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A B S T R A C T

This study investigated the nonlinear dynamic and vibration of the S-FGM shallow spherical shells with ceramic-
metal-ceramic layers (in two cases: non-axisymmetric and axisymmetric shells) on an elastic foundations (EF)
with different types of boundary conditions in thermal environment. Material compositions of the shell are
graded in the thickness direction according to a sigmoid law distribution in terms of the volume fractions of the
constituents. The governing equations are derived by using the classical shell theory and Pasternak's two
parameters EF. The motion equations of dynamic analysis are determined due to Galerkin method and the
obtained equation is numerically solved by using Runge–Kutta method. The approximate solutions are assumed
to satisfy the different types of boundary conditions. The criterion suggested by Budiansky–Roth is applied to
determine the dynamic critical buckling load and the nonlinear dynamic response is found by numerical form. In
numerical results, the effects of geometrical parameters, material properties, the EF, boundary conditions,
mechanical loads and temperature on the nonlinear dynamic and vibration stability of the shells are
investigated.

1. Introduction

Functionally graded materials (FGM) as a new class of advanced
inhomogeneous composite materials have received considerable atten-
tion in many engineering applications for improved structural effi-
ciency in space structures and nuclear reactors since they were first
reported in Japan.

As a result, the problems relating to the thermo-elastic, dynamic,
buckling analyses and vibration of structure made of FGMs have
attracted attention of many researchers. For example, Houari et al.
[1] investigated the thermo-elastic bending analysis of FGM sandwich
plates using a new higher order shear and normal deformation theory
by dividing the transverse displacement into bending, shear and
thickness stretching part, the number of unknowns and governing
equations for the present theory is reduced, significantly facilitating
engineering analysis. Zidi et al. [2] by using a four variable refined
plate theory, both a quadratic variation of the transverse shear strains
across the thickness and the zero traction boundary conditions on the
top and bottom surfaces of the plate are satisfied without using shear
correction factors, to studied the bending analysis of FGM plates resting
on elastic foundation and subjected to hygro-thermo-mechanical load-
ing using a four variable refined plate theory. A simple and refined

trigonometric higher-order beam theory is developed for bending and
vibration of functionally graded beams has proposed by Bourada et al.
[3] and the beauty of this theory is that, in addition to modeling the
displacement field with only 3 unknowns as in Timoshenko beam
theory, the thickness stretching effect is also included in the present
theory. Jin et al. [4] presented a modified Fourier–Ritz approach for
free vibration analysis of laminated FGM shallow shells with general
boundary conditions in the framework of first-order shear deformation
shallow shell theory with the displacement and rotation components of
the shells are represented by the modified Fourier series consisted of
standard Fourier cosine series and several closed-form auxiliary func-
tions introduced to ensure and accelerate the convergence of the series
representation. By using the Fourier-Ritz solution too, Yang et al.
studied the vibration and damping analysis of sandwich plates with
viscoelastic and FGM [5]. By Ashoori et al., in [6] the bifurcation-type
buckling characteristics of heated FGM annular nanoplates resting on
an elastic foundation and subjected to various types of thermal loading
are carried out by presenting an exact analytical solution for the first
time, or in [7] the nonlinear thermo-electrical stability of perfect/
imperfect circular size-dependent FGM piezoelectric plates is studied
according to modified couple stress theory, two types of thermal
loading as well as two cases of boundary conditions are considered
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too in this present work. The paper [8] presents the nonlinear
axisymmetric response of FGM shallow spherical shells with tangential
edge constraints and resting on elastic foundations based on the first
order shear deformation shell theory taking geometrical nonlinearity,
initial geometrical imperfection by Tung HV. There are many more
publication, however, this study focuses on The nonlinear dynamic and
vibration so some research on nonlinear dynamics will be following
overview.

For dynamic and vibration analysis of FGM structures, Deniz and
Sofiyev [9] investigated the nonlinear dynamic buckling of FGM
truncated conical shells subjected to axial compressive load varying
as a linear function of time. Using the multiple scales method, Alijani
et al. [10] derived nonlinear forced vibrations of FGM doubly curved
shallow shells with a rectangular base, primary and subharmonic
resonance responses of FGM shells are fully discussed. Chorfi and
Houmat [11] investigated the nonlinear free vibration of a FGM doubly-
curved shallow shell of elliptical plan-form using the p-version of the
finite element method in conjunction with the blending function
method. Ansari and Darvizeh [12] used a general analytical approach
to investigate vibrational behavior of FGM shells, taking into account
transverse shear deformation and rotary inertia effects. Ganapathi [13]
published a result on the dynamic stability behavior of a clamped FGM
spherical shell structural element subjected to external pressure load.
Haddadpour et al. [14] researched free vibration analysis of simply
supported FGM cylindrical shells for four sets of in-plane boundary
conditions. Strozzi and Pellicano [15] analyzed the nonlinear vibrations
of FGM circular cylindrical shells by using the Sanders–Koiter theory to
model the nonlinear dynamics of the system in the case of finite
amplitude of vibration. Sepiani et al. [16] researched the free vibration
and buckling of a two-layered cylindrical shell made of inner FGM and
outer isotropic elastic layer, subjected to combined static and periodic
axial forces. Sofiyev [17] focused on the vibration and stability of freely
supported FGM truncated and complete conical shells subjected to
uniform lateral and hydrostatic pressures. Love's first approximation
theory is used by Xiang et al. [18] to analyze the natural frequencies of
rotating FGM cylindrical shells. Zhang et al. [19] presented an analysis
on the nonlinear dynamics of a clamped–clamped FGM circular
cylindrical shell subjected to an external excitation and uniform
temperature change, based on the FSDT and Von Karman type non-
linear strain–displacement relationship. Non-linear buckling analysis of
FGM shallow spherical shells under pressure loads was presented by
Ganapathi [20] by using finite element method, geometric non-linearity
is assumed only on the meridional direction in strain-displacement
relations. The nonlinear dynamic and vibration for the axisymmetric
FGM shallow spherical shell was studied by Bich and Hoa in [21]. Bich
et al. [22] studied the nonlinear static and dynamic buckling analysis of
non-axisymmetric FGM shallow spherical shells with metal-ceramic
layer including temperature effects using the approximated analytical
method, geometric non-linearity is assumed in all strain-displacement
relations, however the authors considered only an FGM shallow
spherical shells subjected to external pressure loads varying as linear
functions of time, q st= (s – a loading speed).

The structures as plates and shells usually supported by an elastic
foundation. By using the theory of elasticity and theory of shells, have
many approaches to analyze the interaction between the structures and
the EF, especially in the study of dynamic and vibration. For example,
in [23] Duc investigated the nonlinear dynamic response and vibration
of imperfect eccentrically stiffened thin FGM double curved shallow
shells on elastic foundations. Used Reddy's higher order shear deforma-
tion shell theory, Duc et al. studied the nonlinear dynamic analysis of
Sigmoid functionally graded circular cylindrical shells on EF in [24], in
thermal environments [25] and with reinforced stiffeners in [26]. Duc
et al. also considered nonlinear vibration and dynamic response of
imperfect functionally graded thick double curved shallow shells
resting on an EF and in thermal environments in [27] and the shells
with piezoelectric actuators subjected to the combination of electrical,

thermal, mechanical and damping loads in [28].
Duc et al. studied nonlinear thermo-mechanical dynamic analysis

and vibration of higher order shear deformable piezoelectric function-
ally graded material sandwich plates in [29]. Hosseini et al. presented
closed-from vibration analysis of thick annular functionally graded
plates with integrated piezoelectric layers in [30].

Shah et al. [31] presented a study on the vibrations of FGM
cylindrical shells based on the Winkler and Pasternak foundations.
Besides also can find a lot of study on the nonlinear dynamic and
vibration of structure resting on an EF in the Ref. [32] by Duc. Used
Chebyshev series expansion, Nath and Alwar in [33] studied the
nonlinear transient behavior of shallow spherical shells with and
without damping effect. Bich et al. [34] considered nonlinear axisym-
metric dynamic buckling and vibration of functionally graded shallow
spherical shells under external pressure including temperature effects
resting on an EF, however, the authors only considered the axisym-
metric FGM shallow spherical shells with metal-ceramic layers.

The present paper aimed to propose an analytical approach to study
the nonlinear dynamic and vibration of S-FGM spherical shallow shells
(in two cases: non-axisymmetric and axisymmetric S-FGM shallow
spherical shells) with ceramic-metal-ceramic layers and different types
of boundary conditions resting on EF in thermal environment.
Derivations of governing equations of these shells are based on the
shell theory according to the Von Karman theory for moderately large
deflection and small strain with the assumption of sigmoid law
composition for the constituent materials. The approximate solutions
are made to satisfy the different types of boundary conditions. The
natural frequencies and nonlinear dynamic of the S-FGM spherical
shells subjected to pressure loading are considered. The effects of
boundary conditions, characteristics of functionally graded materials,
temperatures and dimension ratios of the shells on their dynamical
behaviors are investigated.

2. Governing equations

Consider a functionally graded (FGM) shallow spherical shell with
metal – ceramic – metal layer, resting on an EF with radius of curvature
R, base radius r0 and thickness h in coordinate system φ θ z( , , ),

h z h− /2 ≤ ≤ /2 along the meridional, circumferential and radial-thick-
ness directions respectively as shown in Fig. 1.

Suppose that the material composition of the shell varies smoothly
along the thickness, applying a Sigmoid power law distribution for the
shell with ceramic-metal-ceramic layers (S-FGM). The volume fractions
of metal and ceramic Vm and Vc in the shell are assumed as [32].

⎧⎨⎩V z
z h h z

z h z h
V z V z( ) = (2 / + 1) , − /2 ≤ ≤ 0

(−2 / + 1) , 0 ≤ ≤ /2
, ( ) = 1 − ( ).m

k

k c m
(1)

where k (volume fraction index) is a non-negative number that defines
the material distribution, subscripts m and c represent the metal and

Fig. 1. Geometry of shallow spherical shell.
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ceramic constituents, respectively. In this work, the material effective
properties are obtained by substituting Eq. (1) and Poisson's ratio v is
assumed to be constant.

As can be seen from Eq. (1), at z h= /2 and h− /2, the surfaces are
fully ceramic and at z = 0, the surface is purely metal. Material
properties corresponding to the isotropic shell with k = 0 and metal
component will be increased as k increases as well.

The reaction-deflection relation of Pasternak foundation is given by
[24,31,32].

q k w k Δw Δw w
r r

w
r r

w
θ

= − , = ∂
∂

+ 1 ∂
∂

+ 1 ∂
∂

,e 1 2
2

2 2

2

2 (2)

where w is the deflection of the annular spherical shell, k1 is Winkler
foundation modulus and k2 is the shear layer foundation stiffness of
Pasternak model.

For the shell, the classical shell theory is used to obtain the
equilibrium and compatibility equations as well as expressions of
buckling loads and nonlinear load–deflection curves of thin S-FGM
spherical shells. For a S-FGM spherical shell it is convenient to
introduce a variable r , referred as the radius of parallel circle with
the base of shell and defined by r R φ= sin . Moreover, due to shallow-
ness of the shell it is approximately assumed that φ Rdφ drcos = 1, = .

According to the classical shell theory, the strains at the middle
surface and the change of curvatures and twist are related to the
displacement components u v w, , in the φ θ z, , coordinate directions,
respectively, taking into account Von Karman–Donnell nonlinear terms
for non-axisymmetric shells, as [21,22]:
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where εr
0 and εθ

0 are the normal strains, γr
θ is the shear strain at the

middle surface of the shell, χ χ χ, ,r θ rθ are the changes of curvatures and
twist.

The strains across the shell thickness at a distance z from the mid-
plane are:

ε ε zχ ε ε zχ γ γ zχ= − ; = − ; = − .r r r θ θ θ rθ r
θ

rθ
0 0 (4)

Using Eqs. (3) and (4), the geometrical compatibility equation of the
shell is written as
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The stress–strain relationships for the shell including temperature
effect are defined by the Hooke's law [22,27,32].

σ σ ε ε ν ε ε v αΔT

σ γ

( , ) = [( , ) + ( , ) − (1 + ) (1, 1)],
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(6)

where ΔT denotes the change of environment temperature from stress
free initial state or temperature difference between the surfaces of the
shell.

The force and moment resultants of the shell are expressed in terms
of the stress components through the thickness as [32]:

∫N M σ z dz ij rr θθ rθ( , ) = (1, ) , = ( , , )ij ij
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h
ij
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(7)

In case of i j r( = = ) or i j θ( = = ) for simplicity denoted N N=rr r

N N= ,θθ θ M M= ,rr r M M=θθ θ.
By using Eqs. (4), (6), and (7) the constitutive relations can be given

as
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From the relations one can write
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By the classical shell theory and suppose that the shallow spherical
shell is acted on by external uniform pressure q. According to Love's
theory the equations of motion, in the general cases, are [21,22,32]
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By taking the inertia forces ρ → 0u
t1

∂
∂

2

2 and ρ → 0v
t1

∂
∂

2

2 into considera-
tion because of u w v w≪ , ≪ , the first two equations of system (11)
are satisfied by introducing the stress function f
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Substitution Eqs. (3), (9) and (12) into system of Eq. (5) and
substituting Eqs. (3), (10) and (12) into Eq. (14) in terms of the stress
function f and the deflection w lead to
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In particular cases, for an axisymmetric shallow spherical shells, the
partial derivative with respect to the variable θ will be equal to 0, the
system of Eq. (13) leads to
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Eqs. (13) and (14) are the basic equations used to investigate the
nonlinear dynamic and vibration stability of the S-FGM shallow
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spherical shells in general cases (non-axisymmetric shells) subjected to
mechanical loads in thermal environment. These are nonlinear equa-
tions in terms of two dependent unknowns w and the stress function f .

3. Nonlinear dynamical analysis

3.1. Nonlinear dynamic of a S-FGM shallow spherical shells in general cases
(non-axisymmetric shells)

The mentioned system of Eq. (13) combining with boundary
conditions and initial conditions can be used in nonlinear dynamical
analysis of FGM spherical shells. Suppose that the S-FGM spherical shell
is clamped at its base edge r r= 0, the boundary conditions are

w w
r
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f
r θ
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∂
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∂

+ ∂
∂

= 0 at = .r

2
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The boundary conditions can be satisfied, if the deflection w and the
stress function f , in general cases, are represented by
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Applying Galerkin method to Eq. (13) in the range
θ π r r0 ≤ ≤ 2 , 0 ≤ ≤ 0 yields a set of two equations with respect to W

and F
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Eliminating F from two these equations leads to a nonlinear second-
order ordinary differential equation for W
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where n is odd number.
The obtained Eq. (19) is a governing equation for dynamical

analysis of S-FGM shallow spherical shells. Based on this equation the
nonlinear vibration of S-FGM spherical shells can be investigated and
the post-buckling analysis of shells can be performed.

3.2. In particular cases, for an axisymmetric S-FGM shallow spherical shells

In this section, the axisymmetric S-FGM spherical shells are assumed
to be clamped along the periphery and subjected to external pressure
uniformly distributed on the outer surface of the shells and depending
on the in-plane behavior at the edge, two cases of boundary conditions,
labeled Cases (1) and (2), will be considered.

Case (1). The edge is clamped and freely movable (FM) in the
meridional direction. The associated boundary conditions are
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Case (2). The edge is clamped and immovable (IM). For this case, the
boundary conditions are
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where Nr0 is the fictitious compressive edge load rendering the edge
immovable. With the consideration of the boundary conditions (20) and
(21), the deflection w – in this case – is approximately assumed as
follows

w W
r r

r
=

( − )
.0

2 2 2

0
4 (22)

Introduction of Eq. (22) into the first equation of Eq. (14) and
integration of the resulting equation give stress function f with
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where N = 0r0 for the spherical shells with movable clamped edge.
Substituting Eqs. (22) and (23) into the 2th equation of Eq. (14) and

applying Galerkin method for the resulting equation yield
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Eq. (24) is used to determine the dynamic responses of FGM shallow
spherical shells under uniform external pressure without the effects of
temperature conditions.

For the spherical shells with movable clamped edge, the governing
equation for dynamical analysis of axisymmetric S-FGM shallow
spherical shells is
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(25)

A clamped S-FGM shallow spherical shell with immovable edge
(that is, Case (2)) under simultaneous action of uniform external
pressure q(in Pascals) and thermal load is considered. The condition
expressing the immovability on the boundary edge, i.e. u = 0 on r r= 0,
is fulfilled on the average sense as

∫ ∫ u
r

rdrdθ∂
∂

= 0
π r

0 0

0

(26)

where
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Substituting Eqs. (22) and (23) into Eq. (27) and putting the result
into Eq. (26) give
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which represents the compressive stress making the edge immovable. In
what follows, specific expressions of thermo-mechanical load–deflec-
tion curves of axisymmetric S-FGM shallow spherical shells under
uniform external pressure and thermal loads will be determined.

Environment temperature is assumed to be uniformly raised from
initial value Ti at which the shell is thermal stress free, to final one Tf is
independent to thickness variable. The thermal parameter can be
expressed in terms Φ PhΔT=m with

P E α E α E α
k

E α
k

ΔT T T= + +
+ 1

+
2 + 1

, = − .c c
c mc mc c mc mc

f i (29)

Subsequently, employing this expression Φm and then substitution of
the result into Eq. (24) lead to
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The obtained Eqs. (25) and (30) is a governing equation for
dynamical analysis of axisymmetric S-FGM shallow spherical shells.
Based on this equation the nonlinear vibration of axisymmetric S-FGM
spherical shells can be investigated and the post-buckling analysis of
shells can be performed.

4. Nonlinear vibration analysis

4.1. In general cases, for S-FGM shallow spherical shells

Consider a S-FGM shallow spherical shell acted on by an uniformly
distributed excited pressure load q t Qsin Ωt( ) = ( ), the equation of
motion has of the for
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From Eq. (31) the fundamental frequencies of natural vibration of
the shell ωn can be determined by the relation
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By putting
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The Eq. (31) can be rewritten as
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and putting
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Eq. (34) can be rewritten in the form
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For seeking amplitude-frequency characteristics of nonlinear vibra-
tion, substitute W A Ωt= sin into Eq. (34), the nonlinear Eq. (35)

becomes
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Multiply both sides of Eq. (36) by Ωtsin and then integrate from 0 to
π Ω/2 , and the amplitude-frequency relation of nonlinear forced vibra-
tion is obtained as
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By denoting α = Ω
ω

2
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2 as the frequency ratio, Eq. (37) becomes
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For the free nonlinear vibration, the frequency-amplitude relation is
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where ωNL is the non-linear vibration frequency and A is the amplitude
of non-linear vibration.

4.2. In particular cases, for axisymmetric S-FGM shallow spherical shells

The fundamental frequency of axisymmetric S-FGM shallow sphe-
rical shells with movable and immovable edge, respectively can be
determined by
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Consider an axisymmetric S-FGM shallow spherical shells acted on
by an uniformly external pressure q Q Ωt= sin , the nonlinear dynamic
responses of shells can be obtained by solving Eqs. (25) and (30)
combined with initial conditions to be assumed as W (0) = 0, (0) = 0W

r
∂
∂

by using the Runge - Kutta iteration schema.
For investigation the nonlinear dynamic buckling of the shells under

linear-time loading, we need to seek the critical dynamic buckling
loads. They can be evaluated based in the displacement responses
obtained from the motion Eqs. (25) and (30) with q ct= (c is a loading
speed) and the Budiansky-Roth criterion is employed here as it is widely
accepted in [13,14].

5. Numerical results and discussion

5.1. Comparison study

To validate proposed approach, consider a clamped FGM shallow
spherical shell subjected to uniform external pressure varying as linear
functions of time, q st= (s – a loading speed) in the absence of elastic
foundations.

In this discussion, the clamped FGM spherical shell is made of
silicon nitride (Si3N4) and steel (SUS 304). The Young's modulus is
E = 348.43 GPa,c E = 201.04 GPam respectively. Critical dynamic buck-
ling of a clamped FGM shallow spherical shell is calculated by using
explicit expression (19) with k k= = 01 2 and compared in Tables 1a and
1b with those reported by Bich et al. in [14] utilizing the well-known
criterion suggested by Budiansky and Roth with the same geometrical
parameters.

The comparison results show a good fit between present results and
the results in [14], and shows the reliability of the calculation method
and obtained results.

N.D. Duc et al. International Journal of Mechanical Sciences 123 (2017) 54–63

58



5.2. The nonlinear dynamic and vibration of the S-FGM shallow spherical
shells

This section presents the illustrative results for Al/Al2O3 S-FGM
shallow spherical shell with the properties: E GPa= 70 ,m ρ =m kg m2702 / ,3

E GPa= 380 ,c ρ kg m= 3800 / ,c
3 v = 0.3.

In the special cases, the nonlinear dynamic responses of axisym-
metric S-FGM spherical shells acted on by the harmonic uniformly
external pressure load q t Qsin Ωt( ) = ( ) are obtained by solving Eq. (27)
combined with the initial conditions.

The obtained results in Table 2 show the fundamental frequencies of
natural vibration. Obviously the natural fundamental frequencies of
axisymmetric S-FGM spherical shells observed to be dependent on the
constituent volume fractions k, they increases when increasing the
power index k. This is completely reasonable due to the lower value of
the elasticity modulus of the metal constituent in comparison with the
ceramic. Especially, the fundamental frequency of immovable spherical
shell is much greater than one of freely movable spherical shell.

Effect of volume-fraction index k and foundation on critical dynamic
buckling of axisymmetric S-FGM spherical shells are showed in Table 3.
Clearly, the critical dynamic buckling of shell decrease when the
volume-fraction index increases. As can be also observed, the critical
dynamic buckling load of shells with EF is greater than one of shells
without EF. This was described in more detail as below in the Fig. 2.

Fig. 3 shows the effect of ratio of radius of curvature and base radius
R r/ 0 on critical dynamic buckling of axisymmetric S-FGM spherical
shells in the case without EF. The obtained result shows that critical
dynamic buckling of the shells is very sensitive with change of ratio R r/ 0
characterizing the shallowness of the shell, the instability region is
clearly recognized with small R r/ 0 ratio but it is very difficult to define
that when the R r/ 0 ratio increases.

Effect of temperature on dynamic buckling of immovable axisym-
metric S-FGM spherical shells is presented in Table 4. Easy to see that,

when the temperature increases, the critical dynamic buckling of shell
increases, however this influence is not too strong on dynamic buckling
of immovable axisymmetric S-FGM spherical shells.

Table 1a
Comparison of the critical dynamic buckling of clamped FGM shallow spherical shell
P( × 10 )cr 5 , R h r R n( / = 1000, / = 0.2, = 1)0 with the change of index k .

k 0 1 5 10

P FM( )cr Present 3.0135 2.4289 2.1254 1.9263
Bich [14] 2.9995 2.3796 1.9767 1.8826

Table 1b
Comparison of the critical dynamic buckling of clamped FGM shallow spherical shell
P( × 10 )cr 5 , k r R n( = 1, / = 0.2, = 1)0 with the change of R h/ .

R h/ 1000 1200 1500 2000

P FM( )cr Present 2.3812 2.0039 1.5108 1.1327
Bich [14] 2.3796 1.9565 1.4789 1.1093

Table 2
Fundamental frequencies of axisymmetric S-FGM shallow spherical shells (×103)
(R R h k N m k N m= 3, / = 100, = 5.10 / , = 10 /1 7 3 2 5 ) (with and without effect elastic founda-
tion (EF)).

Freely movable Immovable

Without EF With EF Without EF With EF

R r/ = 30 k = 0 0.9118 1.0845 6.8816 6.9066
k = 1 1.7794 1.8854 13.0992 13.1140
k = 5 2.2130 2.3068 16.5304 16.5432
k = ∞ 2.4119 2.5024 18.2033 18.2155

R r/ = 50 k = 0 0.7766 0.9000 5.3142 5.3337
k = 1 1.6181 1.6886 10.1326 10.1440
k = 5 1.9394 2.0039 12.7740 12.7840
k = ∞ 2.5042 2.1181 14.0572 14.0667

Table 3
Dynamic buckling of axisymmetric S-FGM shallow spherical shell. ( N m×10 /8 2)
(R R h k N m k N m= 3, / = 100, = 5.10 / , = 10 /1 7 3 2 6 , c N m s= 10 /9 ).

Freely movable Immovable

Without EF With EF Without EF With EF

R r/ = 20 k = 0 0.0870 0.1489 1.7306 1.7887
k = 1 0.1725 0.2208 5.4976 5.5553
k = 5 0.2254 0.2723 8.0062 8.0639
k = ∞ 0.2510 0.2972 9.2590 9.3167

R r/ = 30 k = 0 0.0630 0.0974 1.6611 1.6888
k = 1 0.1201 0.1500 5.2984 5.3260
k = 5 0.1481 0.1760 7.7141 7.7418
k = ∞ 0.1576 0.1846 8.9183 8.9458

0 0.01 0.02 0.03
0

0.1

0.2

0.3

0.4

0.5

q(N/m2)

W
(m

)

k = 0
k = 1
k = 5

x109

Fig. 2. Effect of index k on critical dynamic buckling of axisymmetric S-FGM spherical
shells without EF.
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Fig. 3. Effect of ratio R r/ 0 on critical dynamic buckling of axisymmetric S-FGM spherical
shells without EF.

Table 4
Effect of temperature on dynamic buckling of immovable axisymmetric S-FGM shallow
spherical shells ( N m×10 /8 2) k = 1,R h/ = 100, k N m= 5.10 / ,1 7 3 k N m= 10 /2 6 .

ΔT = 0 ΔT = 100 ΔT = 300 ΔT = 500

R r/ = 30 5.3260 5.3702 5.4480 5.5258
R r/ = 50 4.9855 5.0259 5.1062 5.1821
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To validate the proposed approach, comparison of the amplitude
fluctuation for axisymmetric S-FGM shallow spherical shells (metal-
ceramic-metal layers) with axisymmetric P-FGM shallow spherical
shells (ceramic-metal layers) with the same geometrical dimensions
(k r m R r R h= 3, = 1 ( ), / = 3, / = 1000 0 ) is shown in Figs. 4 and 5. As can
be seen, the amplitude fluctuation of the P-FGM shell is higher than the
amplitude fluctuation of the S-FGM shell layers. Notice that, for the P-
FGM studies, the nonlinear dynamic and vibration of this shell have
been shown in [22] by Bich et al. and in this comparison, Figs. 4 and 5
show that the dynamic response of axisymmetric S-FGM shallow
spherical shells is better than P- axisymmetric FGM shallow spherical
shells.

In general cases (the non-axisymmetric spherical shells), the non-
linear dynamic responses of the S-FGM spherical shells acted on by the
harmonic uniformly external pressure load q t Qsin Ωt( ) = ( ) are obtained
by solving Eq. (30) combined with the initial conditions and by use of
the Runge–Kutta method. Fig. 6 shows nonlinear responses of the S-
FGM spherical shells with various Sigmoid law indices subjected to the
excited load of magnitude Q N m= 2000 / and frequency Ω s= 300( )
different far from the natural frequencies of the S-FGM shells with
k = 0, 1, 5. From the obtained results we can see that amplitudes of
nonlinear vibration of the S-FGM shells increase when increasing the
power law index k but frequencies decrease when increasing k. The
nonlinear dynamic responses perform the phenomenon of periodic

cycles.
Fig. 7 consider the effect of harmonic uniform load with amplitudes

Q N m= 1000( / ),2 Q N m= 2000 ( / )2 and Q N m= 3000 ( / )2 on the nonlinear
dynamic response of the S-FGM shallow spherical shell. From figure, it
is seen that the nonlinear dynamic amplitude of the S-FGM shallow
spherical shell is considerably increased when excitation force ampli-
tude Q increases.

Fig. 8 shows the variation of nonlinear dynamic response ampli-
tudes of the S-FGM shallow spherical shell with various values of the
thickness h without EF (K K= = 01 2 ). Clearly, the thickness played a
positive role on the dynamic response of the shell: the higher the h, the
lower the amplitude of deflection.

The influence of radius R on the nonlinear dynamic response
amplitudes of the S-FGM shallow spherical shell are presented in
Fig. 9. As expected, the reduction of the radius R makes the amplitudes
of nonlinear vibration of the S-FGM shell decrease.

Figs. 10 and 11 consider the effect of coefficients k k,1 2 of the
Winkler and Pasternak foundations, respectively, on the nonlinear
dynamic response of the S-FGM shallow spherical shell. Obviously,
the S-FGM shallow spherical shell amplitude fluctuation became
considerably lower due to the support of the EF also. In addition, the
shear layer stiffness k2 of the Pasternak foundation model has a more
pronounced influence than the modulus k1 of the Winkler model on the
nonlinear dynamic response of the S-FGM shallow spherical shell.
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Fig. 4. Comparisons of the amplitude fluctuation for axisymmetric S-FGM with P-FGM
shallow spherical shell (Freely movable) q t( = 10 sin(500 ))5 .

0 0.002 0.004 0.006 0.008 0.01 0.012
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

t(s)

W
(m

)

S-FGM
P-FGM

Fig. 5. Comparisons of the amplitude fluctuation for axisymmetric S-FGM with P-FGM
shallow spherical shell (Immovable) q t( = 10 sin(2000 ))7 .
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Fig. 6. Effect of power law index k on the nonlinear dynamic response of the S-FGM
shallow spherical shell.
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The deflection–velocity relation has the closed curve form as in
Fig. 12 (when exited frequency is near natural frequency) and in Fig. 13
(when exited frequency is from to natural frequency).

Fig. 14 shows the effect of external force Q on the frequency-
amplitude relations of nonlinear vibration of the S-FGM shallow
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Fig. 8. Effect of the thickness on the nonlinear dynamic response of the S-FGM shallow
spherical shell.
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Fig. 9. Effect of the radius R on the nonlinear dynamic response of the S-FGM shallow
spherical shell.

Fig. 10. Effect of the Winkler foundation on the nonlinear dynamic response of the S-
FGM shallow spherical shell.

Fig. 11. Effect of the Pasternak foundation on the nonlinear dynamic response of the S-
FGM shallow spherical shell.
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Fig. 12. Deflection–velocity relation of the S-FGM shallow spherical shell without EF
(R a q t/ = 3, = 2000 sin(1900 )).
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(R a q t/ = 3, = 2000 sin(6960 )).

N.D. Duc et al. International Journal of Mechanical Sciences 123 (2017) 54–63

61



spherical shell. As can be observed, as the amplitude of external force
increases, the amplitude-frequency curves of forced vibration asymp-
tote that of the free vibration.

6. Conclusions

This paper investigated the nonlinear dynamic analysis and vibra-
tion for S-FGM shallow spherical shells (in two cases: the non-axisym-
metric and the axisymmetric shells) subjected to mechanical loads
including the effects of temperature and resting on an elastic founda-
tions with different types of boundary conditions. The volume fractions
of the metal and ceramic are applied by Sigmoid-law distribution with
ceramic-metal-ceramic layers. Formulation for deformed spherical
shells is based on the classical shell theory with geometrical non-
linearity is incorporated. The approximate solutions are assumed to
satisfy the different types of boundary conditions. By using Galerkin
method and four order Runge-Kutta method, the nonlinear dynamic
response of the shells is analyzed and the results are illustrated in table
form and graphic form. The critical dynamic buckling of shells is
determined by according to the Budiansky–Roth criterion. The influ-
ence of inhomogeneous parameters, dimensional parameters, EF, types
of boundary conditions, mechanical loads and temperature on the
nonlinear dynamic analysis and vibration of the S-FGM shallow
spherical shells are examined in detail.

Some conclusions can be obtained from the present analysis:

– The dynamic response of axisymmetric S-FGM is better than
axisymmetric P- FGM shallow spherical shells.

– The natural fundamental frequencies of axisymmetric S-FGM sphe-
rical shells and the amplitudes of nonlinear vibration of the S-FGM
shells increase when increasing the volume fractions k, but the
critical dynamic buckling of axisymmetric S-FGM spherical shells
and the frequencies of nonlinear vibration of the S-FGM shells
decrease when increasing k .

– The elastic foundation, inhomogeneous parameters, dimensional
parameters are positive influence on the nonlinear dynamic and
vibration of the S-FGM shallow spherical shells (axisymmetric and
non-axisymmetric).

– The nonlinear dynamic amplitude of the S-FGM shallow spherical
shell is considerably increased when excitation force amplitude Q
increases.

– The influence of temperature is not too strong on dynamic buckling
of immovable axisymmetric S-FGM spherical shells.
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