scenarios obtained (as discussed in the
Sect. 4) denote the sequence of messages. The
sequence is a feasible sequence of messages if
we find test data (test input) to satisfy all the
constraints along the scenario. Many current
researches solve the equations to find values that
satisfy these constraints. However, it is difficult to
generate test data for testing loops. The proposed
method solves that problem by finding values in
the test scenarios of CFG, using one predicate at
a time and reducing domains of variables step by
step. We develop the dynamic domain reduction
procedure [2] in case of testing loops.

For each test scenario ti (in set of test
scenarios T) represents as a sequence of nodes <
ni1, ni2, ..., nig > where ni1 denotes the initial node
and nig denotes the final node, we need to find sub
domain of test input satisfying all the constraints
along current path ti such that the path reaches
the final node nig. ReduceDomains of variables
is the key step in the procedure. The predicates
(on the branch edges) from DN are used to form

36 T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

Fig. 4: Compute splitPt depending on domains of variables.

new constraints. The path ti is traversed, a
search process is used to split the domain of some
variables in an attempt to find a set of values
that allow the constraints to be satisfied. GetSplit
modifies the domains for variables in a constraint
so that (1) the new domains satisfy the constraint
and (2) the size of the two domains is balanced.
For example, predicate is x > y with domains for
x,y are (0..50), the first attempt would be to make
the domain for x to be (26..50) and for y is (0..25).

Given the initial domains of two variables
known as left and right variables that are
combined by a relational expression, if these
domains are non-intersecting, the predicate may
be either satisfied or is infeasible. If the two
domains define sets of values that intersect, then
getSplit modifies the two domains such that
the constraint is satisfied for all pairs of values
from the two domains. The split point is found
based on top and bottom values of left and right
domains. There are the following four cases to
consider in Fig. 4.
Case 1:splitPt = (le f t.top−le f t.bot)∗pt+le f t.bot
Case 2:splitPt = (right.top − right.bot) ∗ pt +

right.bot
Case 3:splitPt = (le f t.top − right.bot) ∗ pt +

right.bot
Case 4:splitPt = (right.top − le f t.bot) ∗ pt +

le f t.bot

The inputs to getSplit are domains for two
expressions (left and right domains) and integer
that indicates what iteration of the search is

being performed (Indx = 1, 2, 3, 4,...) with exp
satisfies: 2exp ≤ Indx ≤ 2exp + 1
Therefore, pt =

(2exp−(2∗(2exp−1)−1))
2exp

Result, pt = (1
2 ,

1
4 ,

3
4 ,

1
8 ,

3
8 ,...)

The synthesis test data generation procedure
includes the following steps: Choose test scenario
ti, a sequence of nodes < ni1, ni2, ..., nig >. If
node ni is a DN, it is marked and encountered.
Later, the procedure uses reading predicate on the
branch edge and reducing domains of variables
by using above getSplit. If node ni is not a DN,
the procedure moves to next node. When using
getSplit, the value of pt is initially got to 1

2 and
depending domains of left and right variables to
get the new domains for variables. A split point
is returned, the domains of left and right variables
are adjusted. If the new domain values satisfy the
predicate then the procedure continues with the
next node of the scenario ti until the final node
is reached. If the new domains do not satisfy
the constraint the value of pt is changed to 1

4
and a different split is found. If there have been
too many attempts to find a feasible split point
(more than k split points), the procedure goes
to the previous DN in the scenario ti. If there
are no previous decision nodes to evaluate, the
procedure gives up on this path and goes to the
next path in T . Normally when we test loops, test
scenarios will be tested in some cases with 1, 2,
random n, max, min times of specified loops. If
the test scenario is traversed, the DN is marked
and encountered and then variables are checked
dynamically (the maximum or minimum numbers
of loops which are parameters of loop fragments
are attached in edges of graph). If the variable
does not satisfy the constraint, the procedure exits
the loop and continues traversing the test scenario
on the node after the loop. The reduced domain
at the end of the procedure denotes a feasible
domain of values for a test scenario.

In the test data generation procedure, loops are
handled dynamically. The procedure finds all the
scenarios that contain at most one loop structure.
It then marks those DNs that affect whether
another iteration of the loop is made. Then as
the test scenario is traversed, when the DN is
encountered, the loop constraint and variables

T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42 37

are checked dynamically to decide whether to
continue with another iteration. Comparing with
[2], if variables always satisfy in next iteration,
our procedure exits the loops to generate test
data when the DN is encountered in case of 1,
2, random n, max and min loops. In [2, 5] for
loop fragment, the coverage criterion satisfies
at least one scenario reaching the loop and the
body of the loop is only executed once. Our
method is that test scenario containing test data
are generated if satisfying the constraints along
the scenario in case number of loops 0, 1, 2,
random n and max, min of loops.

Execution time: Algorithmic analysis of
algorithms are complicated that is exceedingly
difficult. The excecution time of the procedure
depends upon the number of decision nodes (D),
the number of paths (T), and the constant k
(split points). Moreover, if the procedure has
to go through k attempts at each decision node,
then that is k split attempts at the first decision,
then k splits at the second decision for every
attempt at the second decision, and so on, for a
total of kD split attemps. So the running time
is T ∗ kD. Although the worst–case running
time is exponential, the worst case can seldom
be expected to be achieved in practice. Moving
through the control fow graph dynamically allows
path constraints to be resolved immediately,
which is more efficient both in space and time,
and more often successful than constraint-based
testing. The dynamic nature of this procedure
also allows certain improvements to be made in
the handling of arrays, loops, and expressions.
This procedure incorporates elements from
the constraint–based testing domain reduction
procedure, symbolic evaluation, and the dynamic
test data generation approach. It integrates
constraint satisfaction, symbolic evaluation, and
a novel search process into one dynamic process.
As compared with previous automatic test data
generation procedures, we believe that the
dynamic domain reduction procedure can be
expected to be more likely to find a test case when
a test case exists, and that implementations can be
more effective and efficient.

Fig. 5: Figure showing architecture of SequenceCocur.

6. Experiments

This section proposes a tool, SequenceConcur,
developed to automate the proposed method. We
report on a case study conducted to examine
the method, and mutation analysis was used to
evaluate its effetiveness.

6.1. Tool Support

In this sub section we discuss the results
obtained by implementing the proposed method.
The complete method is implemeted using JAVA
and JDK version 1.8. We have developed our
method for generating test cases automatically
from UML sequence diagrams and OCL in a tool
prototype. The architecture of SequenceConcur
is shown in Fig. 5.

The implemented tool is available at the site1.
The Tool consists of 1936 lines of code and has

the following functionality:

(i) Preprocessing: It imports the UML sequence
diagrams and OCL in class diagrams (in
XMI format). We used Enterprise Achitect
version 11 to produce the UML design
artefact. The tool was developed using the
proposed recursive algorithm (in Sect. 3) for
generating CFG.

(ii) Generating test senarios: It generates test
scenarios from CFG with respect to different
concurrency coverage criteria and presents
the generated scenarios for further analysis.

(iii) Generating test data: It creates test data
for each test scenario by improving dynamic

1http://www.uet.vnu.edu.vn/∼hungpn/SequenceConcur/

38 T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

Fig. 6: Generated test paths for moderate coverage
criterion.

Fig. 7: Generated test paths for strong coverage criterion.

domain reduction procedure [4]. The
proposed procedure solves this test data for
testing loops.

The weak concurrency coverage is one of case of
the moderate coverage, so the tool only presents
moderate coverage. The moderate coverage
path tab presents the generated test scenarios
satisfying the moderate coverage criterion (as
shown in Fig. 6) and the strong coverage path tab
shows the generated test scenarios satisfying the
improved strong coverage criterion (as shown in
Fig. 7).

6.2. Case study

In this sub section, we illustrate our test case
generation from UML sequence diagram 2.0 and
class diagram using an example called a bank
transaction with account transfer functionality. A
bank object is a main thread of the application
that creates two additional threads thread1 and
thread2. These two threads handle the money
transfer between two accounts, saving account
(accSaving) and current account (accCurrent).
The operations of a money transfer are enclosed
in a par combined fragment that represents a
concurrent execution of the messages in this
fragment. However, we assume that in the current

Fig. 8: The sequence diagram for Account Transfer in Bank
system.

account type users can withdraw up to 5 times
per day. In our study, we developed the case
study which is relatively small in size but which
covered most major impoved features. Fig. 8
represents sequence diagram of account transfer
functionality, and for the sake of brevity the class
diagram (Fig. 9) shows only the specific classes
that are involved in this function.

CFG generation: as part of CFG generation
algorithm, the combined fragments and the
message are enclosed in corresponding nodes
(Fig. 7).

Test scenarios generation: to generate test
scenarios, the CFG is traversed in our proposed
algorithm (in Sect. 4). For concurrent system,
by using Algorithm 4 test sequences would be
able to uncover some of the concurrency issues.
The account transfer functionality identifies the
quality of the test scenarios generated by DFS,
BFS and our method to uncover the concurrency
errors (Table 1).

Working of the test data generation
algorithm: consider the test scenario described
by T3= (Start-FN-M5-M6-M1-M2-DN-M7-
DN-M8-M3-M4-JN-End), we illustrate test data
generation for the scenario T3. The predicates
are shown on their associated edges, and the
constraints and data type of variable are attached
in block node. The variables amount of money
being withdrawn of two account type are x,y
and the balance of account is balance. All
variables from class diagram are set with
integer domain. The initial domains of input

T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42 39

Fig. 9: The class diagram and constraint OCL for Account
Transfer.

variables x,y and balance are: x,y:[50,50000] and
balance:[100,65535] (because balance ≥ 100
and balance is integer variable).

Assume that the test path T3 with 2 loops, our
algorithm marks and encounters decision node
DN that traversed. If DN is 2, the test path
is: Start-M5-M6-M1-M2-DN-M7-DN-M7-DN-
M8-M3-M4-End The sub path of M5-M6-M1-
M2 introduces no change to the input variables.
To take the branch from node DN to M7, the
predicate y < balance and y: [50,50000] and
balance : [100, 65535]. Therefore, domain of
variables indicate split point in the fourth case,
and splitPt = (right.top − le f t.bot) ∗ pt +

le f t.bot = (65535−50)∗1/2+50 = 32792, so y :
[50, 32792]; balance : [32793, 65535]. Traverse
block node M7, withdraw(y) because the smallest
amount of money withdrawn is 50, so balance
reduces 50, thus balance: [32743, 65485].

The next time through the loop, we have
the same predicate, domain of variables is in
the fourth case splitPt = (65485 − 50) ∗
1/2 + 50 = 32767, thus y : [50, 32767] and
balance : [32768, 65535]. Get on traversing
M7, withdraw(y) because the smallest amount of
money withdrawn is 50, so balance reduces 50,
thus balance : [32718, 65485].

The final time through the loop, the branch
from DN to M8, that domains of variables are
in the fourth case and splitPt = (65485 − 50) ∗
1/2 + 50 = 32767, because the predicate y ≥
balance, thus value of y is 32767 and domain
of balance is [32718, 32766]. Therefore, for test
scenario T3 reduced domain of test data are:
y = 32767;balance : [32718, 32766] and x :
[50, 50000].

6.3. Evaluation

In sub section, we attempt to prove the fault-
detection capability of the test suite generated
using the proposed method.

6.3.1. Metrics
The effectiveness of the proposed method was

measured using the mutation score (MS), which
indicates the adequacy of a test suite for the
program under test.

6.3.2. Experimental procedure
Preprocessing, generating test scenarios and

test data using SequenceConcur: we used
SequenceConcur to parse the UML sequence
diagram (in an XMI file) and OCL for bank
transaction. During the transformation, all
branches and concurrent flows were represented
as CFG. The tool generated a set of test scenarios
from the graphs based on a given coverage
criterion.

We generated test data by using algorithm
in Sect. 5 (special in case of testing loops),
from which we selected only those satisfying
the generated test scenarios to be in the test
suite. As a result, we selected 20 test cases
for each test scenario- when the improved strong
coverage criterion was used, four test scenarios
were created in our experiments.

Seeding faults: in the study, an open-source
mutation system, muJava [14], was used to
randomly seed faults into the Java program for
bank transaction. Using the muJava system, 9
method-level and 5 class-level operators were
applicable for our study. In these applicable
operators, a total of 351 method-level and 26
class-level mutants were generated.

Executing tests and collecting the results: We
next applied each test in the test suite to both
the original program and the mutants, comparing
the output. If the output was the same, then
the current test passed; otherwise, a fault was
detected.

6.3.3. Results and analysis
Data safety error uncover capability: In

our case study, the messages m2 and m6 in par

40 T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

Table 1: Test scenarios generated by DFS, BFS and our algorithm and last column indicates data safety error uncover
capability

Algorithm Test scenarios Error
uncover
capability

DFS Start-FN-M1-M2-M3-M4-M5-M6-DN-M7-DN-M8-JN-End No
Start-FN-M5-M6-DN-M7-DN-M8-M1-M2-M3-M4-JN-End No

BFS Start-FN-M1-M5-M2-M6-M3-DN-M7-DN-M4-M8-JN-End Yes
Start-FN-M5-M1-M6-M2-DN-M7-DN-M3-M8-M4-JN-End Yes

Our algorithm Start-FN-M1-M5-M2-M3-M4-M6-DN-M7-DN-M8-JN-End(T1) Yes
Start-FN-M1-M5-M2-M3-M4-M6-DN-M8-JN-End(T2) Yes
Start-FN-M5-M6-M1-M2-DN-M7-DN-M8-M3-M4-JN-End(T3) Yes
Start-FN-M5-M6-M1-M2-DN-M8-M3-M4-JN-End(T4) Yes

Table 2: The MS results using the strong concurrency coverage criterion for each test scenario

Level Number of test
cases

Test
scenario 1

Test
scenario 2

Test
scenario 3

Test
scenario 4

Method-level size = 2 51.2% 40.5% 45.7% 50.2%
size = 10/20/30 56.5% 55.7% 47.7% 60.4%

Class-level size = 2/10/20/30 74.5% 74.5% 81.5% 81.5%

fragment have shared data, and safety of data is
more important. A test scenarios generated by
algorithm should be able to uncover data safety
errors. We use and compare DFS, BFS and
our algorithm in generating the test scenarios (in
Table 1) from CFG.

DFS algorithm generates test scenarios
including test sequences that are not capable of
finding data safety errors because it does not
allow interleaving between the messages of two
operands in par fragment. The test scenarios are
generated by BFS and our algorithm that are
capable of finding data safety errors. However,
BFS algorithm does not generate the test
sequences in case of zero loop while our method
uses with two parts, false part and true part that
means zero and more than one iteration. Test
data are also considered to get on with 2, random
n and max, min loops.

Fault– detection capability: In order to
study the impact of the test suite size on the
effectiveness of the proposed method, we varied
the size to be 2, 10, 20 and 30 test cases per
scenario. We further compare the fault- detection

effectiveness of our proposed method with that of
random testing, comparing their MS scores for
the same numbers of test cases. Table 2 presents
the MS results for each test scenario, displayed
according to ’Method-level and Class-level. From
the table, we can observe the following: (i)
For both method-level and class-level faults, the
generated test suite shows a good fault-detection
effectiveness, the test case generated were able
to detect more than 40.5% of method-level faults
and were able to detect more than 74.5% of
the class-level faults. (ii) the test suites derived
for different test scenarios have a different fault-
detection capability. Because the evaluation
results for different test suite sizes are the same
in case of 10,20,30 test cases per scenario for
both method-level faults and class-level faults,
our method does not need a large number of test
cases for each scenario.

Table 3 presents the MS results of both our
method and the random method. From the table,
we can observe the following: (i) for the same
sizes, test suites generated by our method achieve
higher mutation scores than those achieved by

T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42 41

Table 3: The mutation score MS results of our method and the random method

Our method Random Method
Number of test
cases

Level Total
mutants

Total killed
mutants

MS Killed mutants MS

size = 2 Method-level 351 261 74.3% 139 39.6%
Class-level 26 26 100% 23 88.4%

Total 377 287 76.2% 162 42.9%
size = 10/20/30 Method-level 351 266 75.7% 153 43.5%

Class-level 26 26 100% 26 100%
Total 377 292 77.5% 179 47.4%

the random method, with the differences being
more prominent when the size is small (with a
size of two, their MS are 76.2% and 42.9%,
respectively). (ii) regardless of test suite size, the
test suites generated by our method can detect
100% class-level faults while it can detect only
88.4% by the random method.

The experimental results show that, the test
suite generated using our method can detect
more than 76% of seed faults with a very small
size of test suite (one test case per scenario).
Furthermore, more than 74% of method-level
faults and 100% of class-level faults can be
detected by the generated test cases. For the same
situations, our method achieved a higher mutation
score than random testing. These results indicate
that the proposed method is both effective and
efficient.

7. Conclusions

The paper presented the automated test
data generation method based UML sequence
diagrams, class diagrams and OCL. The
method supports UML 2.0 sequence diagrams
including eight kinds of combined fragments
due to improved control-flow graph generation
technique. The key idea of this method is to
generate all possible test scenarios in special case
of exploring the message sequence with their
possible interleaving in par or seq fragments. The
test scenarios generation method also avoids test
explosion by selecting switch point. Therefore,
concurrency errors of systems can be found. In

addition, the new point is to generate test data
in testing loop fragments when comparing with
current approaches, test data is generated in case
of body of loop that is only executed once. The
method supports different coverage criteria and
can therefore test concurrent processes quite
effectively. Finally, we have implemented a tool
to automate the proposed method and conducted
the case study (bank transaction) to validate its
feasibility and effectiveness.

We are investigating to determine infeasible
or feasible test scenarios when there is no
input data for them to be executed. We also
are going to extend the proposed method for
other UML diagrams (e.g., state-chart diagrams,
activity diagrams). Moreover, we would like
to further investigate and evaluate the fault-
detection effectiveness, and costs, of the proposed
concurrency coverage criteria.

Acknowledgments

This work is supported by the project
no. QG.16.31 granted by Vietnam National
University, Hanoi (VNU).

References

[1] M. Utting, B. Legeard, Practical Model-Based Testing:
A Tools Approach, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2006.

[2] A. Nayak, D. Samanta, Automatic test data synthesis
using uml sequence diagrams, Journal of Object
Technology 9 (2) (2010) 115–144.

[3] M. Shirole, R. Kumar, Testing for concurrency in uml
diagrams, SIGSOFT Softw. Eng. Notes 37 (5) (2012)
1–8.

42 T. D. Vu, P. N. Hung, V. H. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–42

[4] M. Dhineshkumar, Galeebathullah, An approach to
generate test cases from sequence diagram, in:
Proceedings of the 2014 International Conference on
Intelligent Computing Applications, ICICA ’14, IEEE
Computer Society, Washington, DC, USA, 2014, pp.
345–349.

[5] B.-L. Li, Z.-s. Li, L. Qing, Y.-H. Chen, Test
case automate generation from uml sequence
diagram and ocl expression, in: Proceedings of the
2007 International Conference on Computational
Intelligence and Security, CIS ’07, IEEE Computer
Society, Washington, DC, USA, 2007, pp. 1048–1052.

[6] O. M. Group, The Unified Modeling Language UML
2.0 Technical Report formal/06-04-04, The Object
Management Group (OMG), 2006.

[7] M. Khandai, A. Acharya, D. Mohapatra, A novel
approach of test case generation for concurrent
systems using uml sequence diagram, in: Electronics
Computer Technology (ICECT), 3rd International
Conference, Vol. 1, 2011, pp. 157–161.

[8] T. D. Vu, P. N. Hung, V. H. Nguyen, A Method
for Automated Test Data Generation from Sequence
Diagrams and Object Constraint Language, in:
Proceedings of the Sixth International Symposium on
Information and Communication Technology, ACM,
Hue City, Viet Nam, 2015, pp. 335–341.

[9] C. ai Sun, Y. Zhao, L. Pan, X. He, D. Towey, A
transformation-based approach to testing concurrent
programs using uml activity diagrams, Software:
Practice and Experience.

[10] C. ai Sun, A transformation-based approach to
generating scenario-oriented test cases from uml
activity diagrams for concurrent applications (2008)
160–167.

[11] S. C-A, W. G, C. K-Y, C. TY, Distribution-aware
mutation analysis, in: Proceedings of 9th IEEE
International Workshop on Software Cybernetics
(IWSC 2012), IEEE Computer Society, Izmir, Turkey,
2012, pp. 170–175.

[12] A. JH, B. LC, L. Y, Is mutation an appropriate tool
for testing experiments, in: Proceedings of the 27th
International Conference on Software Engineering
(ICSE 2005), IEEE Computer Society, St. Louis,
Missouri, 2005, pp. 402–411.

[13] H. Minh Duong, L. Khanh Trinh, P. N. Hung, An
assume-guarantee model checker for component-
based systems, in: The 10th IEEE-RIVF International
Conference on Computing and Communication
Technologies, 2013, pp. 22–26.

[14] M. YS, O. J, K. YR, Mujava: an automated class
mutation system, Software Testing, Verification and
Reliability 15 (2) (2005) 97–133.

