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Abstract— The problem of Influence Maximization (IM) on
social networks proposed firstly by Kempe et al. (2003) has
been researched and developed with many cases. However, the
IM in limited time while unwanted users are restricted is still a
new potential subject. In this paper, we conducted research the
problem on the model of information diffusion name Locally
Bounded Diffusion and tested some useful heuristic algorithms.
The results of the experiment on some real datasets of social
networks show that the algorithm meta-heuristic generated
better output than the others.

I. INTRODUCTION

With the fast development and steady of the Online Social
Networks (OSNs), such as Facebook, Twitter, Google+, etc.
OSNs have become the most common utilized way for
information propagation. OSNs provide a nice platform for
information diffusion and fast information exchange among
their users.

The field of Influence Maximization (IM) has received a
lot of research interests in recent years. This problem asked
to find k users on OSNs to initiate to spread of information
such the number of users be affected is the maximum. The
problem was firstly proposed by Kempe et. al [1] in two
diffusion models which are Independent Cascade (IC) and
Linear Threshold (LT) model and they also proved that it is
NP-hard, and designed a greedy algorithm can obtained 1−
1/e . Although extensive related works have been conducted
on the IM problem [2], [3], [4], [9], [10], [14], [15], most
of them are based on such an assumption that without the
existence of unwanted target users whom we do not want
information come to. In reality, on OSNs exits the group
of users who have opposite viewpoints and benefits with us
and they create a negative impact to oppose for information
received.

Considering the following example that highlights a basic
need for every organization that uses OSNs. There are two
mutual competitive companies A and B. The A has been
deploying a large advertisement, even via the Internet. They
drew a marketing blueprint on several social networks but
the A tried to hide everything against every one of the B as
long as its possible. Constantly, the advertising information
of A can reach to the B after a time. Thus, the A needs a
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solution help them fast imply the marketing strategy to much
many users except unwanted users (from B) to gain the best
consumption more quickly than B within t hop.

Motivated by the above phenomenon, in this paper, we
formulate a new optimization, called Influence Maximization
while Limited unwanted target users (IML), to find seeding
set S to Maximize Influence and the Influence to unwanted is
under some certain threshold after at most d time (hop). The
total influence is total active user and the unwanted users
are referred as those whom we do not want the information
come to.

Our contributions in this paper are summarized as follows:

• First attempt to study the Influence Maximization while
Limited unwanted (IML) target users under LBD model.

• Prove d-MIL is NP-Complete and show it can not be
approximated in polynomial time with a ratio e/(e−1)
unless NP ⊆ DTIME(nO(logn logn)).

• Conduct our experiments on real-world datasets, and
design some heuristic algorithms to find the solution,
results showed that meta-heuristic algorithm better than
the other.

Related work. The target is to spread the desired information
for as many people as possible on OSNs. Kempe et al. [1]
first formulated the Influence Maximization (IM) problem
which asks to find a set of users who could maximize the
influence. The influence is propagated based on a stochastic
process called Independent Cascade Model (IC) in which a
user will influence his friends with probability proportional
to the strength of their friendship. The author proved that the
problem was NP-hard and proposed a greedy algorithm with
approximation ratio of 1 − 1/e. After that, a considerable
number of works studied and designed new algorithms for
the problem variants on the same or extended models [2],
[3], [4], [9], [10], [14], [15]. Huiyuan et al. [2] proposed
a problem to maximize the positive news in propaganda
rather than maximizing the users affected. They said that to
maximize positive things in many cases had more beneficial
than maximizing the number of people affected. They used
the Cascade Opinion (OC) model to solve the problem. On
the other hands, Zhang et al. [3] recommended to maximize
the influence of information to a specific user by finding out
the k most influential users and proved that it was NP-hard
problem and the function is submodular. They also launched
an effective approximation algorithm. Zhuang et al. [4] have
studied the IM problem in the dynamic social network model
over time. In addition, there were several other studies:
Chen et al. [14] investigated IM problem on a limited



time; Gomez-Rodriguez et al. [15] studied IM problem for
continuous time. Researches on IM with various contexts and
various models received many attentions, but the diffusion of
information problem, in addition to spreading the positive
information still faced with the misinformation. How to
spread the positive information while the misinformation
limited? To solve it, Ceren et al. [5] launched the problem
selecting k users to convince them aware of good information
so that after the campaign, amount of use influenced by
the misinformation was the least. By using Model-Oblivious
Independent Campaign Cascade, they proved the problem
be NP-hard and the objective function was submodular.
Nguyen et al. [6] gave the decontamination problem of
misinformation by selecting a set of users with sources of
misinformation I assumed to have existed on the social
network at the rate of β ∈ [0, 1] after T time. They launched
the different circumstances of the I and the T , but they only
solved the case I was unknown. On preventing infiltration
to steal information on OSNs, Pham et al. [13] have built
a Safe Community for the purpose of protecting all users
in an Organization. In problems of detecting misinformation
source on social networks, Nguyen et al. [8] assumed that
the exist a set of misinformation sources I , they purposed
of finding the largest number of users in I who started
to propagate that information. Nevertheless, the predictions
were likely confused because they did not know the order
of real time start to spread misinformation. Zhang et al.
[9] studied the problem of limited resources that often was
incorrect information while maximized the positive source
of misinformation on OSNs under Competive Activation
model. In this study, they were considered a model of
misinformation and good information and presence on the
social network, they also proved to be NP-complete problem
and could not be approximated with rate e/(e − 1) unless
NP ⊆ DTIME(nO(log logn)).

In these researches, no one focused on the spread of
information with the limiting of information to the set of
ones whom we did not want the information reach to (called
unwanted users). While positive information is desired to
propagate to more and more users, we also face with the
existence of unlike users on OSNs. Because every time
they receive the positive information, they can be able to
conduct the activities, propagation strategies that opposes to
our benefits.

II. MODEL AND PROBLEM DEFINITIONS

A. Network and information diffusion model

We are given a social network modeled as an undirected
graph G = (V,E) where the vertices in V represent users
in the network and the edges in E represent social links
between users. We use n and m to denote the number of
vertices and edges. The set of neighbors of a vertex v ∈ V
is denote by N(v) and d(v) = |N(v)| is degree of node
v. Existing diffusion models can be categorized into two
main groups [1]: Threshold model and Independent Cascade
model.

Threshold Model. In this model, each node v has a
threshold θv ∈ [0, 1], typically drawn from some probability
distribution. Each connection (u, v) between nodes u and
v is assigned a weight w(u, v). Initially, nodes in network
is not influenced (the state of each node is inactive). For
a node v, let Na(v) be the set of neighbors of v that
are already influenced (active). Then v is influenced if∑
u∈Na(v) w(u, v) ≥ θv .
Independent Cascade model. Whenever a node u is in-

fluenced, it is given a single chance to activate each of its
neighbor v with a given probability p(u, v).

Most influence maximum papers assume that the probabil-
ities p(u, v) or weight w(u, v) and thresholds θv are given as
a part of the input. However, they are generally not available
and inferring those probabilities and thresholds has remained
a non trivial problem [11]. Hence, in this work, we use a
simple diffusion model is Locally Bounded Diffusion Model
[10] defined as follow:

Locally Bounded Diffusion (LBD) [10] Let S0 ∈ V
be the subset of vertices selected to initiate the influence
propagation, which we call the seeding. We also call a vertex
v ∈ S0 a seed. The propagation process happens in round,
with all vertices in S0 are influenced at round t = 0 . At a
particular round t ≥ 0, each vertex can be active or inactive
and each vertex ′s tendency to become active increases when
more of its neighbors become active. If an inactive vertex u
has more than dρd(u)e active neighbors at time t, then it
becomes active at round t, where ρ is the influence factor.

B. Problem Definition

The paper focus the value of the objective function after
d hop. Denote function δd(.) is total active users after t
hop and Li(.) = |Na(ti)| is the information leakage i.e the
number of neighbor of ti has been actived. Considering that
influence can be propagated at most d hops, We study the
Maximizing Influence while Limited unwanted target users
(d-IML) problem defined as follow:

Definition 1 (d-IML problem): Given an social network
represented by a directed graph G = (V,E) and an under
LBD model. Let T = {t1, t2, .., tp} be the set of |T | = p
unwanted users. Our goal is to chose the set seeding of
users S ⊂ V at most k-size that maximizes influence such
that the total influence come to ti after d round (hop) less
than threshold for preventing information leakage τi i.e:
|Na(ti)| < d(ti)τi.

III. NP-COMPLETE AND INAPPROXIMATION

In this section, we first show the NP-Completeness of
IML problem on LBD model by reducing it from Maxi-
mum Coverage problem. By this result, we further prove
the inapproximability of d-IML which is NP-hard to be
approximated within a ratio of e/(e − 1) unless NP ⊆
DTIME(nO(log logn)).

Theorem 1: d-IML is NP-Comlete in LBD model.
Proof: We consider of the decision version of d-IML

problem that asks whether the graph G = (V,E) contains a
set k− size of seed user S ⊂ V that number active node at



Fig. 1. Reduction from MC to 1-IML

least K, such that
∑
u∈Na(ti)

w(u, ti) < τi within at most
d (hop) rounds. To prove d-IML is NP-Complete, we prove
the following two tasks:

1) d-IML ∈ NP.
2) d-IML is NP-Hard.

Given S ⊂ V , we can calculate the influence spread of S in
polynomial time under LT model after d hop. This implies
d-IML is NP.

Now we prove a restricted class of d-IML instance is NP-
hard, d = 1. To prove that 1-IML is NP-hard, we reduce it
from the decision version of Maximum Coverage problem
defined as follows.
Maximum Coverage. Given a positive integer k, a set
of m element U = {e1, e2, . . . , em} and a collection of
set S = {S1, S2, . . . , Sn}. The set may some element in
common. The Maximum Coverage problem asks to find a
subset S′ ⊂ S, such that | ∪Si∈S′ Si| is maximized with
|S′| ≤ k. The decision of this problem asks whatever the
input instance contains a subset S′ of size k which can cover
at least t elements where t is a positive integer.
Reduction. Given an instance I = {U ,S, k, t} of the maxi-
mum coverage, we construct an instance G = (V,E,S,U , θ)
of the 1-IML problem as follows.
• The set of vertices: add one vertex ui for each subset
Si ∈ S, once vertex vj for each ej ∈ U , and a vertex
x is a unwanted users.

• The set of edges: add an edge (ui, vj) for each ej ∈ Si
and connect x to each vertex vj .

• Threshold for prevent leakage information and Factor
influence: We assign threshold for prevent leakage infor-
mation for vertex x is τx = 1/m. The factor influence
ρ = 1/n.

• Finally, set d = 1,K = t.
The reduction is illustrated in Fig. 1.
Suppose that S∗ is a solution to the maximum coverage
instance, thus |S∗| ≤ k and it can cover at least t elements in
U . By our construction, we select all nodes ui corresponding
to subset Si ∈ S∗ as seeding set S. Thus, |S| ≤ k. Since
S∗ cover at least t elements ej in U so S influence at least
t vertices vj corresponding to those ej and total incoming
active neighbour Na(vj) at least 1. Due to d(vj) ≤ n, we

have:
Na(vj) ≥ 1 =

1

n
.n ≥ dρd(vj)e

implies vj is active. Hence, there are at least t = K nodes
in the 1-IML has been active.

Conversely, suppose there is seeding S, |S| ≤ k such that
the number of active node at least K. We see that vj /∈ S, j =
1, 2, ..,m because in this case the number of neighbor of x
are active at least 1. Thus,

|Na(x)| ≥ 1 = m.
1

m
= d(x)τx

Hence, S ⊆ {u1, u2, . . . , un}. Then S∗ can be collection of
subset Si corresponding to those ui ∈ S. Hence the number
of elements which it can cover is at least K = t.

Based on above reduction, we further show that inapprox-
imation of IML in the following theorem.

Theorem 2: The IML problem can not be approximated
in polynomial time within a ratio of e/(e−1) unless NP ⊆
DTIME(nO(log logn)).

Proof: Supposed that there exits a e/(e − 1)-
approximation algorithm A for d-IML problem. We use the
above reduction in proof of Theorem 1 then A can return
the number of active nodes in G with seeding size equal
to k. By our constructed instance in Theorem 1, we obtain
the Maximum Coverage with size t if the number of active
nodes in optimal solution given by A is K. Thus algorithm
A can be applied to solve the Maximum Coverage problem
in polynomial time. This contradict to the NP-hardness of
Maximum Coverage problem in [12].
Although the objective function is submodular, propagation
of influence is constraint by the leakage information. Hence,
we can not give an algorithm for approximately with the
ratio is 1 − 1/e as Kemp [1]. In this section, we introduce
an Greedy Algorithm for IML problem.

IV. ALGORITHMS

A. Linear Programming approach

One advantage of our discrete diffusion model over prob-
abilities is that the exact solution can be using mathematical
programming. Thus, we formulate the IML problem as an
0− 1 Integer Linear Programming (ILP) problem below.

maximize
∑

v∈V \T

xdv (1)

st:
∑

v∈V \T

x0v ≤ k (2)

∑
u∈N(v)

xi−1w + dρ.d(v)exi−1v ≥ dρ.d(v)exiv,

∀v ∈ V, i = 1..d (3)∑
v∈N(ti)

xdv < d(ti).τi (4)

xiv ≥ xi−1w ,∀v ∈ V, i = 1..d (5)

where xiv =

{
1 if x is active at round (hop) i
0 otherwise



The objective function (1) of the ILP is to find the number
of node is active. The constraint (2) is number of set seed
is bounded by k; the constraints (3) capture the propagation
model; the constraint (4) limit leakage information come to
unwanted user; and the constraint is simply to keep vertices
active once they are activated.
Wee see that the number of constraint is up to O(d.n2) and
the number of variables is bounded by O(d.n). Although
solve ILP can provide the optimal solution, it can not be
applied for larger network.

B. Greedy algorithm

In this section, we introduce a straightforward greedy
algorithm in Algorithm 1. We denote Lti(S) is the total
influence to ti respect to seeding sets S after d hop i.e.,
Lti(S) = |Na(ti)|. The greedy algorithm sequentially se-
lects a node u into the seed set S that the number of actived
neibour of ti does not exceed ρ.d(ti) and maximizes the
flowing influence marginal gain:

∆d(S, u) = δd(S + {u})− δd(S). (6)

Because of conditions of limited to leak information to
unwanted users, greedy algorithm does not guarantee ap-
proximately ratio 1− 1/e as in the greedy algorithm in [1].

Algorithm 1: Greedy Algorithm (GA)
Data: G = (V,E), ρ, τ set unwanted users

U = {t1, t2, . . . , tp}, p, k;
Result: Seeding S;

1 begin
2 S ← ∅;
3 L← ∅;
4 while |S| ≤ k do
5 δmax ← 0;
6 foreach u ⊂ V − S do
7 if ∀ti ∈ T, Li(S + {u}) < d(ti).τi then
8 if δmax < ∆d(S, u) then
9 δmax ← ∆d(S, u);

10 v ← u;
11 end
12 end
13 if δmax = 0 then
14 Return S;
15 end
16 S ← S + {v};
17 end
18 Return S;
19 end
20 end

C. Meta-heuristic algorithm

In the next section, we introduced a meta-heuristic algo-
rithm to improve, we designed the algorithm combine the
influence marginal gain and evaluation information leakage.

Accordingly, we used a heuristic function f(v) to evaluate
the fitness of user v which defined as follows:

f(v) =
∆d(S, v)

1 +
1

p

∑
ti∈T

lti(v)
(7)

where lti(v) =
Lti

(S+{v})
τi

is the normalized leakage level
at ti after adding v to seed set S.

Algorithm 2: Meta-Heuristic (MH) algorithm
Data: G = (V,E), ρ, τ set unwanted users

U = {t1, t2, . . . , tp}, p, k;
Result: Seeding S;

1 begin
2 S ← ∅;
3 L← ∅;
4 while |S| ≤ k do
5 δmax ← 0;
6 fmax ← 0;
7 foreach u ⊂ V − S do
8 if ∀ti ∈ T, Li(S + {u}) < d(ti).τi then
9 if fmax < f(u) then

10 fmax← f(u);
11 v ← u;
12 end
13 end
14 if fmax = 0 then
15 Return S;
16 end
17 S ← S + {v};
18 end
19 Return S;
20 end
21 end

V. EXPERIMENT

In this section we perform experiments on OSNs to show
the efficiency of propagation and compare performance of
greedy algorithms with optimal solution given by ILP.

A. Dataset

arXiv-Collaboration. The data covers papers in the period
from January 1993 to April 2003 (124 months). It begins
within a few months of the inception of the arXiv, and
thus represents essentially the complete history of its GR-
QC section. If an author i co-authored a paper with author
j, the graph contains a undirected edge from i to j. If the
paper is co-authored by k authors this generates a completely
connected (sub)graph on k nodes [16].

Gnutella. A sequence of snapshots of the Gnutella peer-to-
peer file sharing network from August 2002. There are total
of 9 snapshots of Gnutella network collected in August 2002.
Nodes represent hosts in the Gnutella network topology and
edges represent connections between the Gnutella hosts [16].



TABLE I
BASIC INFORMATION OF NETWORK DATASETS

Network nodes edges Type Avg. Degree
ArXiv-Collaboration 5,242 28,980 Direct 5.53

Gnutella 6,301 20,777 Direct 3.30

In each graph, we used the method in [1] to assign the
diffusion weight to each edge and then normalize the weights
of all incoming edges of a node v to let it satisfy that∑
u∈Nin(v) w(u, v) ≤ 1. For each network, we randomly

selected 100 unwanted users.

B. Experiment results

In this part, we describe comparison algorithms: Max
degree algorithm, Greedy Algorithm (GA), Meta-heuristic
(MH) algorithm and ILP. Max Degree method is the greedy
algorithm that chose the vertex v that had maximum degree
when the information leaked to unwanted users less than the
threshold leakage.

In the experiment, we tested the performance of algorithms
with d = 4, k = {10, 20, 30, 40, 50} and ρ = {0.2; 0.4; 0.6}.
We espcially compared between these algorithmsresults with
optimal solution given by ILP.

We solved the ILP problem on Gnutella network [16],
with d = 3, The ILP was solve with CPLEX version 12.6
on Intel Xeon 3.6 Ghz, 16G memories and setting time limit
for the solver to be 48h. For k = 10, 20 the solver return the
optimal solution. However, for k = 30, 40 and 50, the solver
can not find the optimal solution within time limit and return
sub-optimal solutions.

1) Solution Quality: The algorithms gave different resutls
when k changes. With all values of ρ = {0.2; 0.4; 0.6},
MH resulted better than GA and Max degree. For more
details, MH typically showed to be better than Max Degree,
when k became larger, the distance between MH and Max
Degree also became larger. As can be seen from these
graphs, the MH seems to be better than Max Degree and
GA. Especially, In the comparison with Max Degree, MH
gave the moderately better result that can be seen in the
distance between MH and Max Degree when the values of
k increased. On the other hand, MH and GA generated the
same results with small ones of k. The graphs illustrated
that MH line and GA line had the same trends and the gap
between them was unclear when k changed from 10 to 30.
It could be really different when the values of k grew up.
In these cases of k from 30 to 50, the number of nodes
activated of MH was bigger than the one of GA. It meaned
that MH went better than GA when the size of seeding
set was larger. Moreover, MH reached closer ILP than the
others. The trending of red line and purple line seemed to
be convergened with large value of k. The changing rate got
from the percentage of 64% to 80%.

2) Influence Factor ρ: From fig. 1 to fig.3, the values of
ρ grew up with 0.2, 0.4, 0.6, respectively. From these graphs,
it was clear to realize the number of active usders went out

from being approximately equal to 1000 down to bellow
700 and typically down to bellow 400. It mean that when
ρ increased, the information diffusion decreased.
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Fig.1. The actived nodes when the size of seeding set varies while d =
4, ρ = 0.2.

VI. CONCLUSIONS

In order to propose a viral marketing solution while
there exists the competition between organizations that have
benefit collisions, we built the problem of maximization
influence to users whereas limits the information reach to
unwanted ones in constrained time. We proved it be an
NP-complete and not be approximated with 1 − 1/e rating
number. We also recommended an efficient solution MH to
solve the problem. The experiment via social networks data
showed that our algorithm got the better result and reached
closer to optimized solution than several algorithms.
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