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A B S T R A C T

The thermal and mechanical stability of a functionally graded composite truncated conical shell reinforced by
carbon nanotube fibers and surrounded by the elastic foundations are studied in this paper. Distribution of
reinforcements across the shell thickness is assumed to be uniform or functionally graded. The equilibrium and
linearized stability equations for the shells are derived based on the classical shell theory. Using Galerkin
method, the closed – form expression for determining the linear thermal and mechanical buckling load is
obtained. The paper also analyzed and discussed the effects of semi-vertex angle, shell length, volume fraction of
fibers, distribution pattern of fibers, temperature, elastic foundations on the linear thermal and mechanical
buckling loads of the functionally graded carbon nanotube fibers-reinforced composite (FG CNTRC) truncated
conical shell in thermal environment.

1. Introduction

Carbon nanotubes (CNTs) have attracted increasing attention in
recent years due to their exceptional thermal, mechanical and electrical
properties. For example, their Young's moduli are superior to all carbon
fibers with a value greater than 1 TPa and their density can be only
1.3 g/cm3 [1]. Due to such interesting features, CNTs are selected as a
promising candidate to reinforce the composites [1]. Functionally
graded materials (FGM), which are microscopic composites made from
a mixture of metal and ceramic constituents, were first introduced in
1984 by a group of Japanese materials scientists [2], recently, these
studies have mainly focused on the nonlinear static and dynamic
stability analysis of FGM plates and shells [3]. Functionally graded
materials involving conical shells are widely used in exhaust nozzles of
solid rocket engines, space vehicles, aircrafts, nuclear power plants and
many other engineering applications. Unique features of FGM and CNTs
may be achieved together, for instance, through functionally graded
distributions of CNTs in a FGM media. Functionally graded carbon
nanotube-reinforced composites (FG CNTRC) were first introduced by
Shen [4].

The static stability and dynamic of plates and shells reinforced by
CNTs fibers has been studied by many researchers in recent years. Jafari

et al. [5] studied the mechanical buckling of nano-composite rectan-
gular plate reinforced by aligned and straight single walled carbon
nanotubes. Lei et al. [6] presented the buckling analysis of FG CNTRC
plates using the element-free kp-Ritz method. Jam and Kiani [7]
investigated the buckling of pressurized FG CNTRC conical shells using
the first order shear deformation shell theory but did not study thermal
instability. Jalali and Heshmati [8] studied the buckling analysis of
circular sandwich plates with tapered cores and functionally graded
carbon nanotubes-reinforced composite face sheets. Zhang et al. [9]
investigated the vibration analysis of functionally graded carbon
nanotube reinforced composite thick plates with elastically restrained
edges. Ansari and Torabi [10] studied the buckling and vibration of
functionally graded carbon nanotube-reinforced composite conical
shells under axial loading.

In fact, the structures are often put under the environment with
high temperatures. Zhang et al. [11] studied the postbuckling of
CNTRC cylindrical shells in thermal environments. Shen [12–14]
investigated the postbuckling of CNTRC cylindrical shells in thermal
environments with axially-loaded shells [12] and pressure-loaded
shells [13], torsional postbuckling [14] and under combined axial
and radial mechanical loads [15]. Shen and Zhu [16] investigated the
buckling and postbuckling behavior of FG CNTRC plates in thermal
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environments. Torabi et al. [17] studied the linear thermal buckling
analysis of truncated hybrid FGM conical shells. Akbari et al. [18]
considered the thermal buckling of temperature dependent FGM
conical shells with arbitrary edge supports. Sofiyev et al. [19]
presented the thermoelastic buckling of FGM conical shells under
non-linear temperature rise in the framework of the shear deformation
theory. Shen and Zhang [20] studied the thermal buckling and
postbuckling behavior of FG CNTRC plates. Naj et al. [21] investigated
the thermal and mechanical instability of FGM graded truncated
conical shells. Mirzaei and Kiani [22] considered the thermal buckling
of temperature dependent FG CNTRC conical shells. Duc et al. [23,24]
studied the mechanical and thermal stability of eccentrically stiffened
FGM conical shell surrounded by the elastic foundations and in
thermal environment.

These researches about plates and shells made by CNTRC sur-
rounded by the elastic foundations are also studied. Shen and Xiang
investigated the postbuckling of axially compressed CNTRC cylindrical
panels [25] and the nonlinear analysis of CNTRC beams [26] resting
surrounded by an elastic foundation in thermal environments. Zhang
et al. [27] used the element-free IMLS-Ritz framework for buckling
analysis of FG CNTRC thick plates resting on Winkler foundation. Lei
et al. [28] considered the buckling of FG CNTRC thick skew plates
resting on Pasternak foundation based on an element-free approach.
Shen and Xiang studied the thermal postbuckling of CNTRC cylindrical
shells [29] and FG CNTRC cylindrical panels resting surrounded by an
elastic foundation [30].

From above studies, it can be seen that there has not got any
research studying about the mechanical and thermal buckling analysis
of FG CNTRC truncated conical shells.

This paper studies the linear thermal and mechanical instability of
the FG CNTRC truncated conical shells reinforced by CNTs fibers and
surrounded by the elastic foundations in thermal environment. The
equilibrium and linearized stability equations for the shells are
derived based on the classical shell theory. Using Galerkin method,
the closed – form expression for determining the thermal and
mechanical buckling load is obtained. The material properties were
assumed to be temperature-dependent leading to the equation to
determine buckling thermal loads with both sides that are dependent
on temperature, so the iterative algorithms are proposed to solve this
problem. The paper also analyzes and discusses the effects of semi-
vertex angle, shell length, volume fraction of fibers, distribution
pattern of fibers, temperature, elastic foundations on the linear
thermal and mechanical buckling loads of the FG CNTRC truncated
conical shell.

2. FG CNTRC truncated conical shells surrounded by the elastic
foundations

Consider a FG CNTRC truncated conical shells and surrounded by
the elastic foundations, conical shell of thickness h, and radii R R<1 2,
length L and vertex half angle α. The meridional, circumferential, and
normal directions of the shell are denoted by x θ, and z, respectively. A
schematic of the shell with the assigned coordinate system and
geometric characteristics are shown in Fig. 1.

The single walled carbon nanotube (SWCNT) reinforcement is either
uniformly distributed or functionally graded in the thickness direction
[4–9]. FG–V and FG–Ʌ CNTRC (Fig. 2) are the functionally graded
distraction of CNTs through the thickness direction of the composite
truncated conical shell.

The effective material properties may be written as [4–9]:
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where in the above equations, E E,CN CN
11 22 and GCN

12 are Young's modulus
and shear modulus of SWCNT, respectively. Besides, Em andGm indicate
the corresponding properties of the matrix. The coefficients η η η, ,1 2 3
are introduced to account for the scale dependent material properties.
These constants are evaluated by matching the effective properties of
CNTRC obtained from the MD simulations with those from the rule of
mixtures. Furthermore, in Eq. (1),VCN andVm are the volume fractions of
CNTs and matrix phase, respectively, which satisfy the condition

V V+ = 1CN m (2)

Uniform and four types of functionally graded distributions of the
CNTs along the thickness direction of the FG CNTRC conical shell are
assumed. Mathematical expression of CNTs volume fraction in each
case of distribution is given in Table 1.

The effective Poisson ratio depends weakly on position [4–9] and is
expressed as
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The thermal expansion coefficients in the longitudinal and trans-
verse directions can be expressed by the Shapery model [15,16,21] as
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where in the above equations, α α α, ,CN CN m
11 22 are the thermal expansion

coefficients of the constituents.

3. Basic formulation

The present study uses the classical shell theory with the geome-
trical nonlinearity in von Karman sense to establish the governing
equations. Thus, the normal and shear strains at distance z from the
middle surface of shell are [31,32]:

ε ε zk ε ε zk γ γ zk= + , = + , = + 2 ,x x x θ θ θ xθ xθ xθ
0 0 0

(5)

in which εx
0 and εθ

0 are the normal strains and γxθ
0 is the shear strain at

the middle surface of the shell, and k k,x θ and kxθ are the change of
curvatures and twist, respectively. They are related to the displacement
components as
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Hooke law for the FG CNTRC shells using the classical shell theory
can be defined as [31,32]:
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where ΔT is temperature rise from stress free initial state or tempera-
ture difference between two surfaces of the shell. Beside, Qij are the
reduced material stiffness coefficients compatible with plane-stress
conditions and are obtained as follow
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Integrating the above stress–strain equations and their moments
through the thickness of the shell, we obtain the expressions for force
and moment resultants as
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In the above equations, the constant coefficients
A B D i j, , ( = 1 ÷ 2, 6; = 1 ÷ 2, 6 )ij ij ij indicate the stretching, bending-
stretching, and bending stiffness, respectively, which are calculated by
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Also, N M,ii
T

ii
T are included thermal force and moment resultants

which may be calculated upon integrations as
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The nonlinear equilibrium equations of the truncated conical shells
surrounded by the elastic foundations based on the classical shell
theory are given by [23,24,31]:
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where K (N/m )1
3 is the Winkler foundation stiffness, and K (N/m)2 is the

shear subgrade modulus of the Pasternak foundation model.
The stability equations of conical shell are derived using the

adjacent equilibrium criterion in Brush and Almroth [32], Naj et al.
[21]. Assume that the equilibrium state of FG CNTRC conical shell
under thermal loads is defined in terms of the displacement components
u v,0 0 and w0. We give an arbitrarily small increments u v,1 1 and w1 to the
displacement variables, so the total displacement components of a
neighboring state are:

u u u v v v w w w= + , = + , = + .0 1 0 1 0 1 (13)

Similarly, the force and moment resultants of a neighboring state

Fig. 1. The geometry of a FG CNTRC truncated conical shell surrounded by the elastic foundations.

Fig. 2. Configurations of various CNTRC truncated conical shells.

Table 1
Volume fraction of CNTs as a function of thickness coordinate for
various cases of CNTs distribution [4–9].

CNTs distribution VCN

FG–V CNTRC ⎛
⎝⎜

⎞
⎠⎟V* 1 + 2CN

z
h

FG-Ʌ CNTRC ⎛
⎝⎜

⎞
⎠⎟V* 1 − 2CN

z
h
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may be related to the state of equilibrium as:
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where terms with 0 subscripts correspond to the u v w, ,0 0 0 displace-
ments and those with 1 subscripts represents the portions of increments
of force and moment resultants that are linear in u v,1 1 and w1. The
stability equations may be obtained by substituting Eqs. (13) and (14)
into Eq. (12) and note that the terms in the resulting equations with
subscript 0 satisfy the equilibrium equations and therefore drop out of
the equations. In addition, the nonlinear terms with subscript 1 are
ignored because they are small compared to the linear terms. The
remaining terms form the stability equations as follows [10,19,23,31]:
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Eq. (15a,b,c) are the stability equations of the FG CNTRC truncated
conical shells. In Eq. (15a,b,c) the subscript 0 refers to the equilibrium
state and subscript 1 refers to the stability state. The terms with the
subscript 0 are the solution of the equilibrium equations for the given
load.

Where the force and moment resultants for the state of stability are
given by Naj et al. [21]:
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The linear form of the strains and curvatures in terms of the
displacement components are:
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3.1. Mechanical buckling

For simplicity, the membrane solution of the equilibrium equations

is considered (Naj et al. [21]). For this aim, all the moment and rotation
terms must be set equal to zero in the equilibrium equations. By solving
the membrane form of equilibrium equations, it is found that

N P
πx α

N N= −
sin 2

, = 0, = 0x θ xθ0 0 0 (18)

where P is hydrostatic pressure.
Substituting Eqs. (16)–(17) into Eq. (15a,b,c), the stability equations

in terms of the displacement component are of the forms

C u C v C( ) + ( ) + (w ) = 0,11 1 12 1 13 1 (19a)

C u C v C( ) + ( ) + (w ) = 0,21 1 22 1 23 1 (19b)

C u C v C PT( ) + ( ) + (w ) + (w ) = 0,31 1 32 1 33 1 35 1 (19c)

in which coefficientsC i j T( = 1 ÷ 3, = 1 ÷ 3),ij 35 are described in detail
in Appendix A.

Equation system (19a,b,c) is used to analyze the state and find the
critical mechanical load of the FG CNTRC truncated conical shells.

In this section, an analytical approach is given to investigate the
stability of the FG CNTRC truncated conical shells. Assume that a shell
is simply supported at both ends. The boundary conditions in this case,
are expressed by
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The approximate solution Eqs. (19) satisfying the boundary condi-
tions (20) may be described as
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where m is the number of half-waves along a generatrix and n is the
number of full-waves along a parallel circle, and X Y Z, , are constant
coefficients. Due to x x x L θ π≤ ≤ + ; 0 ≤ ≤ 20 0 and for sake of con-
venience in integration, Eqs. (19a) and (19b) are multiplied by x and
Eq. (19c) by x2, and applying Galerkin method for the resulting
equations, that are
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in which
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31 1 32 1 33 1 34 0 1 (23)

Substituting expressions (21) and (22) into Eq. (23), after integrat-
ing longer and some rearrangements, may be written in the following
form

d X d Y d Z+ + = 0,11 12 13 (24a)

d X d Y d Z+ + = 0,21 22 23 (24b)

d X d Y d d N d K d K Z+ + ( + ′ + + ) = 0,x31 32 33 34 0 35 1 36 2 (24c)

in which coefficients d i j( = 1 ÷ 3, = 1 ÷ 6)ij are described in detail in
Appendix B.

Eq. (24) may be expressed as
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Eq. (25) gives the buckling mechanical difference for the FG CNTRC
truncated conical shells. The minimum value of with respect to m and n
is called the critical mechanical load.

3.2. Thermal buckling

For simplicity, the membrane solution of the equilibrium equations
is considered. For this aim, all the moment and rotation terms must be
set equal to zero in the equilibrium equations. By solving the membrane
form of the equilibrium equations, we find that:
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Consider a conical shell under uniform temperature rise, tempera-
ture was increased steadily from the first value to the last value, the
difference in temperature ΔT T T= −f i is a constant.

Take the similar steps of changing as in Section 3.1, we obtain:

ΔT
d d d d d d d d d d

d d d d d L x P
d d K d K

d L x P
= −

( − ) − ( − )
( − )( + )

+
+ +

( + )
31 12 23 22 13 32 11 23 21 13

34 21 12 11 22 0 1

33 35 1 36 2

34 0 1

(27)

in which ∫P Q α Q α ΔTdz= ( + ) .
h

h
1 − /2

/2
11 11 12 22

Eq. (27) gives the buckling temperature difference for the FG
CNTRC truncated conical shells under uniform thermal rise. The
minimum value of with respect to m and n is called the critical
temperature.

In case of temperature dependent, the two hand sides of Eq. (27) are
temperature dependence which makes it very difficult to solve.
Fortunately, we have applied a numerical technique using the iterative
algorithm to determine the buckling loads as well as the deflection –
load relations in the post-buckling period of the FG CNTRC truncated
conical shells. More details, given the material parameter, the geome-
trical parameter R h L R( / , / )1 1 and the value α, we can use these to
determine ΔT in (27) as the follows: we choose an initial step for ΔT1 on
the right hand side in Eq. (27) with ΔT = 0 (since T T= = 300 K0 , the
initial room temperature). In the next iterative step, we replace the
known value of ΔT1 found in the previous step to determine the right
hand side of Eq. (27) ΔT2. This iterative procedure will stop at the kth-
step if ΔTk satisfies the condition ΔT ΔT ξ| − | ≤k . Here, ΔT is a desired
solution for the temperature and ξ is a tolerance used in the iterative
steps.

4. Numerical result and discussion

To establish a temperature dependent analysis, a third order

interpolation is used to estimate the thermo- mechanical properties of
(10,10) armchair SWCNT as a function of temperature. For

T300 ≤ ≤ 700, variation of thermo- mechanical properties of (10,10)
armchair SWCNT with respect to temperature are as shown [22]:

E T TPa T T

T
E T TPa T T

T
G T TPa T T

T
α T K T T

T
α T K T T

T
E T GPa
v
α ΔT K

( )[ ] = 6.3998 − 4.338417 × 10 + 7.43 × 10

− 4.458333 × 10
( )[ ] = 8.02155 − 5.420375 × 10 + 9.275 × 10

− 5.5625 × 10
( )[ ] = 1.40755 + 3.476208 × 10 − 6.965 × 10

+ 4.479167 × 10
( )[10 / ] = − 1.12515 + 0.02291688 − 2.887 × 10

+ 1.13625 × 10
( )[10 / ] = 5.43715 − 0.984625 × 10 + 2.9 × 10

+ 1.25 × 10
= (3.52 − 0.0034 )
= 0.34
= 45(1 + 0.0005 )10 /

CN

CN

CN

CN

CN

m

m

m

11
−3 −6 2

−9 3

22
−3 −6 2

−9 3

12
−3 −6 2

−9 3

11
−6 −5 2

−8 3

22
−6 −4 −7 2

−11 3

−6

For three different volume fractions of CNTs, these parameters are
as:

η η for V

η η for V

η η for V
η η

= 0.137, = 1.022 * = 0.12

= 0.142, = 1.626 * = 0.17

= 0.141, = 1.585 * = 0.28
= 0.7

CN

CN

CN

1 2

1 2

1 2

3 2

Geometrical characteristics of the shell are

α R h L R h h= 30°, / = 100, = 400 , = 0.0127 m1 1

4.1. Comparison studies

Table 2 compares the present result with those of Ref. [10] for FG
CNTRC (FG-Ʌ) conical shells using the first order shear deformation
shell theory. The results in the Table 2 compared shows conformity well

Table 2
A comparison on buckling load Pcr (kN) of the FG CNTRC (FG-Ʌ) conical shells for different semi-vertex angles and length-to-small radius ratios h R h( = 2 mm, / = 25)1 with results in Ref.
[10].

V*cn L R/ = 11 L R/ = 31

α = 15° α = 30° α = 45° α = 15° α = 30° α = 45°

0.12 Present 79.62(14,1)a 67.92 (1,2) 52.43(18,1) 62.12(1,4) 50.21(1,3) 31.99(10,1)
Ref. [10] 79.72 69.88 54.67 61.68 48.91 33.40

0.17 Present 120.99(1,3) 108.21(10,1) 83.63(18,1) 103.12(7,1) 83.75(1,2) 53.26(14,1)
Ref. [10] 123.56 107.10 82.75 102.59 80.85 54.76

0.28 Present 173.11(10,1) 152.16(14,1) 122.14(10,1) 125.39(1,2) 103.03(1,3) 71.09(14,1)
Ref. [10] 173.25 153.36 121.34 127.76 102.19 70.32

a Buckling mode (m,n).

Table 3
Influences of graded pattern of CNTs on critical buckling mechanical P MN( )cr of the FG
CNTRC conical shells.

V*CN
FG–V CNTRC FG–Ʌ CNTRC

0.12 481.59 (1,2)1 323.91(1,43)
0.17 497.20 (1,3) 485.73 (1,3)
0.28 301.48 (1,4) 279.13 (1,4)

a Buckling mode (m,n).
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and verify the accuracy of the present method.

4.2. Parametric studies

The effect of graded pattern of CNTs on critical buckling load
P MN( )cr of the FG CNTRC conical shells is shown in Table 3 with
geometric parameters of the shells are α R h L= 30 , / = 100, =o

1
R h h400 , = 0.0127 m1 .

The critical buckling mechanical of conical shells with various
graded pattern of fibers and shell length is showed in Table 4 and Fig. 3.
In this study, the geometric parameters of the shell is selected as follow:
R h h/ = 100, = 0.0127 m1 and the semi vertex angle of the shell is
chosen as α = 30o. Two different patterns of the CNTs, three different
volume fractions of fibers and three different shell lengths are
considered. It can be seen that the value of critical mechanical buckling
in case of FG-V type of CNTs is larger than that of FG–Ʌ (Table 3). In
addition, at the same pattern of the CNTS, the maximum value of
critical buckling mechanical is in the case of V* = 0.17CN and the
minimum value is in the case of V* = 0.28CN (Table 3).

Tables 5–7 and Figs. 4 and 6 shows the influence of various graded
pattern of fibers and semi vertex angle α on critical buckling mechan-
ical (Table 5 and Fig. 4) and critical buckling temperature (Tables 6 and
7 and Fig. 6). In this study, the geometric parameters of the shell is
selected as follow: R h L R h h/ = 100, = 400 , = 0.0127 m1 1 . Two dif-
ferent patterns of the CNTs, three different volume fractions of fibers
and six different semi vertex angles are considered. The semi vertex
angles are obtained as an influential parameter on the critical buckling
mode, mechanical and temperature of the shell. Increasing the value of
the semi vertex angles will make the value of critical buckling
mechanical and temperature decrease and vice versa.

Shell length is obtained as an influential parameter on the critical
buckling mode and mechanical of the shell. Increasing the value of shell
length will make the value of critical buckling mechanical decrease.
Analysis the influence of various graded pattern of fibers and shell
length on critical buckling temperature, the result gained is the same as
above (Table 8 and Fig. 5). This conclusion is similar to the findings of
[23,24] for the case of truncated FGM conical shells.

Table 9 shows the influence of various graded pattern of fibers and
elastic foundations on critical buckling temperature. In this study, the
geometric parameters of the shell is selected as follow:
R h L R h h/ = 100, = 400 , = 0.0127 m1 1 and the semi vertex angle of
the shell is chosen as α = 30o. Two different patterns of the CNTs, three

Table 4
Influences of graded pattern of CNTs and shell length on critical buckling mechanical
P MN( )cr of FG CNTRC conical shells.

Length V*CN FG–V CNTRC FG–Ʌ CNTRC

L R h= 300 1 0.12 508.77 (23,1) 462.49(20,1)
0.17 568.75 (19,1) 545.51(18,1)
0.28 452.83 (14,1) 397.13(12,1)

L R h= 400 1 0.12 481.59(1,2) 323.91(1,43)
0.17 497.20 (1,3) 485.73(1,3)
0.28 301.48 (1,4) 279.13 (1,4)

L R h= 500 1 0.12 271.85 (18,1) 257.91(15,1)
0.17 340.88 (15,1) 284.64 (13,1)
0.28 183.56 (10,1) 152.17 (7,1)

Fig. 3. Influences of shell length and volume fraction of fibers on critical buckling
mechanical of FG CNTRC conical shells.

Table 5
Influences of graded pattern of CNTs and semi vertex angle α on critical buckling
mechanical P MN( )cr of FG CNTRC conical shells.

α V*CN FG–V CNTRC FG– Ʌ CNTRC

10° 0.12 553.73 (37,1) 492.75 (33,1)
0.17 584.34 (31,1) 556.33 (29,1)
0.28 508.17 (24,1) 429.80 (20,1)

20° 0.12 525.30 (26,1) 485.28 (20,1)
0.17 544.32 (21,1) 535.60 (20,1)
0.28 457.35 (16,1) 428.09 (14,1)

30° 0.12 481.59 (1,2) 323.91(1,43)
0.17 497.20 (1,3) 485.73 (1,3)
0.28 301.48 (1,4) 279.13 (1,4)

45° 0.12 263.20 (15,1) 237.98 (12,1)
0.17 322.04 (12,1) 292.26 (11,1)
0.28 262.40 (9,1) 190.45 (7,1)

60° 0.12 256.58 (15,1) 218.93 (12,1)
0.17 304.54 (12,1) 266.81 (11,1)
0.28 202.44 (8,1) 178.08 (7,1)

75° 0.12 132.18 (14,1) 130.57 (12,1)
0.17 184.95 (12,1) 158.37 (11,1)
0.28 128.19 (8,1) 104.80 (7,1)

Table 6
Influences of graded pattern of CNTs on critical buckling temperature ΔT (K)cr of FG
CNTRC conical shells.

V*CN FG-V CNTRC FG –Ʌ CNTRC

0.12 434.0077 (30,2) 405.6702 (29,2)
0.17 473.8662 (30,2) 452.9881 (29,2)
0.28 431.2386 (26,2) 417.6118 (25,2)

Table 7
Influences of graded pattern of CNTs and semi-vertex angle α on critical buckling
temperature ΔT (K)cr of FG CNTRC conical shells.

α V*CN FG-V CNTRC FG–Ʌ CNTRC

10° 0.12 504.1794 (33,2) 471.6108 (31,2)
0.17 512.1293 (32,2) 487.9627 (30,2)
0.28 490.7945 (29,2) 463.4367 (26,2)

20° 0.12 459.6182 (31,2) 441.5971 (30,2)
0.17 500.6485 (31,2) 486.2915 (30,2)
0.28 455.9699 (27,2) 421.8234 (25,2)

30° 0.12 434.0077 (30,2) 405.6702 (29,2)
0.17 473.8662 (30,2) 452.9881 (29,2)
0.28 431.2386 (26,2) 390.6118 (25,2)

45° 0.12 408.9583 (29,2) 383.7844 (28,2)
0.17 416.0395 (28,2) 392.1805 (27,2)
0.28 404.3764 (25,2) 351.7605 (23,2)

60° 0.12 383.0838 (28,2) 357.094 (27,2)
0.17 389.0454 (27,2) 363.6357 (26,2)
0.28 375.8037 (24,2) 350.5158 (23,2)

75° 0.12 357.4137 (27,2) 331.2786 (26,2)
0.17 362.1960 (26,2) 336.1544 (25,2)
0.28 347.1808 (23,2) 320.0487 (22,2)
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different volume fractions of fibers and coefficients K K( , )1 2 are con-
sidered. The elastic foundations are obtained as an influential para-
meter on the critical thermal load of the shell. Increasing the value of
the elastic foundations will make the value of critical thermal load
increase and vice versa. Furthermore, the value of the ground coeffi-
cient K2 affects the critical thermal load ΔTcr greater than the ground
coefficient K1.

5. Conclusions

This paper studied the thermal and mechanical stability of func-
tionally graded composite truncated conical shell reinforced by carbon
nanotube fibers (the FG CNTRC shell) with temperature-dependent
properties in thermal environment and surrounded by the elastic
foundations. The following main findings are summarized:

• The buckling mechanical and thermal loads of the FG CNTRC shell
are determined.

• The effects of semi-vertex angle, shell length, volume fraction of
fibers, distribution pattern of fibers, temperature, elastic founda-
tions on the linear thermal and mechanical buckling loads of the FG
CNTRC truncated conical shell in thermal environment. analyzes
and discussed:

– The critical mechanical and thermal load in case of FG-V type of
CNTs is larger than that of FG–Ʌ.

– The critical thermal and mechanical loads of FG CNTRC truncated
conical shells decrease when the semi-vertex angle α increases.

– The critical thermal and mechanical loads of FG CNTRC truncated
conical shells decrease when the shell length L increases.

– Foundation parameters K1 and K2 affect strongly on the critical

Fig. 4. Influences of semi vertex angle and volume fraction of fibers on critical buckling mechanical of FG CNTRC conical shells.

Table 8
Influences of graded pattern of CNTs and shell length on critical buckling temperature
ΔT (K)cr of FG CNTRC conical shells.

Length V*CN FG-V CNTRC FG–Ʌ CNTRC

L R h= 300 1 0.12 469.3857 (27,2) 441.8697 (26,2)
0.17 511.9253 (27,2) 485.9751 (26,2)
0.28 449.3161 (23,2) 432.1127 (22,2)

L R h= 400 1 0.12 434.0077 (30,2) 405.6702 (29,2)
0.17 473.8662 (30,2) 452.9881 (29,2)
0.28 431.2386 (26,2) 417.6118 (25,2)

L R h= 500 1 0.12 370.6482 (31,2) 352.6430 (30,2)
0.17 404.2134 (31,2) 387.8656 (30,2)
0.28 343.3954 (26,2) 334.7892 (25,2)

Fig. 5. Influences of shell length and volume fraction of fibers on critical buckling temperature of FG CNTRC conical shells.
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thermal and mechanical loads. Furthermore, the value of the ground
coefficient K2 affects the critical thermal and mechanical loads
greater than the ground coefficient K1.
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Fig. 6. Influences of semi vertex angle and volume fraction of fibers on critical buckling temperature of FG CNTRC conical shells.

Table 9
Influences of graded pattern of CNTs and elastic foundations on critical buckling temperature ΔT (K)cr of FG CNTRC conical shells.

ΔT (K)cr K (N/m )1
3

0 2 × 107 3.5 × 107 6 × 107

K (N/m)2 0 V* = 0.12CN 434.0077 (30,2) 495.4154(32,2) 527.3905 (33,2) 560.4634 (34,2)

V* = 0.17CN 473.8662 (30,2) 506.7667 (31,2) 540.5980 (32,2) 575.5920 (33,2)

V* = 0.28CN 431.2386 (26,2) 466.3071 (27,2) 502.5686 (28,2) 540.2264 (29,2)

2 × 105 V* = 0.12CN 495.4154(32,2) 527.3905 (33,2) 560.4634 (34,2) 660.4634 (34,2)

V* = 0.17CN 506.7667 (31,2) 540.5980 (32,2) 575.5920 (33,2) 675.5920 (33,2)

V* = 0.28CN 466.3071 (27,2) 502.5686 (28,2) 540.2264 (29,2) 640.2264 (29,2)

3.5 × 105 V* = 0.12CN 527.3905 (33,2) 560.4634 (34,2) 660.4634 (34,2) 760.4634 (34,2)

V* = 0.17CN 540.5980 (32,2) 575.5920 (33,2) 675.5920 (33,2) 775.5920 (33,2)

V* = 0.28CN 502.5686 (28,2) 540.2264 (29,2) 640.2264 (29,2) 740.2264 (29,2)
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