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ARTICLE INFO ABSTRACT

Nonlinear dynamic behavior of double curved shallow shells with negative Poisson’s ratios in auxetic honey-
combs on elastic foundations subjected blast, mechanical and damping loads is investigated in the present ar-
ticle. This study considers double curved shallow shells with auxetic core which have three layers in which the
top and the bottom outer skins are isotropic aluminum materials; the central layer has honeycomb structure

Keywords:

Nonlinear dynamic response

Double curved shallow shells

Auxetic honeycombs with negative Poison’s

rat,m . using the same aluminum material. Based on the analytical solution, Reddy’s third order shear deformation
Third order shear deformation theory . . . . . . .
Blast load theory (TSDT) with the geometrical nonlinear in von Karman and Airy stress functions method, Galerkin method

and the fourth-order Runge-Kutta method, the resulting equations are solved to obtain expressions for nonlinear
motion equations. The effects of geometrical parameters, material properties, elastic foundations, imperfections,
blast loads, mechanical and damping loads on the nonlinear dynamic analysis of double curved shallow shells

Elastic foundations

with negative Poisson’s ratios in auxetic honeycombs are studied.

1. Introduction

The composite auxetic material with negative Poison’s ratio is a new
material which has many outstanding benefits such as: lightweight,
high durability and energy absorption capacity from loads, especially
under blast load. For example, an application of lightweight auxetic
composite plate to enhance the ballistic and impact resistance cap-
abilities of armoured vehicles (Fig. 1) [1].

Therefore, the composite auxetic material with negative Poisson’s
ratio has been applied in so many important sectors for civil and de-
fense purposes. Therefore, there have many studies on composite
auxetic material with negative Poisson’s ratio. Whitty et al. [2] studied
towards the design of sandwich panel composites with enhanced me-
chanical and thermal properties by variation of the in-plane Poisson’s
ratios. Massimo Ruzzene et al. [3] studied the wave propagation in
sandwich plates with periodic auxetic core. Qing-Tian and Zhi-Chun [4]
investigated the wave propagation in sandwich panel with auxetic core.
Qiao and Chen [5] considered impact resistance of uniform and func-
tionally graded auxetic double arrowhead honeycombs. Miller et al. [6]
investigated the negative Poisson’s ratio carbon fibre composite using a
negative Poisson’s ratio yarn reinforcement. A number of numerical
methods have been used to study the dynamic response of auxetic plate

and shell such as: Zhang et al. [7] considered the dynamic thermo-
mechanical and impact properties of helical auxetic yarns. Strek et al.
[8] considered the dynamic response of sandwich panels with auxetic
cores. Ghaznavi and Shariya [9] studied the non-linear layerwise dy-
namic response analysis of sandwich plates with soft auxetic cores and
embedded SMA wires experiencing cyclic loadings. Xiaochao Jin et al.
[10] investigated the dynamic response of sandwich structures with
graded auxetic honeycomb cores under blast loading. Sofiyev et al. [11]
investigated the stability and vibration of sandwich cylindrical shells
containing a functionally graded material core with transverse shear
stresses and rotary inertia effects. Li et al. [12] considered the Dynamic
behavior of aluminum honeycomb sandwich panels under air blast.
Using analytical methods to study vibration and dynamic response of
plate and shell with negative Poisson’s ratios was applied by Duc et al.
[13-15]. In [13-15], the authors considered vibration and dynamic
response of the plate [13], panel [14] and double curved shallow shells
[15] with negative Poisson’s ratios in auxetic honeycombs layer on
elastic foundations subjected to blast and damping loads using analy-
tical solution, but they used the first order shear deformation theory.
In recent years, the safety of buildings and structures of infra-
structure have become hot issues in all over the world because the
negative dynamic loads caused of increasing in terrorist activities,
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Fig. 1. An application of lightweight auxetic composite
plate to enhance the ballistic and impact resistance
capabilities of armoured vehicles [1].

Ballistic/Fragment impacts

accidental blast. Nelson Lam et al. [16] studied the response spectrum
solutions for blast loading. Lu et al. [17] considered the buried structure
in soil subjected to blast load using 2D and 3D numerical simulations.
[18] investigated the nonlinear structural response of laminated com-
posite plates subjected to blast loading. [19] examined the nonlinear
dynamic response and vibration of imperfect shear deformable func-
tionally graded plates subjected to blast and thermal loads. Gabriele
Imbalzano et al. [20,21] considered blast resistance of auxetic and
honeycomb sandwich panels: Comparisons and parametric designs [20]
and numerical study of auxetic composite panels under blast loadings
[21].

Applying analytic method, stress function and Galerkin method to
study dynamic response of FGM plate and shell structures using Reddy’s
third order shear deformation theory were mentioned in [22-25]; in
which [23] studied plate, [24] about circular cylindrical shells, [25]
about double curved thin shallow shells.

Recently, nanocomposite and CNT-reinforced composite have gra-
dually gained interestes: Reza Kolahchi et al. [26] considered visco-
nonlocal-refined Zigzag theories for dynamic buckling of laminated
nanoplates using differential cubature-Bolotin methods. Maryam
Shokravi [27] considered dynamic pull-in and pull-out analysis of vis-
coelastic nanoplates under electrostatic and Casimir forces via sinu-
soidal shear deformation theory. Reza Kolahchi et al. [28] studied the
dynamic stability analysis of temperature-dependent functionally
graded CNT-reinforced visco-plates resting on orthotropic elastomeric
medium. Hamid Madani et al. [29] examined the differential cubature
method for vibration analysis of embedded FG-CNT-reinforced piezo-
electric cylindrical shells subjected to uniform and non-uniform tem-
perature distributions. Reza Kolahchi et al. [30] investigated wave
propagation of embedded viscoelastic FG-CNT-reinforced sandwich
plates integrated with sensor and actuator based on refined zigzag
theory.

From the above literature review, it can be seen that some research
used numerical methods (finite element method) to study the dynamic
of sandwich plate and shell with auxetic (without both elastic founda-
tions and under blast load) [7-12]. The nonlinear dynamic response of
the auxetic material under blast load on elastic foundations using
analytical methods (approximately experimental form, stress function
method) and the first order shear deformation theory was considered in
[13-15]. Ref. [14] investigated dynamic response of the sandwich
double curves shallow shells with auxetic honeycombs (the third order
shear deformation theory has not been used yet).

Using Reddy’s third order shear deformation theory (TSDT), ac-
counting for both the von - Karman nonlinearity and analytical solution
to study the dynamic response of the double curved shallow shells with
negative Poisson’s ratios in auxetic honeycombs layer on elastic foun-
dations subjected to blast, mechanical and damping loads is in-
vestigated in the present work. The double curved shallow shells used
in the paper have three layers in which the top and bottom outer skins
are isotropic aluminum materials; the central layer has honeycomb
structure using the same aluminum material. The work also analyses
and discusses the effects of material and geometrical properties, elastic
foundations, mechanical, imperfections, blast, mechanical and damping

loads on the nonlinear dynamic response of the double curved shallow
shells with negative Poisson’s ratios in auxetic honeycombs.

2. Sandwich double curves shallow shells with auxetic core
2.1. Model

As Fig. 1 shows, radius of curvature, length of edges and total
thickness of the double curves shallow shells with auxetic core pate are
denoted by R, Ry, a,b and h = h; + h, + h;, respectively, where hy,h,
and h; are thickness of the top face sheet, core, and bottom face sheet,
respectively. A coordinate system (x,y,z) is established, in which the
(x,y) plane is in the middle surface of the panel and z is in the thickness
direction (Fig. 2a). The auxetic core which has three layers in which the
top and bottom outer skins are isotropic aluminum materials; the cen-
tral layer has honeycomb structure using the same aluminum material
(Fig. 2b).

The reaction—deflection relation of Pasternak foundation is given by

q, = kiw—ke Vw 6h)

2 2
in which V2 = % + %, w is the deflection of the double curves shallow

shells, k; and k, are Winkler foundation modulus and shear layer of
Pasternak foundation, respectively.

2.2. Honeycomb core materials

The double curves shallow shells with the auxetic honeycomb core
with negative Poisson’s ratio are introduced in this paper. Unit cells of
core material discussed in the paper are shown in Fig. 3 where [ is the
length of the inclined cell rib, & is the length of the vertical cell rib, 6 is
the inclined angle, @ and 8 define the relative cell wall length and the
wall’s slenderness ratio, respectively, which are important parameters
in honeycomb property.

Formulas in Ref. [4] are adopted for calculation of honeycomb core
material property

Fig. 2a. Model of sandwich double curves shallow shells with negative Poisson’s ratios in
auxetic honeycombs on elastic foundations.
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Fig. 2b. Discretization of the double curves shallow shells.
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Fig. 3. Geometric of the cell of honeycomb core.
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where symbol “c” represents core material, E,G and p are Young’s
moduli, shear moduli and mass density of the origin material.

The effect of geometry of the double curves shallow shells with
negative Poisson’s ratio v;, at the limited of small deformation is pre-
sented in Table 1 for the combinations of 8 and % From Table 1, it can
be seen that Poisson’s ratio v;, increases when geometric parameters of
% increases and vice versa, similarly geometric parameters of 0 in-
creases, Poisson’s ratio v;, decreases and vice versa.

3. Theoretical formulation

In the present study, the third order shear deformation theory
(TSDT) is used to derive the governing equations and determine the
blast load of the composite double curved shallow shell with negative
Poisson’s ratio in auxetic honeycombs.

The relationship of strain-displacement based on Reddy’s third
order shear deformation theory [31]

Ex 5)? k; k)? 0 kz

o|=| @ e [+ 28] ()= |05 ]+ 2 )

Y 0 1 3 »” 7 2

g Yo ky, k3, » 3)
Table 1

Poisson’s ratio vy, in auxetic honeycombs of the double curves shallow shells at the

limited value of small deformation.

h h h h h

7:1 7:1.5 722 7:2.5 723
6=-35 —2.7434 —1.2628 —0.8201 —0.6073 —0.4821
6 =—45 —2.4142 —0.8918 —0.5469 —0.3944 —0.3084
6 =-50 —2.3054 —0.7349 —0.4371 —0.3111 —0.2414
6 =-60 —2.1547 —0.4553 —0.3401 —0.1767 —0.1353
6=-75 —2.0353 —0.1299 —0.0671 —0.0452 —0.0341
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4 .
37 W v are displacement components

along the x, y directions, ¢,, ¢, are the slope rotations in the (x,z) and
(xy) planes, y,, is the in-plane shear strain and y,,, ,, are the transverse
shear deformations, k,.k,,k,, are curvatures of the double curves shell.

Hooke's law for the double curves shallow shells with negative
Poisson’s ratio in auxetic honeycombs is defined as follows.

here ¢,,¢, are normal strain, ¢; =

Qf QL o

T
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where above index T,C,B stand for
Bottom outer skin respectively.

Top outer skin, Core material,

C CgC C
c_ _ & c _ _ViE; c__ B C _ ~C c
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The forces and moments of the double curves shallow shells can be
expressed in terms of stress components across the double curves
shallow shells thickness as

hy

i n
WNuMuP) = [ 6 (Lzzd)dz + [}, 0 (1,2.2°)dz
2B 2

hy
~ +h .

+ fig ol L2z = xyy
2

h h2 hy

- 5 +h; .

QKD = [, 02 zdz + [ 7,06 12)dz + fi7 " o (L2 dzi
2 2 >

Xy
)

Substitution of Egs. (3) into Egs. (5) then take the result into Egs. (7)
gives the constitutive relations as
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N = Augl + Ang) + Aisky + Auk) + Aisk] + Ak
Ny = Apel + Ape) + Apsk} + Apk) + Axsky + Ak
Ny = As3yy, + Aseky, + Asoks,
M, = Byl + Biyg) + Bisky + Buky + Bisks + Bigk;
M, = By€{ + Bney + Basky + Buky + Bysk; + Byk;
M, = B33y3y + Bisky, + Bioks,

= Cngl + Ciagy) + Cisk) + Cuky + Cisk? + Ciok;)
P, = Cuey + Cnty + Cosky + Casky + Cosk? + Casky
Py = c33yjjy + Cigkyy + Coks,
Q= Duyfz + Dlzkfz;
Q= Dzu’yoZ + Dzzkyzz;
K. = Eu)’,(c)z + Elzkfz;

Ky = Enyy, + Exky, 8)
where Ay,B;;,Cy;,Dyj,Ey with i = 1,2 and j = 1,2,3,4,5,6 can be taken from
Appendix A

Based on the TSDT, the nonlinear motion equations of the double
curves shallow shells are defined by [31]

_d%u 6245 _ dw
=T x
Nex+ Noy = hig + b5 ~hg0a, (9a)
—o% —5245 *w
Nyy+Nyy=L— + [ —2—IF
XTI T g T2 52 T By2gy, (9b)
NX N,
Qxx + Qyy—=3c1(Kix + Kyy) + €1(Pexx + 2Py + Pyy) + — + R— + g+ New
Y
3w w — u P,
+ 2Ngwo + Nywy—kgw + ko Viw = Ilﬁ + 2511E + Iam +I ox
_ _ 83 4 4
+I§‘—a3v + I % &L ow_, ow
ot2dy ot?dy ot?9x?  0Ot29y? (9¢)
Pu 0%, _ Fw
M x + Myyy—Qx + 31Ky cl(P,cx+ny,y)—Iza + 1, o 30k
(9d)
—év 0%, _ w
Myx + Myy—Qy + 3¢1K,—¢1(Pyx + P,)) = L— e +1; W_ 3%y
(9e)
where
— 2L - 21 — L I =
T=hL+22 T=h+22 L=hL+2-cal-5 T
R, R, R R:
—h+ B al g4 Gb
R, R, 3
Toal+ 95 L =T =i2a+clh, =T =cl—clk
3 —014+RT, 4 =1y =L-201s+cil;, Is =15 =cls—ciL
y
_h ) LA L-NN
bbb = [ pPede+ 7 pZde+ fi, T pTdidz, (1= 01.2346)
-2k ) 2
The Airy stress function f (x,y,t) is chosen as.
62 62 62
New oy 2
dy? ox? oxdy (10)

Combine (9a), (9b) and the stress function (10) we got

Pu_ L% T ow

at? I ot T, dt%0x (11a)

2 _E%% T ow

ot? If ot* I 9r%dy (11b)
From the equation (8), we can rewrite sﬁ,zyo,yo as
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&) = Afky + Abky + AfskS + Al kS + AfsN, + AN,
&) = Aj ki + Asky + ARk} + Aj kS + AN, + AjN,
y° = ANy + Ajky, + Ak, 12)

in which the coefficient A; (i = 1,2 = 1,2,3,4,5,6) are in Appendix B
Setting the Airy stress functlon (10) and the express (4) into the
equation (12), we can rewrite the Egs. (12) as follows.
& = Alg,, + AL d,,—AL (B, + Wa)—aAL(S,, + W) + AT,
+ Alf
g = A5¢, . + Ang,,—AS (@ + Wa)—CiAu(S,, + wy) + Axf,
+ Asefyy
Yo = —Afify + Ass(by + 8,0-1AB (B + B, + 20y)
(13)

The geometrical compatibility equation for an imperfect double
curves shell can be derived as [22-25]. Here, the imperfection function
w*(x,y) represents initial small deviation of the shell surface from per-
fectly configuration.

* Wyy
s,?yy + s;),xx—y)?yxy = W,;ch—W,xwa + 2W g W =W o W =W W R,
L
Ry a4
Substituting the expresses (13) into the equation (14), we receive
3¢ &g, 3¢, R — L 3w
A= A A 4 A + A —— + Afy———
Wigd TR gy T B a5y T TP axgy2 T B axd T T2 ax2gy2
Ax a4W *
+ Ay — 3y + Aleyyyy + Azgfmy + Alsf o = Wiy WaxWyy
W, w
+ 2w WE W W —w w2
? ? R. R, (15)
where
AS = (A5 —aiAR), A% = (Ah—c1Af), ASy = (Ah—As—c1Ay + 1Ay
A5, = (Ah—Aj—c1Afy + a1 AR), Al = (—a1AR); Aj
= (—a1Af3—Cc1Ay + 2¢1A%);
AF, = (—aALASR = (Afs + AJs + AL);

Taking Egs. (10) and (11) into account expressions (9c,d,e), yields a
system of equations

fy T
Qxx + Qyy—3c1(Kix + Kyy) + €1(Pexx + 2Pyxy + Pyy) + == R, + R_ +q +f
Y
8w ) 7 o*¢
—2f Wy + frr Wyy—klw+k2VW—Ila—+211 = 53 azzayy
= d*w T d*w
Dapae T 0 at29y? (16a)
0%, = w
Mex + Myy—Qx + 3c1Ki—1(Pox + Pyy) = T—= 2 ara (16b)
2¢ _
My, + My,—Q, + 3¢1Ky—c1(Pyx + By) = I3 7D ;aﬁay (160)
where
=_+ B — &) -+ B = @) -
) _I—@, = (13_) b, § =L-2% L = (3_*) —clL, L
I I I R
2 T 2
(Iz_) T =T- &)
I I

By substituting Eq. (4) into Eq. (8) and then into Egs. (16), the
system of motion Egs. (16) are rewritten as follows
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H(¢,) + H12(¢ ) + Hiz(w) + Hi4(f) + HlS(W:f) + Hl*s(W*) + His(w*f)

= 33, = o*w
tq= I‘ ot 2 + 2511 az +5 aax T 15 atzay +5 t26x2 +h azZay
£3 5 X
Hx(g) + H22(¢) + HxW) + Hu(f) + Hy(w) = § Bz Is a[ZBX

H(8) + Ha (@) + Hynw) + H () + Hi(w) = o0 20
a7

where

Hi(¢) = Ung,, + UisPypr + Uady s Hiz(@) = Unngy, + Uisd,

+ Uis®yyy
H13(W) = Ullw,xx + Ulzww + []17WJ006X + U]gWW + Ulgwwyy—klw
+ szZW
o fw
His () = Uniof e + Uniifygy + Uiniafyy, + - + 7 His(wf)

Y
= fwwM—Zf’xywxy + f’xxww

Hy(¢) = Ung, + Ung, o t+ U23¢xyy; H22(¢y) = U24¢y,xy;

Hyy(W) = Unwy + UnsWa + UzsWoyy, Hoa(f) = Unfy, + Unsfrs

Hu(@) = Ungy s H (@) = Ung, + Ud, . + Und,,;

Hyz(w) = Uppwy, 4+ UssW g + UseWyyy Hag(f) = U37fyw + U3&f,ocy;

HI*S(W*) = Ullecx + UuW:W + U17W* + U13W + Ulgwmy

Hisw*f) = f,w

+ Uzéwxyy

=2 Wi + [oaWiHis (W) = Unwj + Unsw iy

H(w*) = U32w + U35w + UsgW}y,

here, the coefficient Uy is in Appendix C

Equations (17) and Eq. (15) are nonlinear equations in terms of
variables w, ¢, ¢, and f. They are used to investigate the nonlinear
vibration and dynamic stability of the double curved shallow shell with
negative Poisson’s ratio in auxetic honeycombs core layer using the
TSDT.

4. Nonlinear dynamic analysis

The edges of the shell are freely movable (FM), subjected to the
blast load q and the compression load P, and P, (Pascal) at edges
x =0,a and y = 0, b, respectively [22-25]

w=M,=N, =0,Ny=Ngat x=0,a

w=M, =Ny, =0,N,=Nyaty=0,b 18)

The following approximate solution is seen to satisfy the differential
equations and the boundary conditions

w(xy,t) = W (t)sinaxsinfy
@, (x.y,t) = @, (t)cosaxsinfy

@, (eyt) = @y (t)sinaxcosfy 19)

where o = mn/a, f = nn/b; m,n are odd natural numbers representing
the number of half waves in the x and y directions, respectively; and
W (t),®,,®, are the time dependent amplitudes.

The initial imperfection of the shell is supposed to have the form
like the shell deflection, i.e.

w*(x,y) = Wysinaxsingy (20)

The approximate solution of the Egs. (15) and (17) is assumed as
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feyt) = Yi(t)cos2ax + Y, (t)cos2By + Yz (¢)sinaxsinfy + % o)?

1 2
+ ENyox (21)

the coefficients ¥,,Y5,Y; are given by substitute the approximate so-
lutions. (19) and (20) into the expression (15) lead to

N =HWW+2W) L) = BW W+ 2W) %(0)

= H3@,(0) + Hy @ (t) + H:W (22)
where
o . w22 B2
Hy = (A5sa* + Ajga®B? + AsBY); HH= ——; —
b = (A3 3P 158, Hy = 245 (20 2A15(25)4
H; = —(A3&® + A3, af?)/Hy; Hy = —(A3,B° + A3 a®B)/Hy;
- . S
Hs = = Ajsa* + Ay a®f? + Ay B*————|/Hy
R, R,

Replacing Egs. (19), (20) and (21) into the equations of motion (17)
and then applying Galerkin method, we obtain
Ju®y + J2®@y + i3 W + Ju @ (W + Wp) + Jis @, (W + Wp) + Jis(W + Wp)
+ W W+ W) + JisW (W + 2W) + JigW (W + Wp)(W + 2W)
N, Nyo 16 P*w aw = 0%
(R—x" + R—fv) +5q(0) = K%y + 2eh % —al =Pl 5
1@ + D@y + LsW + Ly(W + W) + Ls W (W + 2Wp)
=52,

=1

3 a2

1Oy + @y + Tz W+ Ty (W + Wp) + s W (W + 2W)

=0
=5 atzy - 57

16
+ 2

s

0%dy
a2

a=azw
S a2

0w
at2

(23)

in which, the factors J;(i = 1,2,3;j = 1,9) are shown in Appendix D
In which, the compression load follows as [22-25]

Ny = —Ph; NyO = _Pyh 24)

The blast load q(¢) is a short-term load and is generated by an ex-
plosion or by a shock-wave disturbance produced by an aircraft flying
at supersonic speed, or by a supersonic projectile, rocket or missile
operating in its vicinity. It can be written as [16]

)5
T T
where the “1.8” factor accounts for the effects of a hemispherical blast,
Psyqx is the maximum (or peak) static over-pressure, b is the parameter
controlling the rate of wave amplitude decay and T; is the parameter
characterizing the duration of the blast pulse.

In the case without the blast load q(t), the natural frequencies of the
perfect shell are the smallest values of the axial, circumferential and

radial directions, which can be defined solving the following determi-
nant.

£) = 1.8PSpax| 1—
q() S ( (25)

Jis + Jig + hw?  Jy—alsw? ]12—/3?0-’2
2
]32 + sz

Jos + Jy—alsw?® Ty + how? =0

T3 + Ju—pL @ J5 (26)

The system equations above describing the nonlinear vibration for
imperfect auxetic double curved shallow shells on the foundation
elastic with the edges of the shell are freely movable (FM), subjected to
the blast load q and the compression load P, P, (Pascal) at edges
x=0,a and y = 0, b, respectively. By using the fourth order Runge-
Kutta’s method or Newmark’s numerical integration method, we can
solve the integral equation (23) with the initial conditions are chosen as
W (0) =0 and W(0) = 0.
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Fig. 4. The Comparison of nonlinear dynamic response of the FGM plate subjected to
blast load with results of Ref [19].

5. Numerical results and discussion
5.1. Numerical verification

In order to verify the accuracy of the proposed formulas, Fig. 4
shows the comparison of the nonlinear dynamic response of plate (only
made of ceramic) on the elastic foundations under blast load in this
paper with the paper’s result of Duc et al. [19]. In [19], Duc et al.
studied of nonlinear dynamic response of FGM plate on the elastic
foundation under blast load, when N = 0, FGM plate becomes purely
made of ceramic. Fig. 5 compares nonlinear dynamic response of the
double curves shallow shells with auxetic honeycombs subjected to
blast load in present study (using TSDT) with the result of [15] (using
FSDT).

The parameters in Fig. 4 are selected as follows

1,

b = 20,K; = 0.3 GPa/m,K; = 0.02 GPa.m,
a

S|

E = Ef = E{ = 384.43 x 10°(0 x T~! 4+ 1-3.07 X 107*T
+ 2.160 X 1077T2=8.94 x 10~!'T3)Pa

1.5 T T T T

Ref. [15] FSDT
Present, TSDT

0.5

W(m)

-0.5

-1 L L L L
0 0.002 0.004 0.006 0.008

t(s)

Fig. 5. The comparison of nonlinear dynamic response of the double curves shallow shells
with auxetic honeycombs subjected to blast load in present study (using TSDT) with the
result of [15] (using FSDT).
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E

T = (300 + 350)K,p = p. = 2370 kg/m3,G, = G5 =G53=G = ————

( )K.p = p, g 12 13 23 20 +v)

To compare, the geometric parameters in the Fig. 5 is chosen follow
the Ref. [15] as below

R, =R, =6m;h = h; = 0.00667 m; h, = 0.02m; h = h; + h, + h3;a/h
=30;a = b;m =n = 1t/l = 0.0138571; h/l = 2; 0 = —55% E
= 70 GPa; G = 26 GPa; p = 2702 kg/m3 v = 0.33

5.2. Nonlinear dynamic response

The effect of geometrical parameters of core material (cell angle and
ratio ") on natural frequencies of sandwich plates with auxetic core is
showed in Table 2. From Table 2, it can be seen that this effect does not
follow any rule; which shows the complex behavior of sandwich plates
with auxetic core when changing the geometrical parameters of the
core material.

Fig. 6 illustrates the effect of damping on amplitude-time curves for
nonlinear dynamic response of the double curved shallow shell with
negative Poisson’s ratio in core layer with three values of damping
coefficient € = (0;5;10). From Fig. 6, we can see that when damping
coefficient ¢ is increased, the curve becomes lower and vice versa.

Fig. 7 shows the effect of pre-loaded axial compression P, on the
nonlinear dynamic response (v, = —0.3401). This figure also indicates
that the nonlinear dynamic response amplitude of auxetic material of
the double curved shallow shell with auxetic core increases when the
value of the pre-loaded compressive force P, increases.

Fig. 8 describes the nonlinear vibration of the nonlinear dynamic
response of the double curved shallow shell with negative Poisson’s
ratio. Obviously, the amplitude of vibration will increase and lose the
stability if the initial imperfection increases. We can see that the im-
perfect coefficient has a significant effect on the nonlinear dynamic
response of the double curved shallow shell with negative Poisson’s
ratio.

Figs. 9 and 10 show the effects of the elastic foundations (linear
Winkler foundation and Pasternak foundation) on the nonlinear dy-
namic response of the auxetic material of double curved shallow shell
with negative Poisson’s ratio under blast load (v;; = —0.3401). From the
figures, it can be seen that the elastic foundations make the vibration
amplitude of the auxetic material of the double curved shallow shell
with negative Poisson's ratio reduce when increasing the coefficients of
elastic foundations (k; and k). That shows the positive effect of elastic
foundations. Furthermore, Winkler’s elastic foundation (k;) is weaker
than Pasternak’s foundation (k).

Fig. 11 shows the effect of parameter characterizing the duration of
the blast pulse on nonlinear response of auxetic material of the double
curved shallow shell with auxetic core with three values of
T; = (0.005,0.01,0.02). From the figure, it can be seen that when the value
of T; is increased which makes the amplitude of nonlinear response
increase and vice versa. At the same time, the time from ¢t = 0 to am-
plitude of nonlinear response unchanged increases and vice versa.

Table 2
Effect of cell angle 6 and ratio " on natural frequencies w(s~1) of the double curved
shallow shells with negative Poisson’s ratios in auxetic honeycombs.

6= —30° 0 = —40° 6 = —50° 6 = —60° 0 =-70°
h/l =05 1879.6 30402 21024 23706 18809
hil=1 10347 10869 10780 10916 3349.8
Wil=2 11262 7675.6 3755.9 3273 4568.9
hil=4 3115.2 3400 4657.3 5087.5 5038.4
hil=6 3383.7 4616.8 5057.8 5139.2 4900.6
h/l=8 4271.9 4892 5092.5 5039.6 4714.9
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Fig. 6. Effects of ratio € on the nonlinear dynamic response of the double curved shallow
shell with negative Poisson’s ratio under blast load.
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Fig. 9. Effects of coefficient k; on the nonlinear dynamic response of the double curved
shallow shell with negative Poisson’s ratio under blast load.
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Fig. 7. Effects of coefficient P on the nonlinear dynamic response of the double curved
shallow shell with negative Poisson’s ratio under blast load.
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Fig. 8. Effects of coefficient Wj, = Wy/h on the nonlinear dynamic response of the double
curved shallow shell with negative Poisson’s ratio under blast load.
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Fig. 10. Effects of coefficient k; on the nonlinear dynamic response of the double curved
shallow shell with negative Poisson’s ratio under blast load.

6. Conclusions

In the paper, the nonlinear dynamic response of the double curved
shallow shells with negative Poisson’s ratio under blast and mechanical
loads and on elastic foundations is mainly studied. The analytical so-
lution and the third order shear deformation theory are used to form the
basic equations. By using the Galerkin method, the equation system of
motion to determine dynamic response is found. The numerical results
are investigated by the Runge-Kutta procedure.

Some special conclusions are obtained for the double curved
shallow shells with negative Poisson’s ratio to blast and mechanical
loads:

® Build up the analytic method to analyze the nonlinear dynamical
response of the double curved shallow shells with negative Poisson’s
ratio to blast and mechanical loads. From then, the authors find a
new approach to research static and dynamic response for the
double curved shallow shells with negative Poisson’s ratio under
blast and mechanical loads.
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x10™ geometrical properties, mechanical and elastic foundations on nat-
o _T=0.005 ural frequency and the nonlinear dynamic response of the double
curved shallow shells with negative Poisson’s ratio in auxetic hon-
eycombs.
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