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a b s t r a c t

We investigate new numerical results of thermal buckling for functionally graded plates (FGPs) with
internal defects (e.g., crack or cutout) using an effective numerical method. The new formulation employs
the first-order shear deformation plate theory associated with extended isogeometric analysis (XIGA) and
level sets. The material properties of FGPs are assumed to vary continuously through the plate thickness
obeying a power function. The internal defects are represented by the level sets, while the shear-locking
effect is eliminated by a special treatment, multiplying the shear terms by a factor. In XIGA, the isogeo-
metric approximation enhanced by enrichment is cable of capturing discontinuities in plates caused by
internal defects. The internal discontinuity is hence independent of the mesh, and the trimmed NURBS
surface to describe the geometrical structure with cutouts is no longer required. Five numerical examples
are considered and numerical results of the critical buckling temperature rise (CBTR) of FGPs computed
by the proposed method are analyzed and discussed. The accuracy of the method is demonstrated by val-
idating the obtained numerical results against reference solutions available in literature. The influences of
various aspect ratios including gradient index, crack length, plate thickness, cutout size, and boundary
conditions on the CBTR are investigated.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Although the functionally graded materials (FGMs) in general or
the functionally graded plates (FGPs) in particular have been
extensively used in many engineering applications [1], the FGPs
may develop defects or flaws during manufacturing or in-service
suffering external loading conditions. In addition to the defects,
the inner cutouts with different shapes are often created in the
plate elements as many practical requirements. The presence of
defects/flaws or such inner cutouts greatly affects the mechanical
behaviors of structures and their performance in whole or part.
Consequently it is very important to understand the mechanical
response of FGPs with internal flaws [2,3]. The temperature rising

in plates produces in-plane compressible forces which make the
structures to be buckled before reaching to a yield stress, and the
structure suffers large deformation behavior and reduces load car-
rying capacity at the buckling state. Consequently, the thermal
buckling problem under study plates plays an important role in
practical application. This paper thus focuses particularly on the
study of thermal buckling phenomena of FGPs with internal flaws
under the variation of the temperature.

It is fairly well covered in the literature on the investigation of
thermal buckling behavior of FGPs. Javaheri and Eslami [4] pre-
sented closed-form solutions for thermal buckling of FGPs under
four types of thermal loads. Shariat and Eslami [5] developed
closed-form solutions for mechanical and thermal buckling of thick
FGPs using the third order shear deformation theory (TSDT). Woo
and Meguid [6] analytically investigated the thermo-mechanical
post-buckling of FGPs and shallow cylindrical shells. Also in
closed-form, Najafizadeh and Heydari [7] analyzed the critical
thermal buckling temperature of functionally graded circular
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plates using the TSDT. Khalfi et al. [8] proposed a refined shear
deformation theory and applied it to analyze thermal buckling of
solar FGPs with simply supported boundary conditions and resting
on elastic foundation. Malekzadeh [9] studied thermal buckling of
functionally graded arbitrary straight-sided quadrilateral plates
based on 3D elasticity theory, and the Trefftz criterion was used
to obtain the stability equations. The effect of geometrical imper-
fections on thermal buckling of FGPs was investigated by Shariat
and Eslami [10]. Jaberzadeh et al. [11] used the element-free
Galerkin method for thermal buckling analysis of functionally
graded skew and trapezoidal plates, while Zhao et al. [12] explored
the mechanical and thermal buckling behaviors of FGPs using the
first-order shear deformation plate theory (FSDT) in conjunction
with the element-free kp-Ritz method.

Nevertheless, studies on thermal buckling failure behaviors of
FGPs with internal defects are rather rare. Thermal buckling of
FGPs with temperature dependent material properties and con-
taining a central circular cutout was investigated by Saji et al.
[13]. Thermal buckling of composite plates with a circular cutout
was investigated by Shaterzadeh et al. [14] using the finite element
method (FEM), and the effect of boundary conditions, cutout size
and plate aspect ratio on critical thermal buckling temperature
was explored. Recently, Natarajan et al. [15] examined the effect
of local defects such as cracks and cutouts on the buckling behavior
of FGPs subjected to mechanical and thermal load using the
extended finite element method (XFEM) and the FSDT.

Isogeometric analysis (IGA) [16] is a new numerical method
that shares the same splines basis function in representing the
geometry in design and solution approximations in analysis. The
IGA is based on CAD splines (e.g., NURBS), and proved to be an effi-
cient, highly accurate, robust and higher order continuity
approach. The desirable characteristics of IGA make it superior to
the traditional FEM in some aspects as it has successfully applied
to many engineering problems, e.g., see [17–24].

Similar to the XFEM, the standard IGA approximation is
enriched with some special functions around the discontinuities
in the framework of partition of unity to create a novel method,
namely, the so-called extended isogeometric analysis (XIGA)
[20,25]. The XIGA contains the inherent advantages of both IGA
and local enriched partition-of-unity method (XFEM). The XIGA
has been applied to solve linear elastic fracture mechanics prob-
lems [25–28], static and dynamic cracks in piezoelectric materials
[20], curved interface problems [29], material interface problems
[30], and stochastic fatigue crack growth of interfacial crack in
bi-layered FGMs [31].

In this paper, we investigate the thermal buckling behaviors of
FGPs with internal defects such as cracks or cutouts using NURBS-
based XIGA with level sets and the FSDT. Parametric studies are
performed by investigating the critical temperature value versus
various aspect ratios including the gradient index, crack location,
crack length, width-to-thickness, boundary conditions, and cutout
size. The nature of the tensor product of the NURBS basis functions
induces the difficulty in treating the trimmed objects like internal
cutouts, as a result of very complicated tasks in modeling cutouts
using the conventional NURBS-based IGA. In the contrary, by using
the level sets in describing the discontinuities and the discontinu-
ities are independent of the mesh, so the trimmed NURBS surface
to describe the geometrical structure with cutouts is thus no longer
required.

The body of the paper is outlined as follows. Problem model of
FGPs is described in Section 2. In Section 3, XIGA formulation for
thermal buckling analysis of plates with internal defects is derived.
Numerical results and discussions are provided in Section 4.
Section 5 closes with some concluding remarks.

2. Problem model definition

2.1. Functional graded materials

In this work, a ceramic–metal FGP with thickness h is consid-
ered. The bottom and top faces of the plate are assumed to be fully
metal and ceramic, respectively, and the gradient properties chan-
ged along with z-direction as depicted in Fig. 1. The xy-plane
reveals the mid-plane of the plate, while the positive z-axis is
upward from the mid-plane. The Poisson’s ratio m is assumed to
be constant throughout the study, but the Young’s modulus E
and thermal expansion coefficient a vary through the thickness
with a power law distribution:

EðzÞ ¼ Em þ ðEc % EmÞ
1
2
þ z
h

! "n

ð1Þ

aðzÞ ¼ am þ ðac % amÞ
1
2
þ z
h

! "n

ð2Þ

where n denotes the gradient index, z is the thickness coordinate
variable with %h=2 6 z 6 h=2, and subscripts c and m represent
the ceramic and metal constituents, respectively.

2.2. Kinematic equations of plates

Based on the first order shear deformation plate theory (FSDT),
the displacements u, v, w at a point (x, y, z) in the plate, see Fig. 1,
are expressed as

uðx; y; zÞ ¼ u0ðx; yÞ þ zbxðx; yÞ ð3aÞ

vðx; y; zÞ ¼ v0ðx; yÞ þ zbyðx; yÞ ð3bÞ

wðx; y; zÞ ¼ w0ðx; yÞ ð3cÞ

where u0, v0, w0 are the mid-plane displacements components in
the x, y, z axes, respectively. bx and by are the transverse normal
rotations in the xz- and yz-planes of mid-plane.

By making the usual small strain assumptions, the strains are
expressed in the following matrix form

e ¼
ep
0

# $
þ

zeb
cs

# $
ð4Þ

with

ep ¼
u0;x

v0;y

u0;y þ v0;x

8
><

>:

9
>=

>;
; eb ¼

bx;x

by;y

bx;y þ by;x

8
><

>:

9
>=

>;
; cs ¼

bx þw0;x

by þw0;y

( )
ð5Þ

According to Hooke’s law for plane stress elastic problem, the
stresses can be written as

r ¼ DmðzÞðep þ zeb % eTÞ; s ¼ DsðzÞc ð6Þ

with

r ¼ ½rx ry sxy 'T ð7aÞ

DmðzÞ ¼
EðzÞ

1% v2

1 v 0
v 1 0
0 0 ð1% vÞ=2

2

64

3

75 ð7bÞ

eT ¼ aðzÞDT½1 1 0 'T ð7cÞ

s ¼ ½ sxz syz 'T ð7dÞ
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DsðzÞ ¼
kEðzÞ

2ð1þ vÞ
1 0
0 1

% &
ð7eÞ

c ¼ ½ cxz cyz '
T ð7fÞ

where a(z) is the coefficient of thermal expansion,DT is the temper-
ature change, k is the shear correction factor, and k = 5/6 is adopted
in this study.

2.3. Weak-form

For the buckling analysis, the weak-form can be expressed as
follows:

Z

X
deTDedXþ

Z

X
dcTDscdX%

Z

X
deTDeTdXþ

Z

X
rTdwN0rwdX ¼ 0

ð8Þ

where

e ¼
ep
eb

% &
ð9aÞ

D ¼ Dm B
B Db

" #

ð9bÞ

Dm ¼
Z h=2

%h=2
DmðzÞdz ð9cÞ

B ¼
Z h=2

%h=2
zDmðzÞdz ð9dÞ

Db ¼
Z h=2

%h=2
z2DmðzÞdz ð9eÞ

Ds ¼
Z h=2

%h=2
DsðzÞdz ð9fÞ

D ¼
Dm

B

% &
ð9gÞ

and rT ¼ ½ @=@x @=@y 'T is the gradient operator, N0 ¼
N0

x N0
xy

N0
xy N0

y

" #

is the in-plane resultant forces under temperature change.

3. XIGA formulation for thermal buckling of plates with
internal defects

3.1. The NURBS basis functions

A knot vector in one dimension is a set of non-decreasing num-
bers in the parametric space, that is kðnÞ ¼ n1; n2; :::; nnþpþ1

' (
,

ni 6 niþ1, where ni 2 ½0;1', and ni is the ith knot, n and p are the
number of basis functions and the order of the B-spline basis func-
tion, respectively. Given a knot vector kðnÞ, the B-spline basis func-
tion Ni;pðnÞ is defined recursively as follows [20,32]:

Ni;0ðnÞ ¼
1 ni 6 n < niþ1

0 otherwise

#
ð10Þ

and

Ni;pðnÞ ¼
n% ni

niþp % ni
Ni;p%1ðnÞ þ

niþpþ1 % n
niþpþ1 % niþ1

Niþ1;p%1ðnÞ for p P 1

ð11Þ
For two-dimensional problem, the NURBS basis functions can be
constructed by taking the tensor product of two one-dimensional
B-spline basis functions as [20,32]

Rp;q
i;j ðn;gÞ ¼

Ni;pðnÞNj;qðgÞwi;jPn
i¼1
Pm

j¼1Ni;pðnÞNj;qðgÞwi;j
ð12Þ

where Ni;pðnÞ and Nj;qðgÞ are the B-spline basis functions of order p
in the n direction and order q in the g direction, respectively; Nj;qðgÞ
follows the recursive formula shown in Eqs. (10) and (11) with knot
vector kðgÞ, and the definition of kðgÞ is similar to that of kðnÞ; wi;j

represents the weight.

3.2. The XIGA

Compared with the conventional XFEM, the XIGA utilizes the
NURBS basis functions instead of the Lagrange polynomials in the
approximation of the displacement field. Owing to the higher-
order continuity of NURBS, the obtained stresses are smooth which
is unavailable in XFEM with C0-continuity of inter-element.

3.2.1. XIGA approximations for plate with cracks
The deflection and rotations of plates using the XIGA can be

approximated as follows [33–36]:

ðuh
i ;vh

i ;w
h
i ÞðxÞ ¼

X

i2Ns

RiðxÞðui; v i;wiÞ

þ
X

j2Ncut

RjðxÞ HðxÞ % HðxjÞ
) *

ðbu
j ; b

v
j ; b

w
j Þ

þ
X

k2Ntip

RkðxÞ
X4

l¼1

ðcukl; cvkl; cwklÞ Glðr; hÞ % Glðrk; hkÞð Þ
 !

ð13aÞ

Fig. 1. Schematic geometry of an FGP.
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ðbh
x ; b

h
yÞðxÞ ¼

X

i2Ns

RiðxÞðbxi;byiÞ þ
X

j2Ncut

RjðxÞ HðxÞ % HðxjÞ
) *

ðbbx
j ; bby

j Þþ

þ
X

k2Ntip

RkðxÞ
X4

l¼1

ðcbxkl ; c
by
kl Þ Flðr; hÞ % Flðrk; hkÞð Þ

 !

ð13bÞ

where RiðxÞ, RjðxÞ; and RkðxÞ are the NURBS basis functions; Ns is the
set of all control points in the discretization; Ncut is the set of control
points whose basis function support is entirely split by the crack,
and are enriched with a modified Heaviside step function HðxÞ
which takes on the value +1 above the crack and %1 below the
crack; Ntip is the set of control points whose basis function support
is partly split by the crack, and are enriched with the crack-tip
branch enrichment functions; ui, vi, wi, bx and by represent the
unknown vectors associated with the continuous part of the finite
element solution, respectively, bj is the additional enriched degree
of freedom vector at the node associated with the modified
Heaviside function, and ckl denotes the additional enriched degree
of freedom vector associated with the elastic asymptotic crack-tip
functions. The asymptotic crack-tip functions are given by [33–36]

Glðr; hÞ ¼ r
3
2 sin

h
2

! "
; r

3
2 cos

h
2

! "
; r

3
2 sin

3h
2

! "
; r

3
2 cos

3h
2

! "# $
ð14aÞ

Flðr;hÞ ¼ r
1
2 sin

h
2

! "
; r

1
2 cos

h
2

! "
; r

1
2 sin

h
2

! "
sinðhÞ; r12 cos h

2

! "
sinðhÞ

# $

ð14bÞ

3.2.2. XIGA approximation for plate with cutouts
According to [37], the deflection and rotations of plate with

cutouts using the XIGA can be approximated as

ðuh
i ; vh

i ;w
h
i ÞðxÞ ¼

X

i2Ns

HðxÞRiðxÞðui;v i;wiÞ ð15aÞ

ðbh
x ; b

h
yÞðxÞ ¼

X

i2Ns

HðxÞRiðxÞðbxi; byiÞ ð15bÞ

with

HðxÞ ¼
1 x 2 X
0 x R X

#
ð16Þ

Remark #1: In practice, we may implement the displacement
functions similar to that in the conventional IGA, instead of the dis-
placement function described in Eq. (15), and merely remove the
integral on the cutout part in the calculation of the stiffness matrix,
and the geometrical stiffness matrix.

Remark #2: In the XIGA, it should be stressed out here that the
boundary of the cutout is represented by the zero level curves. The
boundary is located from the value of the level set information
stored at the nodes, thus the trimmed NURBS surface is no longer
required to describe the geometrical structure with cutouts [38].

3.3. Discrete equations

Substituting Eq. (13) into Eq. (5), the in-plane, bending and
shear strains can be rewritten as

½ eTp eTb cT 'T ¼
Xm(n

i¼1
ðBp

i Þ
T ðBb

i Þ
T

ðBs
i Þ

T
h iT

di ð17Þ

where di is the vector of nodal degrees of freedom associated with
the control point i, including the continuous displacements and
enriched variables, and

B ¼ ½Bstd
+++Benr' ð18Þ

where Bstd and Benr are the standard and enriched strain matrices of
B defined in the following forms

Bp
i ¼

!Ni;x 0 0 0 0
0 !Ni;y 0 0 0
!Ni;y

!Ni;x 0 0 0

2

64

3

75 ð19aÞ

Bb
i ¼

0 0 0 !Ni;x 0
0 0 0 0 !Ni;y

0 0 0 !Ni;y
!Ni;x

2

64

3

75 ð19bÞ

Bs
i ¼

0 0 !Ni;x 0 0
0 0 !Ni;y 0 0

" #

ð19cÞ

where !Ni can be either the NURBS basis functions RiðxÞ or enriched
functions RjðxÞ HðxÞ %HðxjÞ

) *
, RkðxÞ

P4
l¼1 Glðr; hÞ % Glðrk; hkÞð Þ

, -
,

RkðxÞ
P4

l¼1 Flðr; hÞ % Flðrk; hkÞð Þ
, -

.

Substituting Eq. (13) with relation in Eq. (17) into Eq. (8), the
eigenvalue formulations of buckling plate problem can be rewrit-
ten as

ðKþ kcrKGÞd ¼ 0 ð20Þ

where kcr is the critical buckling load; and K and KG are the global
stiffness matrix and geometrical stiffness matrix, respectively,
which are expressed as

K ¼
Z

X
fBp Bb gDfBp Bb gT þ

Z

X
BsT !DsBsdX ð21Þ

KG ¼
Z

X
GT

bN0GbdX ð22Þ

with

Gbi ¼
0
0

0
0

!Ni;x 0 0
!Ni;y 0 0

" #
ð23Þ

3.4. Treatment of shear-locking effect

The shear locking also appears in low-order NURBS isogeomet-
ric elements for the very thin plate [19]. The shear locking is sup-
pressed by introducing a modification factor into the shear terms,
and the modified material matrix related to shear terms is given as
[33]

!Ds ¼ Ds h2

h2 þ al2
ð24Þ

where l is the longest length of edges of the NURBS element and
a = 0.1 is selected in this study.

4. Numerical results and discussions

In this section, the thermal buckling analysis of FGPs with
through-thickness crack or cutout using the proposed XIGA is pre-
sented. In all numerical calculations, the cubic order NURBS basis
functions are used. For the numerical integration, a 4 ( 4 Gaussian
quadrature scheme is assigned for the normal elements, while a
triangular sub-domain technique is applied to the elements which
are cut by crack or cutout. All the plates being studied are consid-
ered under uniaxial load. The critical buckling temperature rise
(CBTR), which is solved directly from the eigenvalue equation of
buckling plates by the developed XIGA, is numerically analyzed.

For convenience in representing the numerical results, different
boundaries of the plate are named as simply supported (S),
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clamped (C), and free (F). For the clamped boundary conditions, the
rotations are obtained from the derivatives of transverse
deflection. The constraint on the rotations is hence imposed by
fixing the transverse defection with two rows of control points
as described in [19]. Throughout the study, two FGPs made of
Al/Al2O3 and Al/ZrO2 material with their material parameters in
Table 1 are considered.

4.1. Convergence and accuracy studies

The thermal buckling of a square Al/Al2O3 plate (a = b = 0.2 m)
subjected to a uniform temperature rise is considered, verifying
the convergence property and the accuracy of the developed XIGA
method based on the FSDT. All the boundaries of plate are fully
clamped. We typically consider two plate thickness ratios, for
instance, a/h = 50 and 100, and various values of the volume frac-
tion exponent taken from 0 to 5. As reported in Table 2, the CBTR
calculated by the present XIGA for the two specified thickness
ratios converges well to the reference solutions [12] as the physical
mesh gets finer. The reference solutions [12] were derived based
on the FSDT in conjunction with the element-free kp-Ritz method,
in which the displacement field is approximated by a set of
mesh-free kernel particle functions while the bending stiffness is
evaluated using a stabilized conforming nodal integration tech-
nique. The present numerical results of the CBTR also reveal one
interesting issue that even a very coarse mesh (e.g., 8 ( 8) can also
yield acceptable solutions, demonstrating one of the advantages of
the XIGA as compared with the FEM which often requires fine
meshes for the solution. In the rest of the manuscript, we however
use a regular physical fine mesh for all the computational models,
which is to just ensure the accuracy of the solutions.

Also in Table 2, when the plate becomes more and more metal,
i.e., increasing the volume fraction exponent (n), the CBTR initially
decreases for n ranging from 0 to 2, and a slight change of the CBTR
is observed when escalating n further to 5. The decrease of the
CBTR from 0 to 2 is significant, in about twice. This phenomenon
can also be found the same for the reference solutions utilizing
the element-free kp-Ritz method [12]. The decrease of the CBTR

may be due to the fact that the elasticity modulus of the metal
(Al) is much smaller than that of the ceramic (Al2O3) (see Table 1
for the material parameters), implying that the ceramic is stiffener,
and that makes the critical buckling coefficient larger. More inter-
estingly, it can be concluded that the thinner plates (e.g., a/h = 100)
undergo a smaller CBTR than the thicker ones (e.g., a/h = 50). This
conclusion can be found from the reference work [12] as well.

In order to prove the validity of the present procedure, the ther-
mal buckling of a square Al/Al2O3 simply-supported plate
(a = b = 1 m) with thickness to span ratio h/a = 0.2 subjected to a
uniform temperature rise is further considered. Various values
of the volume fraction exponent taken from 0 to 3 are examined.
As depicted in Fig. 2, the values of CBTR calculated by the
present XIGA are in good agreement with the semi-analytical
solutions [39].

It can be observed in the numerical results that both solutions
reveal the same behavior as the CBTR values decrease with increas-
ing the volume fraction exponent. It means that once the plate
behavior becomes more and more metal, the values of the CBTR
decrease.

4.2. An edge cracked rectangular FGP

Next numerical example deals with a rectangular Al/Al2O3 plate
with an edge crack as shown in Fig. 3. The length and width of plate
are set up to be a = 2 m, and b = 1 m. The crack is assumed to be
parallel to the x-axis. A regular mesh of 31 ( 15 elements is used
for the analysis. Different boundary conditions of plate including
CCCC, SCSC, SSSS and SFSF are taken. The CBTR as a function of
the volume fraction exponent (n) is calculated by using the pro-
posed method and is then sketched in Fig. 4. The present CBTR
results of the Al/Al2O3 plate in Fig. 4 are to show the effect of the
boundary conditions on the CBTR coefficient. In addition, both
the plates with and without cracks are taken into account, which
is to further interpret the influence of the defect or crack on the
CBTR. We select a crack length of c/a = 0.5 for the investigation.

First, it is evident that the effect of the crack on the CBTR of FGPs
is significant as the CBTR are found largely different between the
plates with and without crack. The CBTR induced by the plates
with crack is smaller than that caused by the perfect plates. It
means that the imperfect plates get highly critical as compared
with the perfect ones. Loosely speaking, the structures suffering
defects or cracks are easily to get damaged or destroyed in the
critical buckling circumstance. However, a great effect of the crack

Table 1
Properties of the functionally graded material components.

Material Properties

E (GPa) m a (/"C)

Aluminum (Al) 70 0.3 23 ( 10%6

Alumina (Al2O3) 380 0.3 7.4 ( 10%6

Zirconia (ZrO2) 151 0.3 10 ( 10%6

Table 2
Comparison of the CBTR of a fully clamped square Al/Al2O3 plate for different aspect
thickness-to-length ratios altered by the volume fraction exponents obtained by the
developed XIGA and the reference solutions [12].

a/h Elements The volume fraction exponent (n)

0 0.5 1 2 5

100 4 ( 4 52.534 30.186 24.932 22.065 22.251
8 ( 8 45.468 25.777 21.143 18.742 19.315
16 ( 16 45.268 25.652 21.035 18.647 19.232
20 ( 20 45.266 25.651 21.034 18.646 19.231
24 ( 24 45.265 25.650 21.033 18.646 19.231
Ref. [12] 44.171 24.899 20.771 18.489 19.150

50 4 ( 4 190.710 108.582 89.245 79.059 80.906
8 ( 8 180.360 102.266 83.876 74.340 76.585
16 ( 16 180.132 102.123 83.752 74.232 76.490
20 ( 20 180.128 102.121 83.751 74.230 76.489
24 ( 24 180.127 102.120 83.750 74.230 76.488
Ref. [12] 175.817 99.162 82.357 71.013 74.591

Fig. 2. Critical buckling temperature of FGM plate under uniform temperature rise
vs gradient index of the plate.
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on the CBTR takes place clearly for the boundary conditions
CCCC, SSSS and the SCSC, while nothing really has been seen to
the SFSF. Generally, when the plates become more freely in
constrain, the CBTR may become similarly. Anyway, the results
are very interesting since it shows us one of the reasons why the
studies on the cracks under thermal buckling load are important.

Also in Fig. 4, it is again found that the CBTR decreases with
increasing the volume fraction exponent. It is indicated clearly a

great impact of the volume fraction on the FGMs, especially
exhibiting a great difference on the CBTR behaviors among the
ceramic and the ones whose properties become more and more
metal.

Further observation on the numerical CBTR results in Fig. 4, and
additionally presented in Table 3, shows us a strong influence of
the boundary conditions on the CBTR. The crack alters the CBTR
as it is found to be decreased for the CCCC and SSSS and SCSC
boundary conditions. The CBTR of the CCCC is much greater than
that of a SSSS as well as other boundary conditions. In view of this,
since the thermal expansion coefficient raising from ceramic to
metal, approximately three time as seen in Table 1, the thermal
body forces or constrains make the CBTR decreases when increas-
ing the volume fraction exponents as well as when varying the
boundary conditions.

Next, the study on the variation of the CBTR affected by the
crack size is now explored. Similar to the previous example, we
adopt different boundary conditions. We also employ a regular
physical mesh of 31 ( 15 elements for the analysis. Fig. 5 shows
the present numerical results of the CBTR as a function of crack
sizes of an Al/Al2O3 plate with an edge crack with n = 1 for various
boundary conditions. It is evident that increasing the crack size
leads to a decrease of the CBTR, which is found clearly for the cases
of CCCC and SSSS and SCSC boundary conditions, while the CBTR
for the SFSF varies very slightly, or it can be said, the variation of
the CBTR with respect to the crack sizes. In other words, the crack
sizes have no impact on the CBTR for the SFSF plate. In view of this
phenomenon, when the crack size is set to be larger, the number of
free boundaries of the plate is thus increased. In other words, the
plates are more flexible now. The thermal forces in this circum-
stance can make the elastic energy in the system increases and
as a result of decreasing the CBTR. Additionally, we again find that
the CBTR of a fully clamped plate is much larger than that of simply
supported one. Less constrains of plate from fully clamped to free

Fig. 3. Model geometry of a rectangular FGP with an edge crack and its regular
physical mesh of 31 ( 15 elements. The ‘‘star” sign represents the enriched
elements that are completely cut by crack, while the ‘‘square” sign denotes the
enriched elements that contain the crack-tip.

Fig. 4. Effect of crack and boundary conditions on the CBTR as a function of the volume fraction exponent of a rectangular Al/Al2O3 plate (h/b = 0.1).
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or supported makes it freer and the elastic energy in the system is
increased, which induces the decrease of the CBTR.

4.3. A square Al/ZrO2 plate with an inclined central crack

A square Al/ZrO2 plate with an inclined central crack subjected
to a temperature rise as depicted in Fig. 6 is further studied. The

Table 3
The CBTR of a rectangular Al/Al2O3 plate with an edge crack for different boundary
conditions (h/b = 0.01, c/a = 0.5) altered by the volume fraction exponent.

n CCCC SCSC SSSS SFSF

0 17.036 14.415 6.225 1.960
0.5 9.665 8.176 3.531 1.111
1 7.930 6.707 2.897 0.911
5 7.236 6.123 2.644 0.833

Fig. 5. Effect of crack size on the CBTR of a rectangular Al/Al2O3 plate with an edge
crack (h/b = 0.01) altered by the boundary conditions.

Fig. 6. The model geometry of a square Al/ZrO2 with an inclined central crack.

Table 4
Effect of the inclined angle of crack on the CBTR of a fully simple supported Al/ZrO2

plate (c/a = 0.6) altered by volume fraction exponent.

n Inclined angle (degree)

0 15 30 50 60 75 90

0 8.894 8.797 8.608 8.506 8.608 8.797 8.894
0.5 6.114 6.047 5.918 5.848 5.918 6.047 6.114
1 5.412 5.353 5.238 5.176 5.238 5.353 5.412
2 5.012 4.958 4.851 4.794 4.851 4.958 5.012
5 4.771 4.718 4.616 4.561 4.616 4.718 4.771

Fig. 7. Effect of crack size and boundary condition on the CBTR of a square Al/ZrO2

plate for different boundary conditions.

Fig. 8. Model geometry of a skewed plate with an edge crack and its regular
physical mesh of a skew angle of h = 30" of 31 ( 15 elements. The ‘‘star” sign
represents the enriched elements that are completely cut by crack, while the
‘‘square” sign denotes the enriched elements that contain the crack-tip.

Table 5
Effect of the volume fraction exponent and boundary conditions on the CBTR of a
skewed Al/Al2O3 plate with an edge crack (h = 60").

n CCCC SCSC SSSS SFSF

0 3.451 3.451 0.622 0.578
0.5 1.956 1.956 0.355 0.331
1 1.604 1.604 0.2917 0.273
5 1.466 1.466 0.264 0.245
10 1.506 1.506 0.269 0.249
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length and thickness of plate are set to be a = 1 m, and h = 0.01 m
for this analysis.

This model of plate allows us to study the influence of the incli-
nation of cracked angle a on the CBTR. We thus explore the effects
of both the gradient index n and the inclination of cracked angle a
on the CBTR. A regular physical mesh of 31 ( 31 elements is used.
Table 4 presents the gained numerical results of the CBTR of a fully
simple supported Al/ZrO2 plate account for different crack orienta-
tions varying from 0" to 90". The present numerical results of the
CBTR reveal that increasing the volume fraction exponent n
induces a small decrease of the critical buckling load. The CBTR

Fig. 9. Critical buckling temperature rise for a CCCC skewed FGP with different
skew angles.

Fig. 10. Critical buckling temperature rise for a SSSS skewed FGP with different
skew angles.

Fig. 11. Model geometry of a square plate with a circular cutout.

Table 6
Convergence study of the CBTR for a simply supported square Al/ZrO2 plate with
circular cutout at the center for accounted for different volume fraction exponents.

Elements n

0 1 5

6 ( 6 11.737 7.140 6.297
12 ( 12 10.630 6.468 5.702
18 ( 18 10.283 6.255 5.519
24 ( 24 10.272 6.248 5.513

Fig. 12. Effect of the aspect ratio of radius to length (2r/a) and the volume fraction
exponent on the CBTR for a SSSS square Al/ZrO2 FGP.

Fig. 13. Effect of the boundary conditions on the CBTR for a SSSS square Al/ZrO2 FGP
(2r/a = 0.4) altered by the volume fraction exponent.
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behaves symmetrically with respect to a crack orientation a = 45"
and it decreases as the crack orientation a increases. The same con-
clusion was drawn by Natarajan et al. [15], in which the XFEM was
used. Consequently, the volume fraction exponent greatly alters
the critical thermal buckling temperature of FGPs.

The effects of crack size and the boundary conditions on the
CBTR are also studied for this square FGP. Fig. 7 sketches the pre-
sent results computed for the CBTR of a square Al/ZrO2 plate with
n = 1 for different crack sizes and different boundary conditions.
Similar to the previous example, it is again found here in the
numerical results that the CBTR decreases with increasing the
crack sizes, but this behavior can only be found for the plates with
the CCCC and SSSS and SCSC boundary conditions. In the contrary,
the present numerical results accounted for SFSF plate exhibit no
any effects of the crack size on the CBTR. In other words, it can
be concluded that not all the boundary conditions have impacts
on the CBTR of FGPs, they possess different behaviors from each
boundary condition to another boundary condition as clearly
observed in the given numerical results.

4.4. A skewed FGP with an edge crack

Since the specific structures like skew plates have been applied
to a variety of engineering application including, especially in the
construction of aerospace, railway, civil and automotive structures.
We thus devoted to the next numerical example by considering a

skewed Al/Al2O3 plate with a = 2 m, b = 1 m as schematically
shown in Fig. 8. The aspect ratios such as h/b = 0.01 and c/a = 0.3
are taken for the analysis. In this study we adopt a regular physical
mesh of 31 ( 15 elements. We focus our attention on the numeri-
cal investigation of the effects of different gradient indexes, skew
angles and the boundary conditions on the CBTR.

The effects of the gradient index and the boundary conditions
on the CBTR are explored. Table 5 presents the computed numeri-
cal results of the CBTR of a skewed Al/Al2O3 plate with h = 60" for
different volume fraction exponents and various boundary condi-
tions including CCCC, SSSS, SCSC and SFSF. Not surprisingly, the
behavior of the CBTR reported in Table 5 for this skew plate is quite
similar to that accounted for the previous edge cracked rectangular
FGP. It means that the gradient index n increases from 0 to 5 to five
leads to a decrease of the CBTR for all the considered boundary
conditions. Obviously, the plates with a fully clamped boundary
condition yield a larger CBTR than that of a simply supported
boundary condition.

Figs. 9 and 10 respectively presents the present numerical
results of the CBTR computed by the developed XIGA for both fully
clamped and simply supported skewed FGPs, taking into account
the effect of the skew angles. We specifically take some skew
angles of 15", 30", 45", 60", and 75". It is apparent that the influence
of the skew angles on the CBTR is significant as the CBTR increases
with increasing the skew angles. This physical behavior is found
the same for two considered boundary conditions. Nevertheless,

Mode SSSS CCCC CSCS CFCF

1 

2 

3 

4 

Fig. 14. The first four buckling mode shapes of a square Al/ZrO2 FGP with a radius of 2r/a = 0.2 and a gradient index n = 0.5 for different boundary conditions.
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the values of the CBTR obtained by the clamped skewed FGPs are
greater than those of the simply supported skewed FGPs.

4.5. An Al/ZrO2 plate with a cutout

The last example deals with a square Al/ZrO2 plate with a circu-
lar cutout at the center as schematically depicted in Fig. 11. The
geometry parameters are: a = 10 m, a/h = 100, the radius r/a = 0.1,
and the boundary of the circular cutout is free of loading. Table 6

tabulates the convergence of the CBTR with respect to mesh size.
Based on our own numerical experiments, it is indicated in the
examination of the progressive refinements that a set of 18 ( 18
elements is found to be adequate to model the full plate for the
present analysis.

The influence of the aspect ratio of the radius 2r/a, the gradient
index n and the boundary conditions on the buckling behavior of
an Al/ZrO2 plate is numerically studied. Fig. 12 shows that increas-
ing the radius 2r/a and gradient index n induces a decrease of the
CBTR. The present numerical results are very interesting as they
reveal also that the increase in the stiffness can cause an increase
in the CBTR. It is important to observe from Fig. 13 that the bound-
ary conditions of FGPs in terms of the buckling analysis also alter
the CBTR rise significantly. As expected, the CCCC plates yield a
greater value of the CBTR compared with a SSSS one.

Furthermore, we add in this example the first four mode shapes
of FGPs obtained by the XIGA. We account for different boundary
conditions of SSSS, CCCC, CSCS and CFCF, and a radius of 2r/
a = 0.2 and a gradient index of n = 0.5 are taken. The first four
modes of buckling behavior are then shown in Fig. 14. Similar to

Table 7
The CBTR for a simply supported square Al/ZrO2 plate with a circular cutout
considering different locations and various volume fraction exponents.

Center coordinates of the cutout n

0 1 5

(2 m, 8 m) 12.347 7.510 6.627
(5 m, 8 m) 12.043 7.324 6.463
(8 m, 8 m) 12.347 7.510 6.627
(5 m, 5 m) 10.272 6.248 5.513

Mode (2m,8m) (5m,8m) (8m,8m)

1 

2 

3 

4 

Fig. 15. The first four mode shapes of a SSSS square Al/ZrO2 FGP with the radius 2r/a = 0.2 and the gradient index n = 1 for different cutout locations.
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the numerical results, the mode shapes vary significantly depen-
dent upon the boundary conditions on which the plates are
constrained.

The effect of cutout location on the CBTR of FGPs is additionally
examined. A physical mesh of 24 ( 24 is used, while the simply
supported boundary condition is considered. We typically consider
three center coordinates of the cutout, e.g., (2 m, 8 m), (5 m, 8 m),
and (8 m, 8 m) for a radius of 2r/a = 0.2. The numerical results of
the CBTR for a simply supported FGM plate are reported in Table 7.
For this particular case of study, the present numerical results
reveal an insignificant effect of the location of the cutout on the
CBTR. Numerically, we find that the CBTR for the plate with
the cutout located at the center is slightly smaller than that for
the other cases. Loosely speaking, it might be understood that
the plates become highly critical if the defects or cutout locate
closer to their boundaries, where the tendency of damaging the
structures becomes possible.

Also in Table 7, interestingly, the volume fraction exponent
greatly alters the CBTR with different locations of the cutout. The
CBTR decreases with increasing the volume fraction. Furthermore,
the first four buckling mode shapes of FGPs obtained by the XIGA
for different cutout locations with a radius of 2r/a = 0.2 and a gra-
dient index n = 1 are also depicted in Fig. 15. Clearly, the same
boundary conditions and the same plates, but the buckling modes
vary dependently on the location of the cutout.

5. Conclusions

We develop an effective and accurate NURBS-based XIGA
using the first-order shear deformation plate theory for the anal-
ysis of thermal buckling behaviors of FGPs with internal defects
such as cracks or cutouts. In this formulation, the trimmed NURBS
surface to describe the geometrical structure with cutouts is no
longer required as the internal discontinuity is independent of
the mesh, as a result of utilizing the level sets. The accuracy of
the CBTR obtained by the developed XIGA is high and in good
agreements with the reference solutions for both thin and moder-
ately thick plates with internal defects. The influences of gradient
index, crack location, crack length, width to thickness, cutout size,
and boundary conditions on the CBTR are investigated. Some
major conclusions drawn from the study can be summarized as
follows:

) Upon investigations carried out according to the numerical
results presented, the developed approach based on XIGA using
NURBS associated with the FSDT is shown to be ideal candidates
for estimating the thermal buckling coefficients of FGPs,
exhibiting a good agreement between the obtained results with
the reference solutions.

) The effects of the boundary conditions and the volume fraction
exponents on the CBTR of FGPs are significant. The clamped
FGPs yield a greater CBTR than the simply supported FGPs.

) The behavior of the CBTR of square plates with an inclined cen-
tral crack is found to be symmetric with respect to a crack ori-
entation a = 45" and it decreases as the crack orientation a
increases.

) The skew angle has a critical impact on the CBTR. Increasing the
skew angles lead to an increase of the CBTR. The CBTR of
clamped skewed FGPs are larger than those of simply supported
skewed FGPs.

) Increasing the cutout size and gradient index n leads to a
decrease of the CBTR of FGPs. Again, the boundary conditions
significantly alter the CBTR of FGPs with internal cutout.
Additionally, the location of the cutout also owns an important

influence on the CBTR. The cutout or defect locates closer to the
boundary of the plate induces a greater CBTR than the cutout
locates at the center.

) Knowledge that has drawn from the study may be helpful to the
design and development of the FGMs and FGP structures in
advanced engineering applications.

) Nevertheless, the present formulation is potential and has no
limitation. As a result, its further extension to other problems
is promising.
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