
A Method for Automated Test Cases Generation
from UML Models with String Constraints

Thi Dao Vu1, Pham Ngoc Hung2, and Viet Ha Nguyen2

1 Academy of Cryptography Techniques
141 Chien Thang str., Thanh Tri dist., Hanoi, Vietnam

vtdao@bcy.gov.vn or vuthidao@gmail.com
2 VNU-University of Engineering and Technology

hungpn@vnu.edu.vn and havn@vnu.edu.vn

Abstract. This paper proposes an automated test cases generation method
from sequence diagrams and class diagrams with string constraints. The
method supports UML 2.0 sequence diagrams including twelve combined
fragments. An algorithm for generating test scenarios are developed to
avoid test paths explosion without having data sharing points of threads
in parallel fragments or weak sequencing fragments. Test data are also
generated with solving constraints of string variables. We standardize
string constraints and equations at the boundary of variables that are
input formula of Z3-str solver. Comparing with the current approach of
the solver, some preprocessing rules are extended for other operations
such as charAt, lastindexOf, trim, startsWith and endsWith. If a result
of the Z3-str is SAT, test data of each test scenario are generated to sat-
isfy the constraints with boundary coverage. A tool is implemented to
support the proposed method, and some experiments are also presented
to illustrate the effectiveness of the tool.

1 INTRODUCTION

Model-based testing plays a significant role in research and practice due to great
benefits. There are some approaches for model-based testing: test data gener-
ation, test cases generation from behavior models and test scripts generation
from abstract tests [6]. Test data generation from solving constraints has fo-
cused on primitive data type of variables. However, there are many applications
being faulty in doing strings processing. In addition, one of major approaches is
generation of test cases from Unified Modeling Language (UML) models. In this
approach, an intermediate model helps to generate the control flow sequences.
There are three options to choose the intermediate models [3] such as activity
diagram, control–flow graph (CFG) [8, 5] and Colored Petri Nets. The test sce-
narios which are abstract test cases help to find errors during implementation of
software systems.

Many works have been proposed in order to show the approach. However, an
approach [1] did not address different types of combined fragments, especially in
case of nested combined fragments. And the method in [1] did not also generate



2 Thi Dao Vu, Pham Ngoc Hung and Viet Ha Nguyen.

test data. A method [5] dealt with five interaction fragments such as loop, alt,
opt, break and parallel fragments in UML 2.0 sequence diagrams. Moreover, in
[8] a method was developed for eight kinds of combined fragments describing
control flow of systems, and the method only solved test data generation with
numeric data type.

There are many string solvers such as REX [7], DPRLE [2] and HAMPI
[4] that only use string operations [9], but many non-string operations in ap-
plications are also popular. Moreover, the string operations interact with the
non–string operations that cause errors. An analyzing of string-only will be the
shortage of pure integer constraints. There are many solvers converting string-
to-integer constraints that are not precise enough. Therefore, a Z3–str solver [9]
is used by supporting of a combined logic both strings and non-string operations.

The paper proposes a method in order to generate automatically test cases
from sequence diagrams and class diagrams with string constraints. This method
is to solve all twelve kinds of fragments in UML 2.0. An algorithm for gener-
ating test scenarios is developed to avoid test paths explosion without having
data sharing points of threads in parallel (par) or weak sequencing fragments
(seq). String constraints of each test scenario and equations at the boundary of
variable are converted into input of Z3–str solver. If output of the solver is SAT,
a possible model is given. Test data are given with satisfying the constraints
and boundary coverage from the possible model. Comparing with Z3–str solver,
some preprocessing rules are extended for other operations such as charAt, lastin-
dexOf, trim, startsWith and endsWith. A tool is implemented to support the
proposed method. Some experiments are illustrated the effectiveness of the tool.

The paper is organized as follows: Section 2 mentions transforming UML
sequence diagrams and class diagrams into CFG, Sect. 3 describes the algorithm
of test scenarios generation, Sect. 4 presents solving string constraints. A tool to
implement the proposed method and some experiments to validate its feasibility
and effectiveness are shown in Sect. 5. We conclude the paper and discuss future
works in Sect. 6.

2 CONTROL FLOW GRAPH GENERATION

Test sequences generation from UML 2.0 models needs an intermediate model.
Elements of the model will be processed easily. A CFG is chosen in our approach.
The proposed technique of CFG generation requires UML diagrams in xmi file.
To solve all twelve fragments in UML 2.0 sequence diagrams, CFG generation
is extended [8] for the remaining four fragments: ignore, consider, negative and
assertion. String constraints of variables are derived from class diagrams and
conditions of sequence diagrams which are solved to generate test data.

The definitions of CFG, a block node (BN), a decision node (DN), a merge
node (MN), a fork node (FN) and a join node (JN) are mentioned in [8]. We
use again Algorithm 1 in [8] for generating CFG from analyzing the queue,
and develop Algorithm 2 for ignore, consider, negative and assertion fragments
(shown in Fig. 1 and detailed description in below Algorithm 2 in Sect. 7).



A Method for Automated Test Cases Generation from UML Models with String Constraints 3

Fig. 1. General structure of CFG (for ignore, consider, assert and neg fragments).

3 TEST SCENARIOS GENERATION

Input to the test scenarios generation is a CFG. After constructing the CFG,
the CFG is traversed automatically to generate the test scenarios which sat isfy
coverage criteria. The test scenarios denote abstract test cases which are paths
starting from the initial node to a final node. Each given test scenario begins
with the initial node (in) of the CFG.

Algorithm 1 Generating the test scenarios

Input: Control-flow Graph G with initial node in and final nodes are fni

Output: T is a collection of test scenarios, t is a test path

1: T = ∅; t = ∅; queue = ∅;
2: curNode = in; //current node starts from in
3: repeat
4: t.append(curNode);
5: move to next node
6: if (curNode == DN and decision==TRUE) then
7: Append true part of BN up to MN in t
8: else
9: Append false part of BN up to MN in t
10: end if
11: if (curNode == FN) then
12: active all nodes of threads; nodes = ready;
13: put a beginning node x of queue; x= waiting;



4 Thi Dao Vu, Pham Ngoc Hung and Viet Ha Nguyen.

14: repeat
15: remove front node y of queue; y=processed;
16: t.append(y);
17: The neighbour(z) of y having ready status add to the end of queue;
18: z = waiting;
19: until(queue is empty)
20: end if
21: if (curNode == fni) then
22: T = T + {t};
23: end if
24: until Graph end

The selection coverage criterion of sequence diagrams is used to cover the
diagrams during testing (the test scenarios ensure that each branch of selec-
tor modeled is traversed at least once). Depth-first search (DFS) algorithm was
used in [5] to generate test scenarios, but the method did not address the is-
sues of the synchronization and data safety. A method in [8] solved this issue
to avoid test explosion by selecting switch points of threads in par or seq frag-
ments. However, there are many applications without having sharing data points
of threads in these fragments. In this case, an Algorithm 1 is developed (Gen-
erateTestScenarios) to traverse CFG using both DFS and breadth-first search
(BFS) algorithm.The BFS is useful for traversing CFG if current node is a fork
node. Besides, the proposed method traverses those nodes of threads in case of
parallel by BFS to avoid finding the sharing data points of threads in par or
seq fragments. The remaining of CFG is traversed by using DFS. Therefore, it
avoids wasting time of finding the data sharing points and test paths explosion.

4 SOLVING STRING CONSTRAINTS

The test scenarios obtained denote the sequences of messages. The sequence is
a feasible sequence of messages if we find test data (test input) to satisfy all
constraints along the scenario. Many current researches [8, 5] solve the equations
to find values that satisfy these constraints. However, it generates test data in
case of numeric data type and rarely considers string constraints. Using a Z3–str
solver generates test data if constraints are satisfiable. The input of the solver
are all the constraints along the scenario and equations at the boundaries of the
domains of variables. If output of the solver is SAT that means all constraints
are satisfiable, a possible model is given. We take examples from the possible
model, and test data are satisfiable with boundary coverage.

4.1 Input formula of Z3–str solver

Z3–str can handle a boolean combination of atomic formulas, it is converted into
conjunction of literals. We will use an example of string solving for Z3–str. Con-
sider string constraints: c1, c2, x : String; vi1 : Integer ; c1 = c1.concat(′′te′′);



A Method for Automated Test Cases Generation from UML Models with String Constraints 5

c2 =′′ aaaa efg bbbb efg′′;x = c1.concat(c2);vi1 = x.indexOf(′′efg′′); vi1 ≥ 4;
The core treats the string operations as five independent boolean variables
(e1,e2,e3,e4 and e5) and tries to assign values to them.
e1 : c1 = c1.concat(′′te′′); e2 : c2 =′′ aaaa efg bbbb efg′′;
e3 : x = c1.concat(c2); e4 : vi1 = x.indexOf(′′efg′′); e5 : vi1 ≥ 4 ;
Consider the string constraints above, the input formula of Z3–str is converted
as follows assert (e1

∧
e2

∧
e3

∧
e4

∧
e5). Each operation above is transformed

into: (assert (concat c1 ”te”)); (assert (= c2 ”aaaa efg bbbb efg”)); (assert (= x
(concat c1 c2)); (assert (=vi1 (indexOf x ”efg”))); (assert (≥ vi1 4))
If the output of Z3–str of their respective input is satisfiable, values of variables
are given by using get–model. A few good data values are chosen as test in-
puts when there are a number of possible input values using boundary coverage.
There are a lot of faults in the system under testing that are located at the fron-
tier between two functional behaviors. In our approach, constraints added at a
boundary point of predicates are input of Z3–str (input of Z3-str is added by
vi1 == 4). Therefore, test data are generated and satisfiable boundary coverage.

4.2 Improving preprocess rules for other operations

In [9] plug-in of Z3–str supports the string operations: string equation, con-
catenation, length, substring, contains, indexof, replace and split. They have
three primitive operations: string equation, concatenation and string length.
That method reduces other string operations to an equivalent formula based
on above primitives. They performed pre–processing to translate substring, con-
tains, indexOf, replace and split operations into formulas using concatenation
and length operations. Extension of some rules of the preprocessing is presented
for other operations such as charAt, lastindexOf, trim, startsWith and endsWith
when comparing to [9]. The rules are converted into the primitive operations
which are as follows,

Table 1. Pre–processing rules for other operations

Expression Rule New Formula

c=x.charAt(i) charAt(x, i) = c→ x = x1.t.x2

∧
t = c

∧
length(x1) = i

i= x1.lastIndexOf(x2) lastIndexOf(x1, x2) = i → (x1 = xs1.xs2.xs3)
∧

(i =
−1

∨
i ≥ 0)

∧
((i = −1) ↔ (⇁ contains(x1, x2))

∧
((i ≥

0)↔ (i = length(xs1)
∧

xs2 = x2

∧
(⇁ contains(xs3, x2)))

x2 = x1.trim trim(x1, x2) → (x1 = xs1.xs2.xs3)
∧

(xs2 = x2)
∧

((xs1=” ”)∨
(xs3=” ”))

j= x.startsWith(xt, i) startsWith(x, xt, i, j) → (x = x1.x2.x3)
∧

(j = 1
∨

j =
0)

∧
((j = 1)

∧
x2 = xt

∧
length(x1) = i)

∧
((j = 0)

∧
(⇁

contains(x, xt))

i= x.endsWith(xt) endsWith(x, xt, i) → (x = x1.x2.x3)
∧

(i = 1
∨

i =
0)

∧
((i = 1)

∧
x2 = xt

∧
⇁ contains(x3, xt))

∧
((i =

0)
∧

⇁ contains(x, xt))



6 Thi Dao Vu, Pham Ngoc Hung and Viet Ha Nguyen.

charAt. takes two arguments x, i and the result is c. This operator returns
the character c located at the specifying i of string x. The indexing of the string
x starts from zero. A formula of charAt can be converted with concatenation and
string length operations. Particularly, we break the argument x into three pieces
x1, t, x2, and assert the middle piece t which equals to the return character c.
We assert the lengths of x1 to respect the position of constraints.

lastIndexOf. if the string x2 argument occurs one or more times as a sub-
string within string x1, then it returns the index of the first character of the
last substring x2. If it does not occur as a substring, -1 is returned. We break
x1 into three pieces xs1, xs2 and xs3. The result value i options: if and only if
string x1 does not involve x2, i is -1. Otherwise, if and only if xs2 equals to x2,
its predecessor xs3 does not contain x2 , and i equals to the length of xs1.

trim. method returns x2 that is a copy of the string x1 and omits leading
and trailing whitespace. We break x1 into three pieces xs1, xs2 and xs3, and
assert the middle piece xs2 which equals to the return string (x2). We assert xs1

or xs3 to respect whitespace.
startsWith. it tests whether the string xt is a substring of string x and

xt starts with the specified prefix beginning (i). It returns true (j = 1) if the
character sequence represented by the argument (xt) is a prefix of the character
sequence represented by this string x; false (j = 0) otherwise. The first argument
x is broken into three pieces x1, x2 and x3. The result value j options: if and
only if string x does not contain xt, j is 0. Otherwise (j is 1), we assert the string
x2 and length of x1 to respect the string xt and the specified index (i).

endsWith. this method returns true (i = 1) if the character sequence rep-
resented by the argument (xt) is a suffix of the string (x), else false (i = 0). We
break x into three pieces x1, x2 and x3. The result value i options: if and only
if string x does not contain xt , i is 0. Otherwise, if and only if x2 equals to xt,
its predecessor x3 does not contain xt.

5 EXPERIMENTS

This section proposes a tool, SequenceString which is developed to support the
proposed method. A case study is conducted to examine the method. And then
some experiments are analyzed about performance and errors found in test sce-
narios that is used to evaluate its effectiveness.

5.1 Tool Support

In this section we discuss the results by implementing the proposed method. The
method is implemented using JAVA and JDK version 1.8. Our method is devel-
oped for generating test cases automatically from UML sequence diagrams and
string constraints, data type of variables from class diagram. The architecture
of the tool is shown in Fig. 2. The implemented tool is available at the site3.

The Tool consists of 2216 lines of code and has the following functionality:

3 http://www.uet.vnu.edu.vn/∼hungpn/SequenceString/



A Method for Automated Test Cases Generation from UML Models with String Constraints 7

Fig. 2. Figure showing architecture of SequenceString.

1. Preprocessing: Enterprise Achitect ver.11 is used to produce the UML design
artefact. The tool imports the UML sequence diagrams and constraints, data
type of variables from class diagram (in XMI file).

2. Generating test scenarios: for each coverage criterion, the tool generates test
scenarios from CFG and gives constraints along with each test scenario.

3. Generating test data: with set of constraints along with the test scenario,
it is converted into input formula of Z3–str solver. The constraints include
numeric constraints, string constraints and equations of variables satisfying
at boundary value. If the output of Z3–str solver is SAT, a possible model
is given. Test data of each test scenario are generated from taking examples
in the possible model, and it is satisfiable boundary coverage.

5.2 Case Study

In this section, the test cases generation is illustrated from UML 2.0 sequence
diagram and string constraints, data type of variables from class diagram. Fig. 3
shows an example that has input string s, and data types of variables are given
that are: String s, s1; int i = s.lastIndexOf(’,’); int f = Long.parseLong(s);
BigDecimal d1 = BigDecimal(-1); s1 =s.substring(i+1);int x= Integer.parseInt(s1);
There are six test scenarios in accordance with selection coverage criterion in the
example. Test scenario passing m5() is considered. Firstly, it checks whether in-
put string s starts with ’-’ (that can represent a negative number). Then if s is of
a format (the string involves beginning with ’-’, followed by at least one digit,and
comma, lastly 3 digits). After that, (i = s.lastIndexOf(′,′ ))! = −1 means that
it checks whether comma appears in s. With String s1 =s.substring(i+1) if string
s1 which is string after comma is substring of string s, and then s1 is converted
into the integer x. Finally, it continues by checking whether x is greater than or
equals to 100. If the condition is satisfiable, test scenario passes m5().
When sequence diagram (XMI file) and data type of variables are input into our
tool, CFG is generated. When we click one test scenario, the details of test path
show a set of constraints along with the test scenario. For example, this path
(passing m5()) has conjunction of some constraints which are as follows,
s.charAt(0)==’-’;s.notMaches(”-\d+,\d{3}”); i = s.lastIndexOf(’,’);
i !=−1; s1 =s.substring(i+1); x= parseInt(s1); x ≥ 100
Equation at boundary value is x ==100. It is converted into input formula of
Z3–str. If output of Z3–str is SAT, variable s of this test scenario is ”-1,000,100”.



8 Thi Dao Vu, Pham Ngoc Hung and Viet Ha Nguyen.

Fig. 3. The sequence diagram for a checking information of web application.

5.3 Evaluation

Our evaluation consists of two experiments. In the first experiment, three appli-
cations have some functions with string constraints and relational operators. We
compare the percentage of errors found in applications which are used by our
proposed method and random test data generation. In the second experiment,
we compare the performance of tool with test data generation in the same test
scenario when to use or not to use the preprocessing rules for some operations
such as charAt, lastIndexOf, trim, startsWith and endsWith. All experiments
are run on an Intel Core i3- 6100U CPU 2.30 GHz with Ram 4 GB.

Table 2. Comparison errors found in applications

Application Description Inputs Errors found of
our method (%)

Errors found of ran-
dom test data (%)

A Checking information of
user registration

3(strings) 100 42.5

B Business ordering 5(strings) 100 36.5

C Insurance registration 4(strings) 90 35.6

Comparison errors: in the functions of three applications, errors are in-
jected at the points of boundary. We perform checking information of user reg-



A Method for Automated Test Cases Generation from UML Models with String Constraints 9

istration function, business ordering and insurance registration. The user reg-
istration function has three string variables and two relational operators. The
business ordering has five string variables and three relational operators. The
last function has four string variables and zero relational operator. From se-
quence diagrams of the applications, our tool is used to generate test cases. We
compare errors found in the same test scenarios but test data are generated by
our method and random test data generation. With the proposed method, the
fourth column is the percentage of errors found in test scenarios in total errors
which inserted into functions. The fifth column is the percentage of errors in the
same test scenarios with random test data generation. Therefore, the ability of
our method in terms of finding errors is better than that of random test data.

Comparison performance: because Z3-str is open- sourced. We are looking
for the communication between Z3-str and the string theory to improve perfor-
mance. Some rules of the preprocessing are extended for other operations such
as charAt, lastindexOf, trim, startsWith and endsWith when comparing with
[9]. We use 9 test cases of the checking information of user registration. Then,
we run both 30 times for each test scenarios and take average of the execution
time in Z3–solver and Z3–solver with precessing rules of some operations. We
can see Z3–str with precessing rules of some operations is faster than Z3–str in
case of charAt, lastindexOf, trim, startsWith and endsWith operations.

Table 3. Comparison performance with applying preprocessing rules

Fragment Inputs Time of Z3-str (s) Time of Z3-str with prepro-
cessing rules (s)

concat 8 0.035 0.035

indexOf 12 0.055 0.055

charAt 12 0.048 0.041

match 13 0.036 0.036

replace 15 0.045 0.045

substring- charAt 10 0.056 0.045

split- startsWith 9 0.066 0.061

lastIndexOf 12 0.036 0.031

lastIndexOf- replace 10 0.042 0.038

6 Conclusion

The paper presents the automated test data generation method based UML
sequence diagrams, class diagrams. The method supports UML 2.0 sequence
diagrams including all twelve kinds of combined fragments. From CFG, the al-
gorithm for generating test scenarios is developed to avoid test paths explosion
without having the points of shared data of threads in parallel or weak sequencing
fragments. The constraints of each test scenario and equations at the boundary



10 Thi Dao Vu, Pham Ngoc Hung and Viet Ha Nguyen.

of variable are converted into input formula of Z3-str solver. Test data are given
by a possible model of the Z3-str. Moreover, these test data are satisfiable the
constraints with boundary coverage. In test data generation, some preprocess-
ing rules are extended for other operations such as charAt, lastindexOf, trim,
startsWith and endsWith. Our tool is implemented to support the proposed
method. Some experiments are shown the effectiveness of the tool.

We are also going to develop completely automated test case generation that
is automatic standardization the inputs of Z3-str. The proposed method is ex-
tended for other UML diagrams (e.g., state-chart diagrams, activity diagrams).
Moreover, we would like to investigate, evaluate further the fault–detection ef-
fectiveness, costs, and the coverage criteria.

Acknowledgments

This work is supported by the project no. QG.16.31 granted by Vietnam National
University, Hanoi (VNU).

References

1. M. Dhineshkumar and Galeebathullah. An approach to generate test cases from
sequence diagrams. In: Proceedings of the 2014 International Conference on Intel-
ligent Computing Applications, ICICA ’14. IEEE Computer Society, Washington,
DC, USA, pp. 345–349 (2014)

2. P. Hooimeijer and W. Weimer. A decision procedure for subset constraints over
regular languages. In: Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09. ACM, New York,
USA, pp.188–198 (2009)

3. M. Shirole and R. Kumar. Testing for concurrency in uml diagrams. SIGSOFT
Softw. Eng. Notes, 37(5): pp. 18 (2012)

4. A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. Hampi: A solver
for string constraints. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA ’09. ACM, New York, NY, USA, pp.
105–116 (2009)

5. A. Nayak and D. Samanta. Automatic test data synthesis using uml sequence
diagrams. Journal of Object Technology,vol 9(2): pp. 115–144 (2010)

6. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2006)

7. M. Veanes, P. d. Halleux, and N. Tillmann. Rex: Symbolic regular expression ex-
plorer. In: Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation, ICST ’10. IEEE Computer Society, Washing-
ton, DC, USA, pp. 498–507 (2010)

8. T.-D. Vu, P. N. Hung, and V.-H. Nguyen. A method for automated test data
generation from sequence diagrams and object constraint language. In: Proceed-
ings of the Sixth International Symposium on Information and Communication
Technology, SoICT 2015. ACM, New York, NY, USA, pp. 335-341 (2015)

9. Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: a z3-based string solver for web
application analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ACM New York, NY, USA, pp. 114–124 (2013)



A Method for Automated Test Cases Generation from UML Models with String Constraints 11

7 Appendix

When analyzing xmi file, parameters of ignore fragment are named parFrag. If
fragment is ignore and message m is considered insignificant (line 3), the algo-
rithm makes each message of operand corresponding to BN except for message
m. In line 6, if a fragment is consider and a parameter of the fragment is message
m, the method only creates a BN corresponding to message m. If assert fragment
shows message m1() occur at this point, following by state invariant {x == y}
(line 9, the algorithm only creates a BN corresponding to m1() if {x == y} is
true). In line 18, if a fragment is neg and a operand of the fragment is m1 then
the algorithm returns exitNode and goes back the Algorithm 1 in [8].

Algorithm 2 Analyzing queue for ignore, consider, neg, assert fragments

Input: Class diagram CD, queue, curNode ∈ A
Output: exitNode ∈ A

function processElement(queue, CD:class diagram, curNode:A):A
1: while queue != empty do
2: x= queue.pop();
3: if((x==frag)&(x.type==”ignore”)&(parFrag==m)& (operand 6= m)) then
4: Create a BN ;
5: ConnectEdge(curNode,BN);
6: else if(x==frag)&(x.type==”consider”)&(parFrag==m) &(operand==m)then
7: Create a BN ;
8: ConnectEdge(curNode,BN);
9: else if ((x==frag)&(x.type==”assert”)) then
10: Create a DN;
11: attachGuard DN; curNode = DN;
12: if (guard==true) then
13: Create a BN ;
14: ConnectEdge(curNode,BN);
15: end if
16: Create a MN;
17: ConnectEdge(curNode,MN);curNode = MN;
18: else if ((x==frag)&(x.type==”neg”)) then
19: if (operand==m1) then
20: return exitNode
21: else
22: Create a BN;
23: end if
24: curNode=BN;
25: end if
26: return exitNode;
27: end while;


