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Abstract—We consider the application of Compressed Sensing
(CS) to enhance the acquisition speed in Magnetic Resonance
Imaging (MRI). For CS-based MRI, random sampling is of-
ten implemented in the k-space and depends on the uniform
distribution and energy distribution of MRI images in the k-
space. In contrast, we propose a new deterministic sampling
method for CS-based MRI using the logistic map, which has good
statistical properties and can be easily converted to uniform-like
chaotic sequences. Simulation results confirmed that the proposed
method is equivalent to state-of-the-art methods in terms of
the relative root-mean-square error and the probability of exact
reconstruction.

Index Terms—Compressed sensing; Chaotic systems; Magnetic
resonance imaging (MRI); Fast image acquisition.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a non-invasive imag-

ing tool which has been used widely in medicine. It is

desirable to enhance the acquisition speed in MRI in order to

enhance image contrast and resolution, to avoid physiological

effects or scanning time on patients, to overcome physical

constraints inherent within the MRI scanner, or to meet timing

requirements when imaging dynamic structures or processes.

The last two decades have seen a rapid development of fast

MRI, which improves one or more stages in MRI, including

(i) excitation and acquisition manner, (ii) reducing the acquired

data, and (iii) reconstruction. With respect to fast acquisition, a

new sampling paradigm called Compressed Sensing (CS) [1–

3] permits exact reconstruction of MR images from a number

of samples under CS is smaller than that under Nyquist

sampling (as such, CS is one type of under-sampling), thereby

reducing the acquisition time.

CS works with incoherent sensing modality by linearly

projecting the acquiring signal onto a special domain, and

can be successfully applied to sparse or compressible signals.

In fact, since MR images are generally sparse (i.e., wavelet

coefficients of brain MR images are sparse), CS has recently

been shown, by Lustig et al., to be successfully applied to

MRI to achieve fast acquisition [4]– so abbreviated as CS-

MRI. In MRI, the acquired data provide complete Fourier

(a.k.a., k-space) measurements. Then, image reconstruction

can be done in either the image domain or the k-space domain.

Therefore, CS-MRI is a special case of CS, in which the

CS under-sampling process is performed in the k-space to

achieve an number of samples smaller than the number of

complete Fourier coefficients. The reconstruction can be done

by sparse approximation. Sampling in CS-MRI is performed

randomly with a distribution whose density matches the energy

distribution of samples in the k-space.

In contrast to the usual application of random sampling in

CS, deterministic sampling in CS has certain advantages such

as more efficient recovery time, explicit constructions, efficient

storage, and tighter recovery bounds [5]. A special type of

deterministic sampling in CS that employs the deterministic

chaos were considered in [6, 7]. Then, in [8–10], the authors

proposed a chaotic CS method for MRI, so abbreviated as

CCS-MRI. The main idea of CCS-MRI is to apply sampling

with a Gaussian-like chaotic sequence, which is transformed

from the logistic map, one kind of chaotic systems. The

numerical results show the equivalent performance as if using

random sampling in CS-MRI.

As mentioned above, CS-MRI is a special case of CS and

the theoretical base for exact reconstruction is shown in [2, 3],

the early papers of CS. One of the main results in these papers

is that one can reconstruct exactly the signal from the Fourier

ensemble, which is obtained by randomly sampling rows from

the orthonormal N × N Fourier matrix. With the sampling

that is based on the Gaussian-like chaotic sequence as in [8–

10], the numerical results show the equivalent performance

to random sampling, whereas the sampling based on the

Gaussian-like chaotic sequence may be not suitable when the

energy distribution in the k-space has changed. In the latter

case, the sampling need to be changed, and the uniform-like

chaotic sequence may give us more flexibility. The logistic

map has good statistic properties, and we can generate the

uniform-like chaotic sequence based on the “truly” Bernoulli

sequence from the logistic map [11, 12]. In this paper, we

proposed a new method for CCS-MRI that is based on the

logistic map to generate the uniform-like chaotic sequence.

The paper is organized as follows. Section II describes the

basic principles of CS-MRI. The proposed CCS-MRI method

is then presented in Section III. The performance of the

proposed method is assessed in Section IV.

II. BASIC PRINCIPLES OF CS-MRI

A. Compressed Sensing Fundamentals

The discrete-to-discrete formulation of CS is briefly de-

scribed as follows. Suppose that x ∈ R
N is the sparse signal. It



means that there exists a vector α containing exactly K ≪ N
nonzero values, so called the K-sparse vector, and a proper

basis Ψ = [ψ1, . . . , ψN ] satisfying x = Ψα. In this case, the

transform matrix Ψ, used to represent x in the sparsity basis,

is called the sparsifying matrix or representation basis and x

is referred to as the K-sparse signal. In CS, x is acquired

linearly by measurement vector y as

y = Φx = ΦΨα = Θα, (1)

where Φ ∈ R
M×N is the sensing matrix, M ≪ N . This

matrix Φ is designed to have M as small as possible while

allowing exact reconstruction of x (or α) from the measure-

ment vector y.

Two principles that enable CS are sparsity and incoherence.

With supposition that x is the sparse signal, the sparsity prin-

ciple is satisfied. Accurate reconstruction α can be achieved

when Θ satisfies the so-called Restricted Isometry Property

(RIP) of order K. In other words, Θ approximately preserves

the length of K-sparse signals; all subsets of K columns of

Θ are near orthogonal. One way to satisfy RIP is to have

incoherence between Φ and Ψ: random matrices are largely

incoherent with any fixed basis Ψ.

When Θ satisfies RIP, exact reconstruction of α (or, essen-

tially, x since Ψ is known) is achieved with overwhelming

probability using the following ℓ1 minimization problem:

α = argmin
α

′

‖α′‖1 subject to Θα
′ = y. (2)

When there is noise in the measurements, the optimization

problem is reformulated as follows:

α = argmin
α

′

‖α′‖1 subject to ‖Θα
′ − y‖2 < ǫ, (3)

where ǫ is a constant related to the variance of the noise.

B. 2D-MRI acquisition

Consider the imaging of a 2D slice of the object in the 2D

plane {x, y}. Let m (x, y) be this image. The analog signal

acquired by the receiving coil is represented in the k-space,

by the following imaging equation:

ν (kx, ky) =

∫∫

xy

m (x, y) e−i(kxx+kyy)dx dy, (4)

where kx and ky encode the information of the locations along

x and y directions of the image respectively, and k = {kx, ky}
is said to lie in the k-space. Clearly, the image m (x, y) can

be obtained by applying a 2D-Fourier transform on ν (kx, ky).
Note that, the time dimension is implicitly included in kx and

ky .

Upon sampling the k-space, we have the discrete version

of (4) as follows:

ν (kx, ky) =

Nx−1
∑

nx

Ny−1
∑

ny

m (nx, ny) e
−i(kxx+kyy)dxdy, (5)
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Fig. 1. k-space of a brain MR image. (a)– analog acquisition, (b)– linear
sampling, (c) linear undersampling. In (c), a binary mask (of 256 × 256

points) is applied to (a), followed by a power decay law along direction ky .

where Nx and Ny are the numbers of pixels along x and y
axes of the image. Equation (5) can be expressed in matrix

form as

ν = Fm, (6)

There are various ways of defining kx and ky , depending

on the k-space trajectory in use. A common trajectory for

2D imaging is the Cartesian trajectory used in this paper.

Fig. 1(a) presents the k-space of an MR image of a brain slice,

which is shown in Fig. 2(a). We see that most of the encoded

information concentrates around the origin of the k-space. In

practice, the energy distribution in the k-space follows a power

law.

C. CS-MRI with Gaussian random measurements

In CS-MRI, the imaging equation results in incomplete

measurements in the k-space in the form of the measurement

vector

ν = PFm, (7)

where P ∈ R
M×N is a rectangular binary matrix containing

only one non-zero value on each row, representing the action

of randomly selecting only M rows out of N rows of F. By

corresponding the CS model in (1) and the imaging equation

in standard MRI in (7), one can see that the CS measurements

y ≡ ν, the measurement matrix Φ ≡ PF and the underlying

signal to be reconstructed x ≡ m.

We have just mentioned that the energy distribution in the

k-space follows a power law so, for undersampling in the k-

space, one can use either Gaussian random measurements,

or combination of uniform random measurements and the

density matching with the energy distribution in the k-space.

The number of k-space samples is much smaller than that

obtained by linear (full) sampling as described above. MRI

reconstruction from the k-space samples is performed by Non-

linear Conjugate Gradient (NCG) [4]. Suppose the image of

interest is a vector m. The reconstructed image is obtained by

solving the following constrained optimization problem:

m̂ =argmin
m

{

‖PFm− ν‖
2
2 + λ ‖Ψm‖1

}

, (8)

where λ is a tuning constant for the trade-off between fidelity

term and the sparsity, ǫ controls the fidelity term, and Ψ

represents the sparsifying matrix in the wavelet domain.



III. PROPOSED METHOD FOR CCS-MRI

A. Principle of CCS-MRI

CS-MRI constructs the matrix P in Equation (7) randomly,

this corresponds to randomly select M rows of the Fourier

coefficient matrix compatible with the energy distribution in

the k-space. The sampling process of CCS-MRI, in contrast,

depends on chaos which are deterministic but behaves like

Gaussian or uniform distribution. Now we consider CCS-MRI

in detail.

To construct the chaotic measurement matrix Φ, firstly, a

logistic map is created by [13]:

hL(n+ 1) = αhL(n)(1− hL(n)), (9)

where α is a control parameter and n = 0, ..., L − 1. Note

that choosing the initial condition hL(0) is very sensitive to

formulate a suitable chaotic sequence. The logistic map with

α = 4 is fully chaotic such that for any initial condition almost

every point on the unit interval is visited and the probability

distribution function of the output is symmetric. Consequently,

the logistic map is transformed to Gaussian-logistic map in

order to make the chaotic sequence behave Gaussian-like, by

the following conversion:

GL(n) = ln

(

hL(n)

1− hL(n)

)

. (10)

The indices of selected rows are specified by the values of

GL(n).

B. Proposed method for CCS-MRI

We propose in this section a new method, called NewCCS-

MRI, for CCS-MRI based on the logistic map. The proposed

method can be summarized as follows:

1) Generate the logistic sequence according to (9).

2) Transform the logistic sequence to a binary sequence by

B(n) = σ(hL(n)) =

{

1, if hL(n) >
1
2 ,

0, otherwise.
(11)

The results in [12] show that B(n) is “truly” binary

Bernoulli sequence, i.e., for any q > 0, with b =
(b1, b2, . . . , bq), bi ∈ {0, 1} for i = 1, 2, 3, . . . , q we

have

Prob (b, σ) = 0.5q, (12)

where Prob (b, σ) denotes the probability of the event

σ(hL(1)) = b1, σ(hL(2)) = b2, . . . , σ(hL(q)) = bq .

3) To sample Fourier coefficient matrix with size of N×N ,

where N is usually set to 2b, we then convert series of b
bits to integer. With this transformation, the truly binary

Bernoulli sequence is converted to a uniform sequence.

The indices of the selected rows are specified by the

values of this sequence and the number of selected rows

M satisfies M ≥ ConstK log(N), with K being a

constant relative to the sparse of the image (i.e., the

considered signal is K-sparse).

(a) The original image (b) Reconstruction from largest
10% wavelet coefficients

(c) Reconstruction by zero filling (d) Reconstruction from CS-MRI

(e) Reconstruction from CCS-MRI (f) Reconstruction from NewCCS-
MRI

Fig. 2. Original brain slice image and reconstructed images from largest 10%
wavelet coefficients, CS-MRI, CCS-MRI and NewCCS-MRI at r = 0.35.

IV. SIMULATION

We will assess the performance of the proposed method by

qualitative and quantitative evaluations of image reconstruc-

tion.

We use an MR image of size 256 × 256 pixels as shown

in Fig. 2(a). The logistic map is implemented as described

above with α = 4 and the initial condition hL(0) = 3.

For CS-MRI and NewCCS-MRI, the indices of the selected

rows are determined by the values of the random sequence or

the uniform-like chaotic sequence and the sampling density

scaling according to a power of distance from the origin; the

density power is 3. The simulation is done using SparseMRI1

software [4].

For each reconstruction, the relative root-mean-square error

1SparseMRI: http://people.eecs.berkeley.edu/∼mlustig/Software.html.



(RMSE) is given by

RMSE =

√

‖m− m̂‖
2

‖m‖
2 , (13)

where m and m̂, respectively, denote the reconstructed image

from full sampling and Compressed Sensing for MRI. We also

want to assess the RMSE with respect to the compression ratio,

defined as r =M/N .

Fig. 2(b) shows the reconstructed image from 10% wavelet

coefficients and the RMSE is 0.0582; the reconstructed image

when the k-space was under-sampled and inverse Fourier

transform was used for reconstruction is illustrated in Fig. 2(c).

The ringing artefact in this image reflects the aliasing effect

due to under-sampling. Figs. 2(d), 2(e) and 2(f) compare the

reconstructed images obtained from CS-MRI, CCS-MRI and

NewCCS-MRI, respectively (for r = 0.35). We can see that

the quality of the reconstructed image quality by NewCCS-

MRI is as good as that by CS-MRI or CCS-MRI.

We further examine the effect of compression ratio with

respect to the RMSE (Fig. 4). At low compression ratios

(i.e., more compressed), NewCCS-MRI and CS-MRI have

better performance (i.e., lower RMSE) than CCS-MRI. At high

compression ratios, in contrast, CCS-MRI is superior to the

others. Moreover, performance of NewCCS-MRI is the same

as that of CS-MRI.

Finally, a performance study based on the probability of

exact reconstruction (recovery rate) is illustrated in Fig. 4. The

decision for failure reconstruction is made when the relative

RMSE of reconstruction is greater than 0.0582. Note that the

value of 0.0582 is the relative RMSE of reconstructed image

from 10% wavelet coefficients. However, for this method, we

have to collect full observation of the k-space. The probability

of exact reconstruction reconfirms the “equivalence” of CS-

MRI and NewCCS-MRI. The recovery rate depends on error

metric and decision threshold for failure or success in image

reconstruction. At the ratio r = 0.35 as we have seen in

Fig. 2, although a “failure” in reconstruction occurred, the

image quality is comparable to the original image.

V. CONCLUSIONS

This paper presents a new method to enhance the speed of

acquisition for MRI applications. For the sake of simplicity

in presenting the idea of CS, this paper only considered

2D standard MRI. With this presentation, instead of fully

sampling the k-space, we only selected M out of N horizontal

trajectories in the k-space and the selection of these trajectories

was done using the values generated from the chaotic sequence

(CCS-MRI and NewCCS-MRI). The good performance of

CCS-MRI and NewCCS-MRI at values of the compression

ratio r from 3.5 to 0.5 implies that the speed of acquisition

in MRI can be enhanced by a factor from 2 to 2.86 when

we apply the deterministic sampling methods based on chaos

for CS. Finally, with the NewCCS-MRI, we can change the

sampling density matching with the energy distribution in the

k-space more flexibly than other sampling methods which

depend on the Gaussian-like chaotic sequence.
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