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a b s t r a c t

Numerical simulation of dynamic crack propagation in functionally graded glass-filled epoxy (FG) beams
using a regularized variational formulation is presented. The Griffith’s theory based hybrid phase field
approach for diffusive fracture is taken, which is able to accurately simulate complex behaviors of dy-
namic crack growth in FGMs. The FG beams under impact loads experimented by Kirugulige and Tippur
(Exper. Mech. 2006; 46:269e281) are considered, taking the same configurations, material property,
crack location, and other relevant assumptions. The crack paths, crack length, crack velocity, energies,
etc., computed through the hybrid phase field model are numerically analyzed, and some of those results
are directly compared with the experimental data. Due to lack of necessary information regarding impact
loading profiles and boundary conditions in setting the tests, the simulations become difficult as an
inappropriate definition of loading and boundary conditions can significantly alter the outputs of nu-
merical solutions. This issue is important and thus is discussed. Two specific loading profiles, the con-
stant and the linear displacement velocities, are taken into account, while free-free FG beams are
considered. We show that good agreements of crack paths between the experiment and phase field
approaches can be obtained. Numerical results also confirm a significant effect of elastic gradients on
final crack paths. Similar to the experimental results, we also found that the crack path kinks significantly
when situated on the stiffer side compared to the compliant side of the FG specimen.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced functionally graded materials (FGMs), which are
known as a special compositematerial emerged recently, have been
widely used in many engineering applications including aerospace,
automotive, marine, civil engineering [1,35e38]. The FGMs are
characterized by spatially varying material properties with the
goals, for instance, of reducing stress concentrations, relaxing re-
sidual stresses, or enhancing the bonding strength of composite

constituents [2]. Typical applications of FGMs, as stated out in
Refs. [3], include the impact resistant structures for ballistics and
armors, thermal barrier coatings in high temperature components,
interlayers in microelectronic packages, and many others. The most
distinctive features of FGMs over constituent materials are that the
compositions and volume fractions of the constituents in FGMs are
varied gradually, thus resulting in a non-uniform microstructure in
the material with continuously graded macro-properties as illus-
trated in Fig. 1 [4]. The FGMs however are very brittle, and the
extent to which these FGMs can be tailored against failure or
damage becomes more important. The knowledge of fracture be-
haviors, especially the dynamic crack propagation in FGMs, which
is being studied in this work, is hence essential in order to evaluate
their integrity.

Numerical failure mechanism simulation of dynamic crack
propagation in FGMs remains a significant challenge in computa-
tional mechanics. The capability to investigate fracture behaviors of

* Corresponding author. Department of Mechanical and Control Engineering,
Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552,
Japan.
** Corresponding author. Institute for Research and Development, Duy Tan Uni-
versity, Da Nang City, Viet Nam.

E-mail addresses: doan.d.aa.eng@gmail.com (D.H. Doan), buiquoctinh@duytan.
edu.vn, tinh.buiquoc@gmail.com (T.Q. Bui).

Contents lists available at ScienceDirect

Composites Part B

journal homepage: www.elsevier .com/locate/compositesb

http://dx.doi.org/10.1016/j.compositesb.2016.06.016
1359-8368/© 2016 Elsevier Ltd. All rights reserved.

Composites Part B 99 (2016) 266e276

mailto:doan.d.aa.eng@gmail.com
mailto:buiquoctinh@duytan.edu.vn
mailto:buiquoctinh@duytan.edu.vn
mailto:tinh.buiquoc@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2016.06.016&domain=pdf
www.sciencedirect.com/science/journal/13598368
www.elsevier.com/locate/compositesb
http://dx.doi.org/10.1016/j.compositesb.2016.06.016
http://dx.doi.org/10.1016/j.compositesb.2016.06.016
http://dx.doi.org/10.1016/j.compositesb.2016.06.016


FGMs under dynamic loading conditions is important to their
effective design and development. While static analysis offers de-
signers and engineers with an indication of critical state of the
stress contribution in a cracked body, real world structures, how-
ever, are invariably loaded dynamically. Most of previous works
available in literature have dedicated to the determination of static
fracture parameters and quasi-static crack growth simulation (see
Refs. [5e8]), whereas studies accounting for dynamic crack prop-
agation in FGMs are rather rare. Tippur and his co-workers [3,9,10]
presented an interesting study of dynamic crack propagation in
bending beams made of Soda-lime glass and epoxy materials. They
mainly conducted an experimental procedure using optical method
of Coherent Gradient Sensing and high-speed photography, while
validated numerical results derived utilizing cohesive element and
standard finite element method (FEM) have also been added. Yang
et al. [11] investigated dynamic fracture of FGMs under impact
loading using the FEM, considering the influence of non-
homogeneity, loading ratio, and crack velocity. Notice that the
mass density and Poisson’s ratio have been assumed to be constant
in Ref. [11]. Jain and Shukla [12] described a detailed analytical and
experimental investigation to dynamic fracture of FGMs under
mode I and mixed-mode loading conditions. Zhang and Paulino
[13] developed a cohesive zone model integrated into a graded
element formulation for dealing with dynamic failure processes in
FGMs. They addressed an incorporation of a failure criterion into
the cohesive zone model using both a finite cohesive strength and
work to fracture in material description. In terms of cohesive
method, Kandual et al. [14] presented an explicit cohesive volume
finite element for dynamic fracture and wave propagation in FGMs.
Very recently, Cheng et al. [15] introduced a peridynamic model,
which is based on non-local continuum mechanics formulation
eliminating spatial derivatives, to model dynamic fracture in FGMs.
For curious readers, further information of dynamic fracture studies
in FGMs can be found in an excellent review made by Shukla et al.
[16].

Apart from the limitations of experimental works, existing nu-
merical methods have also found very difficult or cumbersome in
accurate simulations of fracture in FGMs, especially dynamic crack
propagation. In the last decades, great efforts have put into the
developments of effective, novel and accurate approaches for nu-
merical simulation of dynamic fracture problems and an enormous
achievement has been reached. The linear elastic fracture

mechanics (LEFM) theory, which is based on Griffith’s theory for
brittle fracture, has successfully applied to solve a wide range of
engineering problems. The underlying idea behind the Griffith’s
theory is to drive the crack nucleation and propagation by a critical
value of the energy release rate [17]. In general, there are twomajor
approaches that can be applied to the modeling of brittle fracture,
the discrete and the smeared methods. Advances involved in terms
of the discrete methods can be named as the local enriched
partition-of-unity, see e.g. [18e21], embedded finite element
method [22], cohesive crack model [10,13,14], etc., In this discrete
setting, the discontinuities like crack are introduced and directly
integrated in the displacement fields in the framework of the
Griffith’s theory and finite element method (FEM). The smeared
methods like the classical continuum damage mechanics (see e.g.,
[23]), or a regularized phase field fracture model (see e.g., [24e27]),
alternatively, are based on the energy minimization concept. Their
aim is to incorporate a damage variable or to introduce a fracture
phase field parameter into the model to describe the deterioration of
materials or to let crack propagate along a path of least energy.
More specifically, the phase field formulation, in contrast to the
discrete fracture approach, drives the evolution of crack through
the fracture phase field parameter, which is obtained by intro-
ducing a local history field containing a maximum energetic crack
source in terms of deformation history. This definition allows one to
update the field variables like the fracture phase field, displace-
ments and history in a certain time step. Different versions of phase
field models (i.e., physics and mechanics) have been classified
clearly and can be found in Refs. [26], an excellent review work
published recently. Nevertheless, the crucial idea of the phase field
model is to indicate the cracks that should propagate along a path
of least energy, as the minimizer of a global energy function, by
which a phase parameter is introduced to track the cracked and
uncracked regions of the body [24]. One major advantage of this
phase field approach is that the fracture problem is reformulated as
a system of partial differential equations that completely determine
the evolution of cracks, highly suitable for high gradients problems.
There are neither phenomenological rules nor conditions needed to
determine crack nucleation, growth or bifurcation. More impor-
tantly, the phase fieldmodels do not require any numerical tracking
of discontinuities in the displacement fields. Consequently, the
difficulties of discrete approaches in predicting crack initiation and
crack velocity can now be overcome by using phase field methods
[25,26].

The phase field models have been applied to failure and damage
analysis of homogeneous and non-homogeneous materials [26],
while only a few works have dedicated to dynamic crack propa-
gation in brittle and quasi-brittle materials, e.g., see Refs. [28e32].
The phase field simulation of dynamic crack propagation in FGMs
made of Soda-lime glass and epoxy materials, however, has not
been available in literature yet when this paper is being reported.

The main objectives of this work are fourfold: (a) to present and
show an extension of the recently developed hybrid phase field
model [26] and its applicability to the simulation of dynamic crack
propagation in FGMs, exploring somemajor physical phenomena of
dynamic fracture behaviors in FGMs, for instance, initial kink an-
gles, crack initiation trend, crack velocity; (b) to rigorously and
directly validate numerical crack path results with respect to the
experimental data; (c) to numerically analyze the role and effect of
the crack location, material gradation, impact loads and boundary
conditions on the crack path; and (d) to address some numerical
properties of the phase field model in dynamic fracture of FGMs
and discuss some other relevant issues through the kinetic, frac-
ture, and elastic energies.

It is worthy stressing out here that accurate simulations of dy-
namic crack propagation utilizing preceding numerical approaches

Fig. 1. Non-uniform microscopically inhomogeneous structure of the NiCoCrAlY-YSZ
composite five layered functionally graded material [4].
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is often difficult and challenging in some extent. It may be due to,
for instance, the inherent non-homogeneous behavior and the lack
of symmetry in material properties of FGMs. Further discussion on
this issue can be found, for instance, in Refs. [13e15].

In this work, we are particularly interested in simulation of
edge-notch bending glass-filled epoxy beams under offset impact
loading as schematically depicted in Fig. 2, which were experi-
mentally investigated by Kirugulige and Tippur [3]. The same ge-
ometry is taken for two configurations shown in Fig. 2, one FGM
beam with a crack located on the stiffer side and the other with a
crack located on the compliant side are numerically simulated.
Similarly, we also take into account the homogeneous beam to
further explore the difference in fracture behavior under dynamic
loading due to functional grading. The homogeneous beam has all
the features as the two FGMs beams except its material property.
The crack paths, crack length, different types of loading, crack ve-
locity, fracture energy, kinetic energy, elastic energy, etc., computed
by the hybrid phase field model will be considered, investigated
and validated against the experimental data in Ref. [3].

In what follows, we briefly describe, in Section 2, the materials
to be used for the simulation and solution procedure in the context
of the hybrid phase field formulation, in which some important
issues in regard of the implementation of the phase field approach
will be presented. To accurately reproduce the experimental tests
through numerical methods, an appropriate definition of loading
and boundary conditions in the modeling is often required. An
inappropriate definition of the loading or the boundary condition,
of course, induces unacceptable outputs. In other words, the suc-
cess of simulations totally depends on the aforementioned issues.
To this end, this issue is discussed in Section 3. Subsequently, the
numerical results and discussion will be given in Sections 4 and 5.
Some conclusions drawn from the study are summarized in the last
section.

2. Materials and solution method

We start by considering a mixed-mode experimental test of
FGMs conducted by Kirugulige and Tippur [3]. The FGM beams are
made of epoxy with continuously varying volume fraction of glass-
filler particles, the Soda-lime glass, (35 mmmean diameter) from 0%
to 40%. The material properties of FGMs are fitted from the exper-
imental data [3], which are then shown in Fig. 3a, b and c where the
density, elastic modulus and fracture energy continuously vary
from the bottom side to the top of the FGM beams. Here, the dotted
represent the real data reproduced from Kirugulige and Tippur [3],
whereas the solid lines represent the fitting curves, which will be
used in our simulation throughout the study. Notice that the cor-
responding Poisson’s ratio variation between 0.33 and 0.37
mentioned in Ref. [3] was not expected to play a significant role in
fracture behavior of FGMs. It is therefore set to be a constant 0.34
throughout this analysis. In addition, the variation of mode I crack
initiation toughness versus Young’s modulus shown in Fig. 3c given
by Ref. [3] is also taken for the simulations.

Regarding the solution method, we adopt the recently

Fig. 2. Schematic of two configurations of FG beams and their geometry parameters:
(a) FG beam with a crack located on the stiffer side; and (b) FG beam with a crack
located on the compliant side. Our definition of the stiffer side and compliant one is
exactly the same as that in Ref. [3].

Fig. 3. Material properties of FGM beams. Variation of the density (a), the elastic
modulus (b) and the fracture energy (c).
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developed hybrid (isotropic-anisotropic) phase field model, which
is proposed in Ref. [26] for brittle fracture, for our simulation pur-
pose. The knowledge of standard momentum balance and the
evolution equation of such hybrid fracture phase field formulation
have already been detailed in Ref. [26]. We thus do not intend to
repeat them here in this paper, for the sake of brevity. Instead, only
the main idea of the hybrid phase field approach with its evolution
equation is briefly given, addressing some relevant important is-
sues and versatile features of the method.

In terms of phase field fracture modeling [24e32], the cracks,
which can be regarded as internal discontinuities with respect to
the macroscopic field, are essentially represented by a phase field
variable s bounded between 0 and 1. The phase field variable s
varies continuously from 1 for undamaged materials to 0 for
completely damaged materials. The hybrid (isotropic-anisotropic)
phase field model for brittle fracture is finally formulated as follows
[26]:

sðu; sÞ :¼ s2
vj0ðεÞ
vε

l2Dsþ ð1% sÞ ¼ 2l
Gc

sHþ
(1)

where s, ε are the stress and strain tensors, respectively; u is the
displacement field obeying the standard elastodynamic equation
without damping effect ru

€
¼ divs, in which r is the mass density,

div is the divergence operator, and the superposed dot represents
the partial differentiation with respect to time. In Eq. (1), l stands
for the length scale parameter introduced to account for the width
of the crack. Further definition of the functional length scale
parameter refers to, for instance [25], and in this study, l ¼ 0.5 mm
is selected. This length scale parameter is defined to control the
gradient of the transition zone from damaged s ¼ 0 to undamaged
s ¼ 1 materials. Gc denotes the material fracture toughness inde-
pendent of the crack speed, Ds is the Laplacian of the phase field
parameter, while Hþ introduces a strain history field of maximum
positive reference energy, jþ

0 ðεÞ, obtaining in a loading process, in
order to handle the irreversibility of the crack phase field evolution
[25].

Hþðx; tÞ :¼ maxt2½0;t'j
þ
0 ðεðx; tÞÞ (2)

By only applying the phase field parameter to the tensile part of
the elastic energy density function, j0(ε), we thus prohibit crack
propagation under compression, yielding

jþ
0 ðεÞ :¼

1
2
l〈trðεÞ〉2þ þ htr

!
ε2þ

"
(3)

with the elastic constant l>0, 〈trðεÞ〉þ :¼ 1
2 ðtrðεÞ þ jtrðεÞjÞ, and h>0

is the viscosity parameter. The evolution equation of the crack
phase field is finally given by Ref. [25].

h _s ¼ 2sHþ þ
Gc

l

!
ðs% 1Þ % l2Ds

"
(4)

where the superposed dot, _s, represents the partial differentiation
of the phase field parameter with respect to time. In this study, the
viscous term is neglected. In other words, by simply setting h¼0,
the rate-independent evolution of the phase field parameter can be
obtained [25,26].

It is worth noting that, according to [26], there are two formu-
lations of phase field approaches that can be treated as “basic”
ones: the isotropic and the anisotropic formulations. The hybrid
phase field model taken, however, contains advanced features of
such two individuals. The underlying idea of the hybrid phase field

model is to retain a linear momentum balance equation within a
staggered scheme (i.e., a linear stress-strain relation), saving the
computational time, while we still want the evolution of the phase
field parameter s to be driven merely by the tensile elastic energy
density, jþ

0 ðεÞ, which is to avoid the cracking in the compressed
domain [26].

Now, the evolution of crack is governed by the interplay be-
tweenmomentum balance and the evolution of the phase field. The
kinetics of crack motion is restricted to fairly simple possibilities
and the dynamics of fracture is based only on the interaction with
momentum balance. In our work, a staggered iterative scheme is
adopted to solve the resulting uncoupled equations [26]. The ac-
curacy of this scheme in dynamic crack propagation of FGMswill be
validated against the experimental data [3]. We then solve the
resulting equations of motion in an effective way by using an in-
house adaptive finite element method using 6-node quadratic
triangular elements in conjunction with a staggered iterative
scheme. In this study, we used the anisotropic mesh refinement
technique [43,44], in which a metric is employed to define the
mesh size in each spatial direction. Generally, the interpolation
error estimate is used in order to assess the metric. In this calcu-
lation, the metric is obtained from the interpolation error estimate
of the phase-field parameter, which keeps a mesh to be fine enough
in the damage area. Curious readers can refer to, for instance,
Refs. [43e45] for more information.

Remark #1: It would be stressed out here that a small region
represents a crack in terms of the phase field fracture approach in
which the damage accumulates. This representation of the phase
field in general is conceptually similar to the one employs within
the context of continuum gradient damage theory, e.g., see
Ref. [33]. Therefore, the phase field method could be viewed as a
continuum gradient damage theory, but with a different way in
derivation of the damage evolution equation.

3. Impact loading profiles and boundary conditions

We conduct two models of mixed-mode fracture experiments:
(a) a pre-crack placed on the stiffer side of the beam with impact
occurring on the compliant side, and (b) a pre-crack placed on the
compliant side of the beam with impacting on the stiffer one. One
of the underlying problems behind the simulations using the
hybrid phase field approach is how to appropriately represent the
impact loading and boundary conditions in the numerical imple-
mentation. This issue, as mentioned above, is important, and thus is
discussed immediately.

As depicted in Fig. 2, the FGM specimens are rectangular beams
that are initially set up with a pre-crack of 8.6 mm at the center of
bottom side. A sudden loading on the top beam is applied by an
impactor with a velocity of 5 m/s. In the reference [3], the
description of impactor, unfortunately, is not adequately detailed to
allow us to precisely prescribe an impact loading condition. The
information of the rebound time and of the size of the hammer
utilized as the impactor in the experiments is missed in Ref. [3].
Therefore, the impact loading profiles picked in this study are
assumed to be close to those used in the experiments, as much as
possible. As a consequence, the impact loading condition is hence
modeled as a displacement velocity with two different profiles,
which are schematically depicted in Fig. 4a for a Heaviside step
loading (termed as a constant displacement velocity) and Fig. 4b for a
Heaviside step loading with a finite rise time (termed as a linear
displacement velocity), for simplicity throughout the study.

Here, the constant displacement velocity implies that the top sur-
face of FGM beam has the same mechanical impedance with the
impactor. For the linear displacement velocity case, the top surface
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of FGM beam has, however, larger mechanical impedance than that
of the impactor, and it takes a certain time in order to reach the set-

up impact velocity of 5 m/s. The effect of these impact conditions
will be examined in the numerical results.

Regarding the boundary conditions, we follow the original
description applied to the experimental and FEM numerical
simulationworks by Kirugulige and Tippur [3,10]. As pointed out in
the reference works [3,10] that while conducting experiments, the
FGM beams are setup so that the specimens are initially rested on
two blocks of soft putty, before imposing the impact load. They also
addressed one important point that the main purpose of their set-
up is to preclude or avoid any interaction from the support re-
actions, which may significantly alter the resulting dynamic frac-
ture propagation behaviors. To this end, in our phase field
simulation, the boundary conditions of the FGM beams are finally
assumed to be free-free.

It is noticed that the free-free boundary conditions as shown in
Fig. 2 use impact loading of the free beam since this was also taken
the same in Ref. [10] for a FEM-based computational study. In the
present work, the displacement as a uniform distribution of the
equivalent body force over a length of 1 mm is applied on the top
surface of specimen.

4. Numerical results of dynamic crack propagation

The first focus of our study is to show the capability of the hybrid
phase field model in simulation of dynamic crack propagation in
FGMs. Three edge-notch bending beams (two functionally graded
glass-filled epoxy beams and one homogeneous beam) shown in
Fig. 2 are considered. Note that the homogeneous beam (not show
here) has exactly the same configuration to the two FG beams. The
numerical computations are performed employing an in-house
adaptive finite element approach with remeshing, integrating a
staggered iterative scheme. All simulations using 6-node quadratic
triangular elements for both displacements and phase field
parameter are carried out with the material properties of FGMs
sketched in Fig. 3. In Fig. 2, the specimens are subjected to an
impact loading at an offset distance with respect to the initial crack
location. A velocity of 5 m/s as explained above is thus specified to a
small region composed of nodes at the impact location. All the

simulations are performed under the plane stress state. The crack
paths, crack velocity, crack length, energies, etc., calculated by using

the hybrid phase field model are investigated and compared with
the experimental data [3].

Prior to analyzing the numerical results gained by the hybrid
phase field formulation, it is necessary to address one important
feature observed from the experimental works [3,10]. To this end,
Fig. 5 shows the final crack paths made by the experiment [3],
provided that, as pointed out by Kirugulige and Tippur [3]: “the
differences in the crack paths are attributable directly to the combined
effects of the elastic gradients as well as fracture toughness gradients”.
In other words, the final crack paths differ greatly for the two FGM
beams. Another interesting point is that an initial kink angle of
approximately 4( is found for the case under which the crack lo-
cates on the compliant side, while it is found for approximately 16(

for the beamwith the crack located on the stiffer side. Additionally,
an initial kink angle of about 10( for the homogeneous beam is
obtained, which is bounded by the ones for the two FGM beams. In
what follows, we will verify these final crack paths through the
hybrid phase field approach, and present and discuss some other
relevant results.

4.1. Functionally graded beam with a crack located on the stiffer
side

The first case is exactly concerned with the corresponding
specimen shown in Fig. 2a, in which a pre-crack is fabricated to be
placed on the stiffer side. It implies that the value of elastic modulus
of the bottom side is larger than that of the top one. The hybrid
phase field model is applied to calculate the dynamic crack growth
of the specified FGM specimen. The computed result of the final
crack path is then depicted in Fig. 6a showing the evolution graph
of the phase field parameter. The constant displacement velocity
sketched in Fig. 4a is used for this analysis. In Fig. 6a, the phase field
parameter varies continuously from 0 (red region: damaged) to 1
(blue region: intact). Interestingly, in such figure a diffusive zone
around the crack paths can also be seen, exactly reflecting the
perspective of the phase field modeling. The final crack path
computed by the hybrid phase field formulation matches well the
experimental crack path data as seen in Fig. 6b. This excellent

Fig. 4. Schematic of two impact loading profiles: (a) A constant displacement velocity (or a Heaviside step loading) and (b) a linear displacement velocity (or a Heaviside step
loading with a finite rise time).

uðtÞ ¼ 5 : Heaviside step loading uðtÞ ¼
#
5t=t0; t < t0; t0 ¼ 300ms

5; t ) t0
: Heaviside step loading with a finite rise time (5)
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agreement in both solutions can be observed for the whole curves,
i.e., from the initiation crack where the initial kink angles can be
found to be identical. There is, however, a slight and insignificant
difference at the very late stage of the final crack paths between
two solutions. The discrepancy of crack paths at the very late stage
of the final crack paths between experimental and computed re-
sults is attributed, for instance, to the assumed free-free boundary
conditions at the bottom of the model. Apart from the boundary
condition, other reasons such as the stress wave, the finite size
effect, etc., may also induce such a slight difference at the late stage
of the final crack paths. Although the bottom face of the FGM
specimen is experimentally assumed to be rested on two blocks of
soft putty, in simulations, however, the assumption of free-free
boundary condition to the bottom face of the beams may not

completely be able to represent such two blocks of soft putty, and
the effect of the reaction force induced by the support putty may
lead to a certain level of errors of the final simulation results. In this
case, as shown, the less accuracy can be found at the very late stage
of the crack paths.

Fig. 7 shows the same numerical comparison between two ap-
proaches but the linear displacement velocity is taken into phase
field implementation instead. In this particular case, the results
indicate that by using the loading driven through the linear
displacement velocity, the kink crack angle can be predicted well. A
remarkable agreement of the crack paths between two solutions
can also be obtained (crack paths grow up to half of thewidth of the
specimen), but the linear displacement velocity is not able to pre-
dict well for the full crack path, large error can be found at the late
stage, see Fig. 7.

Next, the boundary conditions setting in dynamic crack propa-
gation is important, which may affect the output numerical results
of the simulation. The key point as already stressed out above is due
to the fact that while the beams have been conducted experi-
mentally supported on two blocks of soft putty, precluding the
support reactions affecting the fracture behavior, in simulations
however they are assumed to be free-free condition [3,10]. We
numerically show here that the free-free assumption could be
applied to the simulations, but in fact that is not able to fully cap-
ture the real support conditions by the two soft putty blocks taken
in the tests. Fig. 8 shows the deformation results of the FG beam at
two different time steps calculated by the phase field model. We
highlight one important point that can be observed from these
deformation results that the effect of the support reaction on
fracture behaviors is not small. In order words, the support reaction
induced by the two blocks, in principle, can not be neglected.
Specifically, the effect is significant at the late stage of the impact
loading. At the early stage of loading, e.g., t¼200ms, the beam
shown in Fig. 8a is being deformed. Here, attentionmust be focused
on the bottom side of the beam at the two supports where the
deformation is still small, but it becomes larger at the late stage of
impact loading, see Fig. 8b, e.g., t¼320ms, where the beam deforms
unsymmetrically. It means that the support reaction realistically
alters the fracture behavior, the crack paths. Therefore, the free-free
beam assumption itself is possible for simulation, but not fully
capture the real works of the experiments, a certain level of error
can be reached. Therefore, it can be concluded that the less accu-
racy on the final crack paths at the late stage shown in Figs. 6c and

Fig. 5. Schematic of final crack paths (black solid lines) of two FGM beams (a), (b) and
one homogeneous beam (c) made by the experiments [3]. A vertical line (marked in
blue color) is located 10 mm away from the crack tip, which just helps to establish the
scale. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Comparison of the final crack paths (a) and (b) of an FGM beam with a crack
located on the stiffer side obtained by the experiments [3] and the hybrid phase field
formulation, taking the constant displacement velocity.
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7b may be caused by this free-free boundary condition.
Fig. 9 represents the evolution of crack length and crack velocity

versus crack propagation time. Note that the crack propagation
time defined is to measure the time when crack starts propagating.
It is, on the other hand, to allow us to make a possible comparison
between the simulation and the test. In Fig. 9a, the solid line in-
dicates the calculation result whilst the dots represent the experi-
mental data reproduced from Kirugulige and Tippur [3]. It is
apparent that a good agreement of the crack length versus crack
propagation time between two solutions is obtained. The crack
velocity with respect to crack propagation time obtained by the
hybrid phase field model is also estimated and compared with that
reproduced from the experimental data [3], see Fig. 9b. The
amplitude of the crack velocity gained by two solutions is compa-
rable (see dash-dot line).

In terms of dynamic fracture analysis, the dynamic loading

Fig. 7. Comparison of the final crack paths of an FGM beamwith a crack located on the
stiffer side obtained by the experiments [3] and the hybrid phase field formulation,
taking the linear displacement velocity.

Fig. 8. Deformation of FG beams with a crack placed on the stiffer side at two different
time steps, taking the constant displacement velocity. (red color represents the phase
field, blue color represent the crack path).

Fig. 9. FG beam with a crack located on stiffer side: Crack length versus crack prop-
agation time (a) and crack velocity versus crack propagation time.

Fig. 10. Effect of different impact velocities on the crack paths and initial kink angles of
stiffer cracked beams.
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defined through the impact velocity plays a crucial role and may
have effects on the fracture behaviors. To this end, two specified
constant velocities of 3.5 m/s and 5 m/s are taken and their
calculated results of crack paths accounted for the stiffer cracked
specimen are shown in Fig. 10. The crack paths computed for two
cases are completely different. Different impact velocities greatly
alter the final crack paths. The higher velocity is imposed the larger
the initial kink angle is gained. It is clear that the one suffering
higher velocity grows faster than that of lower velocity. The
resulting crack path of the higher velocity is longer that of the lower
one.

4.2. Functionally graded beam with a crack located on the
compliant side

Next, we consider an FG beam with a pre-crack located on the
compliant side (see Fig. 2b), in contrast to the previous stiffer beam.
A pre-crack located on the compliant side means to serve lower
elastic modulus. The hybrid phase field model taken is applied and
the dynamic crack growth of the FG specimen is then computed.
Here, we are particularly interested in estimating the crack path,
showing the evolution graph of the phase-field parameter. Fig. 11,
as a consequence, depicts the resulting final crack paths calculated
by the phase field model plotted altogether with the tests [3] for
both the constant and linear displacement velocities. Overall, the
calculation result with the linear displacement velocity shows a
better agreement with experimental data than one with the con-
stant displacement velocity. It can be seen even more in the crack
path behavior that the model handling the constant displacement
velocity is not able to produce the initial kink angle of the crack
path. The crack path in this case immediately oscillates instead, and
less accuracy compared with the experimental data is found. In the
contrary, the initial kink angle can be captured well by the model
taking the linear displacement velocity. The initial kink angle in this
waymatches well the experimental curve. However, the accuracy is
found at the early stage only, large errors appear at the late stage of
loading.

It is important to note here that both proposed loading profiles
have been attempted but the final crack paths are unable to be
reproduced accurately as compared with the experimental data.
The main issue as already discussed above is that the necessary
information of the loading profiles used for the real tests is missing
in the reference work [3].

The constant and linear displacement velocities depend upon
the model to be considered. In our numerical experiments, we find
out that the model with a crack located on the stiffer side the
constant displacement velocity offers better accuracy of the crack
paths than that using the linear velocity support the hypothesis
that top surface of FGM beam has the same mechanical impedance
with the impactor. It is opposite when dealing with the beamwith a
crack located on the compliant side. In this case, the top surface of
FGM beam has large density and elastic modulus than case of crack
located on the stiffer side. It means that, the top surface of FGM
beam has larger mechanical impedance than that of the impactor,
and it takes a certain time in order to reach the set-up impact ve-
locity of 5 m/s. In other words, the loading profiles are problem-
dependent. It is reasonable since the loading profiles are a key
factor in dynamic fracture analysis that controls the output of the
final solutions of problems. Therefore, the two loading profiles are
attempted, in order to not only seek a reasonable result of the crack
path, but also to exhibit the importance of loading conditions
within the framework of dynamic fracture simulations.

4.3. A homogenous beam

In order to show the difference in fracture behavior due to
functional grading of materials, a homogeneous beam is solved
using the hybrid phase field model. The physical properties are: the
density r ¼ 1175 kg/m3, elastic modulus E ¼ 3.2 GPa and
KIC ¼ 1.26 MPa m1/2. The computed crack paths using the
displacement velocity profiles in Fig. 4 are plotted in Fig. 12.

Fig. 11. Comparison of final crack paths of an FG beam with a pre-crack located on the
compliant side between the phase field method and experimental data.
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Compared with the experimental data, the obtained result of crack
paths with the constant displacement velocity shows better
agreement than that employing the linear displacement velocity.
Once again, less accuracy of the crack path at the late stage is found
in this homogeneous case. The less accuracy may be caused by the
boundary conditions. Nevertheless, both loading profiles can offer
good initial kink angles.

5. Discussions

Three specimens of FG and homogeneous beams experimented
by Kirugulige and Tippur [3] are numerically simulated by the
hybrid phase field model. Obtained results apparently indicate the
importance of impact loading profiles in simulation of dynamic
fracture problems, which drive the crack paths. The two impact
loading profiles proposed, without information from the tests, can
be used for our phase field simulation, but the elastic gradient of
materials greatly affect the final crack paths. Therefore, an appro-
priate choice of the impact loading profile should be considered for
each model, in order to deliver a comparable result with the tests.
Of course, the simulation will be more convenient and more
feasible on the condition that detailed information in regard of the
applied loading profiles used for the tests is sufficiently provided. In
that case, the numerical outputs could better fit the experimental
data.

The boundary conditions are also found to be a critical factor
altering the crack paths of the system. Obviously, the obtained
numerical results exhibit an important role of the boundary con-
ditions in dynamic fracture simulation. They indicate that the free-
free boundary conditions are not able to fully capture the real
boundary conditions of the two blocks of soft putty. The free-free
boundary conditions could provide acceptable results but less ac-
curacy of the crack paths at some parts takes place. Among three
cases, boundary conditions of the two blocks of soft putty have less
effect on the stiffer case due to the high elastic modulus and density
of the bottom. Compared with the compliant case, the homogenous
case has a smaller mass density, as the result, the effect of boundary
conditions of the two blocks of soft putty on crack pathwas smaller.

The initial kink angles are well predicted in most cases. Similar
to the finding by the test, the crack kinked less when situated on
the compliant side compared to the stiffer side of the FG beams that
has been found numerically. However, the final crack paths derived
from the phase field model can be predicted, but depend upon the
impact loading profiles selected. The crack paths are found to be
sensitive to the elastic functional gradient of materials.

In the contrary to quasi-static loading condition, the crack paths
under dynamic loading seriously suffers the elastic wave stress

exciting and altering the crack tip during the evolution of the crack.
From the experimental and numerical results, it is believed that the
scattered transient wave induced by impact loading has toughed
the crack several times before exciting the crack to grow. As a result,
the entire initiation and propagation is subjected to transient stress
wave evolutions in the body. This complex oscillation of the stress
waves cause difficultly in interpreting the evolution of crack paths
under impact loading.

Since the original concept of the phase field fracture model is
based on the energy based Griffith criterion of fracture mechanics,
various energy components present in the body can hence be
explored. Here, the kinetic energy EI, the internal elastic bulk en-
ergy EB and the fracture energy EC are considered, which are sub-
sequently defined as follows [34].

EI ¼
Z

U

1
2
r _u2dx: kinetic energy

EB ¼
Z

U

s2j0ðεÞdx: elastic bulk energy

EC ¼
Gc

2

Z

U

 
ðs% 1Þ2

l
þ ljVsj2

!

dx: fracture energy

(6)

By this way, it is possible to observe the conversion of elastic
energy into kinetic and fracture energies and vice versa. Notice that
the fracture energy associated with cracks is approximated by the
phase field. The evolution of all the energies computed is thus
depicted in Fig. 13. It is clear that the fracture energy is small
compared with the kinetic and elastic energies. The elastic and
kinetic energies in all cases immediately increase as soon as the
point of crack initiation is reached, the fracture energy grows. The
elastic bulk energy can build up in the body of specimen that is
released in the fracture and kinetic energies during the propagation
of the crack. As a result, the fracture energy continues to increase,
whilst the elastic energy is decreased after the crack propagating.
The kinetic energy is almost constant in such a way. The total en-
ergy of the system after full fragmentation of the specimen is hence
approximately to be constant.

It is numerically found that the peak values of the kinetic and
elastic energies of the stiffer case are almost higher than those of
the compliant and homogeneous ones due to its stronger impact
loading profile (Fig. 4a). The smaller energies of the homogeneous
beam may be due to the fact that the homogeneous beam has a
smaller mass density compared with that of the two FG beams.
However, the impact loading profiles and the elastic gradient

Fig. 12. Comparison of the final crack paths of a homogeneous beam between the numerical phase field model and experimental data: (a) constant and (b) displacement velocities.
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materials may have some influences on the fracture and kinetic
energies of the body.

In terms of evolution of fracture energy, the crack initiation can
be observed. It is difficult to point out exactly the time of crack
initiation, however we can see that the crack initiation time in-
creases in order of the stiffer, compliant and homogeneous cases.
This observation is in consistence with experimental evidence [3].
It is worth noting that the simulation to reproduce this behavior is
failed as in Ref. [10]. Regarding two FG beam configurations,
although the fracture toughness at the crack tip of the stiffer is
larger than that of the compliant (see Fig. 14), the crack initiation
time in the stiffer case is shorter than that of the compliant case.
The main reason may be attributed to the stronger loading profile
applied to the stiffer case. In the compliant and homogeneous
cases, the crack initiation time is found to be shorter in that of the
compliant one due to its higher mass density and the lower energy
fracture toughness (see Fig. 14).

6. Conclusions and outlook

Numerical solutions of dynamic crack propagation in FGMswith
different configurations have been investigated. We adopt an
effective hybrid phase field model, which is particularly suitable for
dynamic crack propagation. Works conducted particularly focus on
the final crack paths, crack initiation, crack length, crack velocity,
energies, etc., which are validated with respect to the experimental
data. Substantially, it confirms the good performance and accuracy
of the hybrid phase field approach in dynamic fracture modeling of
FGMs. It is believed that the loading profiles play an important role
in terms of dynamic fracture perspective. Also, the boundary con-
ditions may affect the output results. The numerical schemes based
on the phase field model can capture well the initial kink angles
and the crack initiation trend regardless of materials. The initial
kink angle is independent of the boundary conditions, but depends
on the elastic, fracture toughness gradient and loading profiles. The
hybrid phase field model taken is possible to predict well the crack
paths, provided that appropriate impact loading profiles must be
carefully selected. More conveniently, practices are expected to
provide detailed information of loading profiles accurately, which
may support well the simulations.

Nevertheless, simulation of dynamic crack propagation for other
advanced composite materials and structures (e.g., FGM Al-SiC
metal matrix composite with random particle [39], or cross-ply
laminates in 3D [40]) with the aid of the hybrid phase field
model is potential. In particular, considering the high temperature
effects on the dynamic compressive properties of graphite/epoxy
composite materials [41] or studying the thermal-mechanical vi-
bration and buckling of cracked FGMs structures [42] using the
proposed hybrid phase field approach would be very interesting.
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