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Abstract A semi-analytical approach to eccentrically stiffened functionally graded truncated conical shells
surrounded by an elastic medium in thermal environments is presented. Based on the classical thin shell theory
with geometrical nonlinearity in von Karman Donnell sense, the smeared stiffeners technique and the Galerkin
method, this paper deals with vibration and nonlinear dynamic problems. The truncated conical shells are
reinforced by ring stiffeners made of full metal or full ceramic depending on the situation of the stiffeners
at the metal-rich or ceramic-rich side of the shell, respectively. In addition, the study not only assume that
the material properties depend on environment temperature variation, but also consider the thermal stresses
in the stiffeners. Numerical results are given to evaluate effects of inhomogeneous, dimensional parameters,
outside stiffeners, temperatures and elastic foundations on the vibration and nonlinear dynamic response of
the structures.

Abbreviations

N The volume fraction index (nonnegative number)
w The deflection of the truncated conical shell
Kw The Winkler foundation modulus
Kp The shear layer foundation stiffness of the Pasternak model
ε0S, ε

0
θ The normal strains

γ 0
Sθ The shear strain at the middle surface of the truncated conical shell

kS, kθ , kSθ The changes of curvatures and twist
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A1, A2 The cross-sectional area of eccentrically longitudinal and latitude stiffeners, respectively
d1, d2, h1, h2 The width and height of eccentrically longitudinal and latitude stiffeners, respectively
n1, n2 The numbers of eccentrically longitudinal and latitude stiffeners, respectively
E0 Young’s modulus of the stiffeners; E0 = Ec if the stiffeners are reinforced at the surface of

the ceramic-rich, E0 = Em if the stiffeners are reinforced at the surface of the metal-rich side

1 Introduction

As is well known, shells have increased structural stiffness compared to plates or panels. The advantage of shell
structures is their capability in carrying loads and moments by a combined membrane and bending action due
to their curvature. Advanced composite or functionally graded materials (FGMs) provide high performance
and reliability due to their well-known characteristics. As a result, shell structures made of FGMwill continue
being widely used in various engineering fields such as aerospace, naval and industrial constructions, as well as
sporting goods, medical devices, andmany other areas. Moreover, FGM shells, like other composite structures,
are usually reinforced by stiffening members to provide the benefit of added static and dynamic load-carrying
capability with a relatively small additional weight penalty, or in other words, in order to provide material
continuity and easy manufacturing, the FGM shells are reinforced by an eccentrically homogeneous stiffener
system. At the moment, the investigation on static and dynamic of shell structures made of FGM has received
extensive attention of many scientists. Shen [1] presented a post-buckling analysis for a functionally graded
(FG) thin cylindrical shell of finite length subjected to compressive axial loads and in thermal environments.
Darabi et al. [2] presented nonlinear analysis of dynamic stability for FG cylindrical shells under periodic axial
loading based on large deflection theory, and Bolotin’s method is then employed to obtain the steady-state
vibrations for nonlinear Mathieu equations. Huang and Han [3] investigated nonlinear dynamic buckling of
FG cylindrical shells subjected to time-dependent axial load. Sofiyev [4] presented an analytical study on
the dynamic behavior of an infinitely-long, FGM cylindrical shell subjected to combined action of the axial
tension, internal compressive load and ring-shaped compressive pressurewith constant velocity. Zhang et al. [5]
studied an analysis on the nonlinear dynamics of a clamped–clamped FGM circular cylindrical shell subjected
to an external excitation and uniform temperature change. Duc [6] presented an analytical investigation on the
nonlinear dynamic response of eccentrically stiffened FGM double-curved shallow shells resting on elastic
foundations and subjected to axial compressive load and transverse load. Duc and Quan [7] investigated an
analytical investigation on the nonlinear post-buckling for imperfect eccentrically stiffened FGM double-
curved thin shallow shells on elastic foundation using a simple power-law distribution (P-FGM) in thermal
environments. Duc and Thang [8] studied buckling of imperfect eccentrically stiffened metal-ceramic-metal
S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments. The
same authors [9] presented the nonlinear response of imperfect eccentrically stiffened ceramic-metal-ceramic
FGM circular cylindrical shells surrounded on elastic foundations and subjected to axial compression. Bich
et al. [10] investigated a semi-analytical approach to investigate the nonlinear dynamic buckling of imperfect
eccentrically stiffened FGM shallow shells taking into account the damping subjected to mechanical loads.
Dung and Hoa [11,12] investigated nonlinear buckling and post-buckling behavior of FGM stiffened thin
circular cylindrical shells subjected to external pressure and only under torsion load by the analytical approach.
The effect of a Pasternak elastic foundation on the stability of EG orthotropic cylindrical shells including shear
stresses subjected to a uniform hydrostatic pressure is investigated by Najafov et al. [13]. Tornabene et al.
[14] compared 2D numerical approaches with an exact 3D shell solution in the case of free vibrations of
FGM plates and shells in reference [14] and in [15] they solved numerically the free-vibration problem of
sandwich shell structures with variable thickness and made of FGMs. Bani’c et al. [16] investigated the effect
of the Winkler–Pasternak elastic foundation on the natural frequencies of carbon nanotube (CNT)-reinforced
laminated composite plates and shells. The numerical analysis of laminated composite plates and shells resting
on nonlinear elastic foundation is investigated by Tornabene et al. [17].

Truncated conical shells are known as one of the principal elements of structure in many technical fields.
For instance, they are used for aircraft and satellites, submarines and water-borne ballistic missiles, or in civil
engineering, they are frequently used too in containment vessels in elevated water tanks. In the open source
literature, there are several authors studying the linear and nonlinear of conical cones and truncated cones
structure made of different materials. Bhangale et al. [18] used finite element formulation based on first-order
shear deformation theory to study the thermal buckling and vibration behavior of truncated FGM conical shells
in a high-temperature environment. In this study, a Fourier series expansion for the displacement variable in
the circumferential direction is used to model the FGM conical shell. Zhang and Li [19] discussed dynamic
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buckling of FGM truncated conical shells subjected to normal impact loads. In the analysis, the geometrically
nonlinear large deformation and the initial imperfections are taken into account. The Galerkin procedure and
Runge–Kutta integration scheme are used to solve nonlinear governing equations numerically. Zhao and Liew
[20] presented free-vibration analysis of metal and ceramic functionally graded conical shell panels using
the element-free kp-Ritz method. Sofiyev [21] investigated nonlinear vibration of truncated conical shells
made of functionally graded materials (FGMs) using the large deformation theory with von Karman–Donnell
type of kinematic nonlinearity. By using the superposition method, Galerkin method and Harmonic balance
method, the nonlinear vibration of an FGM truncated conical shell is analyzed. Setoodeh et al. [22] focused
on the transient dynamic and free-vibration analysis of FG axisymmetric truncated conical shells with non-
uniform thickness. Two numerically efficient and accurate solutionmethods are presented to study the transient
dynamic responses of FG shells subjected to either internal or external mechanical shock loading. Najafov and
Sofiyev [23] investigated nonlinear dynamic analysis of FG-truncated conical shells surrounded by an elastic
medium using the large deformation theory with von Karman–Donnell type of kinematic nonlinearity. The
Pasternak model is used to describe the reaction of the elastic foundation on the FG conical shell. Sofiyev
and Kuruoglu [24] studied nonlinear buckling of a truncated conical shell made of FGMs surrounded by an
elastic medium using the large deformation theory with von Karman–Donnell type of kinematic nonlinearity.
A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction.
Sofiyev [25] investigated the vibration and stability of FG conical shells under a compressive axial load using
the shear deformation theory. Sofiyev and Kuruoglu [26] obtained a closed form of the solution for critical
combined loads of an FG-truncated conical shell in the framework of the shear deformation theory. Yang et
al. [27] investigated nonlinear dynamic behaviors of ceramic–metal graded truncated conical shell subjected
to complex loads. Jabbari et al. [28] presented thermoelastic analysis of axially functionally graded rotating
thick truncated conical shells with varying thickness. Jooybar et al. [29] investigated influences of thermal
environment on the free-vibration characteristics of FG-truncated conical panels based on the first-order shear
deformation theory. Castro et al. [30] studied linear buckling predictions of unstiffened laminated composite
cylinders and cones under various loading and boundary conditions using semi-analytical models. Asemi et al.
[31] considered a thick truncated hollow cone with finite length made of two-dimensional functionally graded
materials (2D-FGMs) subjected to combined loads as internal, external and axial pressure. Jam and Kiani [32]
presented linear buckling analysis for nano-composite conical shells reinforced with single-walled carbon
nanotubes subjected to lateral pressure. Tornabene [33] studied the dynamic behavior of moderately thick
functionally graded conical, cylindrical shells and annular plates based on the first-order shear deformation
theory. Dung et al. [34] investigatedmechanical buckling load of ES-FGM truncated conical shells subjected to
axial compressive load and external uniform pressure; the stability equations of the conical shell were derived
using the adjacent equilibrium criterion. Duc et al. [35] investigated the linear stability analysis of ES-FGM
conical shell panels reinforced by mechanical and thermal loads on elastic foundations. Duc and Cong [36]
studied the stability of an ES-FGM truncated conical shell surrounded on elastic foundations under thermal
loads with both FGM shell and stiffeners having temperature-dependent properties and by using the first-order
shear deformation theory. Dung and Chan [37] investigated the mechanical buckling of FGM thick truncated
conical shells reinforced by stringers and rings and subjected to axial compressive load and uniform external
pressure load. Duc et al. [38] presented an analytical approach to investigate the mechanical and thermal
buckling of FGMs sandwich truncated conical shells resting on Pasternak elastic foundations, subjected to
thermal load and axial compressive load.

To the best of the authors’ knowledge, research on nonlinear dynamic analysis of ES-FGM truncated
conical shells has not yet been addressed. Therefore, this paper aims to investigate the nonlinear dynamic
response of ES-FGM truncated conical shells in thermal environments by a stress function. The shells are
reinforced by eccentrically longitudinal stiffeners made of full metal or full ceramic depending on the location
of the stiffeners at the metal-rich or ceramic-rich side of the shell, respectively. In addition, the study not
only assumes that the material properties depend on environment temperature variation, but also considers the
thermal deformation of the stiffeners. The Result and Discussion section analyzes and discusses the effects
of material an geometrical properties, elastic foundations and eccentric stiffeners on the dynamic response of
ES-FGM truncated conical shells.

1.1 Theoretical formulations

Consider an ES-FGM truncated conical shell resting on elastic foundations; the shell is of thickness h, and
radii R1 < R2, length L and the semi-vertex angle of the cone γ . The meridional, circumferential and normal
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Fig. 1 Configuration of an ES-FGM truncated conical shell

directions of the shell are denoted by S, θ and z, respectively. A schematic of the shell with the assigned
coordinate system and geometric characteristics are shown in Fig. 1. S1, S2 are the distances from the vertex
to the small and large bases, respectively. Also, u, v and w denote displacement (due to loads) of a point in the
middle surface in the direction of a generator, the circumferential direction and the inward normal direction,
respectively.

1.2 The Winkler–Pasternak elastic foundations

The ES-FGM truncated conical shell rests on the elastic foundation. For the elastic foundation, one assumes
the two-parameter elastic foundation model proposed by Pasternak. The foundation medium is assumed to
be linear, homogeneous and isotropic. The bonding between the truncated conical shell and the foundation
is perfect and frictionless. If the effects of damping and inertia force in the foundation are neglected, the
shell–foundation interaction can be represented as

qe = Kww − Kp

(
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2
∂2w

∂θ2

)
,

where qeis the force per unit area, Kw (N/m3) is the spring parameter of the one-parameter elastic foundation (or
Winkler foundation parameter) and Kp(N/m) is the shear parameter of the two-parameter elastic foundations
(or Pasternak-type elastic foundation), w is the displacement of the middle surface in the normal direction,
positive toward the axis of the cone and assumed to be much smaller than the thickness. Note that by setting
Kp = 0, the Pasternak model becomes that of the Winkler foundation model.

1.3 The material properties of functionally graded shells

It is well-known that FGMs are microscopically inhomogeneous materials, in which material properties vary
smoothly and continuously from one surface to the other. In the present paper, the FGM shell is assumed to be
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made from a mixture of two component material which are metal and ceramic and the volume fraction of the
constituent materials is supposed to vary constantly as a power-law form according to the thickness direction:

Vc (z) =
(
2z + h

2h

)N

, −h

2
≤ z ≤ h

2
,

Vm(z) = 1 − Vc(z). (1)

Here, subscripts m and c refer to the metal and ceramic constituents, respectively, and nonnegative number
N ≥ 0 is volume fraction index that defines the distribution of constituents in FGM.

Thematerial properties of the ES-FGM truncated conical shell such as the elasticitymodulus E , the Poisson
ratio ν and the coefficient of thermal expansion α of FGM can be rewritten from the formulation (1) as below:⎡

⎣ E (z, T )
ν (z, T )
α (z, T )

⎤
⎦ =

⎡
⎣ E (T )

νm (T )
αm (T )

⎤
⎦+

⎡
⎣ Ecm (T )

νcm (T )
αcm (T )

⎤
⎦
(
2z + h

h

)N

N ≥ 0, −h

2
≤ z ≤ h

2
, (2)

where Ecm (T ) = Ec (T ) − Em (T ), νcm (T ) = νc (T ) − νm (T ), αcm (T ) = αc (T ) − αm (T ). Furthermore,
specialization of Eq. (2) for N = 0 gives corresponding properties of isotropic ceramic shells, and the per-
centage of the metal constituent in the FGM shell is enhanced as N index increases. As N goes to infinity, Eq.
(2) turns to corresponding properties of pure metal truncated conical shell.

In order to analyze the influence of temperature on the eccentrically stiffened FGM truncated conical shell,
the study is not only assumed that the material properties depend on environment temperature variation, but
also considered the thermal deformation of stiffeners. Therefore, the stiffener’s geometry parameters after
undergoing thermal deformation process can be defined as

hTr = hr (1 + αr�T ) , zTr = zr (1 + αr�T ) , bTr = br (1 + αr�T ) , dTr = dr (1 + αr�T ) , (3)

where hTr , z
T
r , b

T
r , d

T
r are the new geometrical dimension of stiffeners due to heat expansion, �T is the

environmental temperature variation, and αr is the thermal expansion coefficient of the material composed
stiffeners.

2 Constitutive relations and governing equations

According to the classical shell theory, the strains at the middle surface and the change of curvatures and twist
are related to the displacement components u, v, w in the S, θ, z coordinate directions, respectively, taking
into account Von Karman–Donnell nonlinear terms as [9,40]

ε0S = ∂u
∂S + 1

2

(
∂w
∂S

)2
,

ε0θ = 1
S

∂v
∂φ

+ u
S − w

S cos (γ ) + 1
2S2

(
∂w
∂φ

)2
,

γ 0
Sθ = 2

[
1
S

∂u
∂φ

− v
S + ∂v

∂S + 1
S

(
∂w
∂S

∂w
∂φ

)2]
,

kS = − ∂2w
∂S2

,

kθ = − 1
S2

∂2w
∂φ2 − 1

S
∂w
∂S ,

kSθ = − 1
S

∂2w
∂S∂φ

+ 1
S2

∂w
∂φ

.

(4)

where φ = θ sin (γ ) .
The strains across the shell thickness at a distance z from the mid-plane are:

εS = ε0S + zkS, εθ = ε0θ + zkθ , γSθ = γ 0
Sθ + 2zkSθ . (5)

For stiffeners in thermal environment, the stress may be inferred from [11,12]:

σ s
S = EsεS − Es

1 − 2νs
αs�T, σ r

θ = Erεθ − Es

1 − 2νr
αr�T . (6)

Using Eqs. (4) and (5), the geometrical compatibility equation for a truncated conical shell is indicated as
[9]

cos(γ )
S

∂2w
∂S2

− 1
S

∂2γ 0
Sθ

∂S∂φ
− 1

S2
∂γ 0

Sθ

∂φ
+ ∂2ε0θ

∂S2
+ 1

S2
∂2ε0S
∂φ2 + 2

S
∂ε0θ
∂S − 1

S
∂ε0S
∂S

= 1
S4

(
∂w
∂φ

)2 − 2
S3

∂w
∂φ

∂2w
∂S∂φ

− 1
S2

[
∂2w
∂S2

∂2w
∂φ2 −

(
∂2w
∂S∂φ

)2]− 1
S

∂w
∂S

∂2w
∂S2

,
(7)
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The stress–strain relationships for the truncated conical shell including temperature effect are defined by
Hooke’s law as

σS = E

1 − ν2

[
ε0S + zkS + ν

(
ε0θ + zkθ

)− (1 + ν) α�T
]
,

σθ = E

1 − ν2

[
ε0θ + zkθ + ν

(
ε0S + zkS

)− (1 + ν) α�T
]
, σSθ = E

2 (1 + ν)

(
γ 0
Sθ + 2zkSθ

)
,

σ s
S = Es

(
ε0S + zkS

)− Es

1 − 2νs
αs�T, σ r

θ = Er
(
ε0θ + zkθ

)− Es

1 − 2νr
αr�T . (8)

The force and moment resultants of an ES-FGM truncated conical shell are expressed in terms of the stress
components through the thickness as

NS =
∫ h

2

− h
2

σSdz,

Nθ =
∫ h

2

− h
2

σθdz +
∫ h

2+hr

h
2

σ st
θ

bTr
dTr

dz,

NSθ =
∫ h

2

− h
2

σSθdz,

Mθ =
∫ h

2

− h
2

σθ zdz +
∫ h

2+hr

h
2

σ st
θ

bTr
dTr

zdz,

MSθ =
∫ h

2

− h
2

σSθ zdz,

MS =
∫ h

2

− h
2

σSzdz.

(9)

By setting Eq. (4) into Eq. (9), Eq. (9) can be rewritten in detail as

NS = A11ε
0
S + A12ε

0
θ + B11kS + B12kθ + �1; Nθ = A21ε

0
S + A22ε

0
θ + B21kS + B22kθ + �2;

NSθ = A33γ
0
Sθ + B33kSθ ; MS = C11ε

0
S + C12ε

0
θ + D11kS + D12kθ + �3;

Mθ = C21ε
0
S + C22ε

0
θ + D21kS + D22kθ + �4; MSθ = C33γ

0
Sθ + D33kSθ . (10)

From the three first equation of (10),

ε0θ = A∗
11Nθ + A∗

12NS + B∗
11kS + B∗

12kθ + �1, ε0S = A∗
21Nθ + A∗

22NS + B∗
21kS + B∗

22kθ + �2,

γ 0
Sθ = A∗

33NSθ + B∗
33kSθ , (11)

in which

A11 =
∫ h

2

− h
2

E

1 − ν2
dz +

∫ h
2 +hs

h
2

Es
bTs
dTs

dz; A12 = A21 =
∫ h

2

− h
2

Eν

1 − ν2
dz; A22 =

∫ h
2

− h
2

E

1 − ν2
dz +

∫ h
2 +hr

h
2

Er
bTr
dTr

dz;

A33 =
∫ h

2

− h
2

E

2 (1 + ν)
dz; B11 =

∫ h
2

− h
2

E

1 − ν2
zdz +

∫ h
2+hs

h
2

Es
bTs
dTs

zdz; B12 = B21 = C12 = C21 =
∫ h

2

− h
2

Eν

1 − ν2
zdz;

B22 =
∫ h

2

− h
2

E

1 − ν2
zdz +

∫ h
2+hr

h
2

Er
bTr
dTr

zdz; B33 = C33 =
∫ h

2

− h
2

E

(1 + ν)
zdz;C11 = B11;C22 = B22;

D11 =
∫ h

2

− h
2

E

1 − ν2
z2dz +

∫ h
2 +hs

h
2

Es
bTs
dTs

z2dz; D12 = D21 =
∫ h

2

− h
2

Eν

1 − ν2
z2dz; D33 =

∫ h
2

− h
2

E

(1 + ν)
z2dz;

D22 =
∫ h

2

− h
2

E

1 − ν2
z2dz +

∫ h
2 +hr

h
2

Er
bTr
dTr

z2dz;�1 =
∫ h

2

− h
2

−E (1 + ν)

1 − ν2
α�T dz +

∫ h
2 +hs

h
2

−Es
1 − 2νs

bTs
dTs

αs�T dz;

�2 =
∫ h

2

− h
2

−E (1 + ν)

1 − ν2
α�T dz +

∫ h
2+hr

h
2

−Er
1 − 2νr

bTr
dTr

αr�T dz;�3 =
∫ h

2

− h
2

−E (1 + ν)

1 − ν2
α�T zdz +

∫ h
2 +hs

− h
2

−Es
1 − 2νs

bTs
dTs

αs�T zdz;
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�4 =
∫ h

2

− h
2

−E (1 + ν)

1 − ν2
α�T zdz +

∫ h
2 +hr

h
2

−Er
1 − 2νr

bTr
dTr

αr�T zdz,

� = A22A11 − A12A21, A
∗
33 = 1

A33
, B∗

33 = − B33
A33

, A∗
21 = −A12

�
, A∗

22 = A22
�

, A∗
11 = A11

�
, A∗

12 = −A21
�

,

B∗
21 = A12B21 − B11A22

�
, B∗

22 = A12B22 − B12A22
�

, B∗
11 = B11A21 − A11B21

�
, B∗

12 = B12A21 − A11B22
�

,

�1 = �1A21 − A11�2

�
, �2 = A12�2 − �1A22

�
.

By substitution of results in (11) into the equation of (10), we receive

MS = C∗
11Nθ + C∗

12NS + D∗
11kS + D∗

12kθ + X1, Mθ = C∗
21Nθ + C∗

22NS + D∗
21kS + D∗

22kθ + X2,

MSθ = C∗
33NSθ + D∗

33kSθ . (12)

Here,

C∗
11 = (

C11A
∗
21 + C12A

∗
11

)
, C∗

12 = (C11A
∗
22 + C12A

∗
12

)
, D∗

11 = (C11B
∗
21 + C12B

∗
11 + D11

)
,

D∗
12 = (

C11B
∗
22 + C12B

∗
12 + D12

)
, C∗

21 = (C21A
∗
21 + C22A

∗
11

)
, C∗

22 = (C21A
∗
22 + C22A

∗
12

)
,

D∗
21 = (

C21B
∗
21 + C22B

∗
11 + D21

)
, D∗

22 = (C21B
∗
22 + C22B

∗
12 + D22

)
, C∗

33 = C33A
∗
33,

D∗
33 = (

D33 + C33B
∗
33

)
, X1 = C11�2 + C12�1 + �3, X2 = C21�2 + C22�1 + �4.

The nonlinear motion equations of the truncated conical shell which is subjected to the external force and
surrounded by the elastic foundation based on the classical shell theory [23] is

S
∂NS

∂S
+ ∂NSθ

∂φ
+ NS − Nθ = I0

∂2u

∂t2
,

∂Nθ

∂φ
+ S

∂NSθ

∂S
+ 2NSθ = I0

∂2v

∂t2
, (13)

S
∂2MS

∂S2
− ∂Mθ

∂S
+ 2

(
∂2MSθ

∂S∂θ
+ 1

S

∂MSθ

∂θ

)
+ 1

S

∂2Mθ

∂φ2 − Nθ cot γ + ∂

∂S

(
SNS

∂w

∂S
+ NSθ

∂w

∂φ

)
+

+2
∂MS

∂S
+ q − SKww + ∂

∂φ

(
NSθ

∂w

∂S
+ Nθ

S

∂w

∂φ

)
+ SKp

(
∂2w

∂S2
+ 1

S

∂w

∂S
+ 1

S2
∂2w

∂φ2

)
= I0

∂2w

∂t2
,

with I0 = ∫ h/2
−h/2 ρdz, q is an external force uniformly distributed on the surface of the shell.

By using Volmir’s assumption [39], the displacements u and v are extremely small compared to the
deflection w deflection, it leads to the inertia forces I0 ∂2u

∂t2
→ 0, I0 ∂2v

∂t2
→ 0 and can be ignored.

Equations (12) and (13) will be satisfied identically by using the stress function

NS = 1

S2
∂2F

∂φ2 + 1

S

∂F

∂S
, Nθ = ∂2F

∂S2
, NSθ = − 1

S

∂2F

∂S∂φ
+ 1

S2
∂F

∂φ
. (14)

Substituting Eq. (5) into Eq. (12), then taking the result with the formulation (14) into the third equation
of motion (13) yields

C∗
22
S2

∂F

∂S
+ −C∗

22S
2 − cot γ S3

S3
∂2F

∂S2
+ (2C∗

11 − C∗
21 + C∗

12
) ∂3F

∂S3
+ SC∗

11
∂4F

∂S4
+
(
2C∗

12 + 2C∗
22 − 2C∗

33

)
S3

∂2F

∂φ2

+ C∗
22
S3

∂4F

∂φ4 + 2C∗
33 − 2C∗

12
S2

∂3F

∂S∂φ2 + C∗
12 − 2C∗

33 + C∗
21

S

∂4F

∂S2∂φ2 + (−SKw) w +
(
Kp + −D∗

22
S2

)
∂w

∂S

+
(
SK p + 1

S
D∗
22

)
∂2w

∂S2
+ (D∗

21 − 2D∗
11 − D∗

12
) ∂3w

∂S3
+ (−SD∗

11
) ∂4w

∂S4
+ KpS2 − 2D∗

33 − 2D∗
12 − 2D∗

22
S3

∂2w

∂φ2 +

− D∗
22
S3

∂4w

∂φ4 +
(
2D∗

12 + 2D∗
33

)
S2

∂3w

∂S∂φ2 − D∗
12 + 2D∗

33 + D∗
21

S

∂4w

∂S2∂φ2 +
(

2

S2
∂2F

∂S∂φ
− 2

S3
∂F

∂φ

)
∂w

∂φ
+
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+∂2F

∂S2
∂w

∂S
+
(
1

S

∂2F

∂φ2 + ∂F

∂S

)
∂2w

∂S2
+ 1

S

∂2F

∂S2
∂2w

∂φ2 +
(

2

S2
∂F

∂φ
− 2

S

∂2F

∂S∂φ

)
∂2w

∂S∂φ
+ q = I0

∂2w

∂t2
. (15)

To simplify the calculation process, a transformation is intended to take the forms (7), (15) into differential
equations with constant coefficient. The transformation is supposed such as [18]

S = S1e
x , F = F1e

2x . (16)

Setting formulations (16) into Eq. (15) and establishing a lot of calculations lead to the transformed
Eqs. (17). To obtain Eq. (18), first substituting expression (11) into formulation (7) and then using the function
(14), and finally applying the formulations (16) leads to

L11 (F1) + L12 (w) + L13 (F1, w) + q = I0
∂2w

∂t2
, (17)

L21 (F1) + L22 (w) + L23 (w, w) = 0, (18)

where Li jare given in Appendix A.
The equation system (17) and (18) is the fundamental system used to solve the nonlinear dynamic problems

of the ES-FGM truncated conical shell. It is an equation system dependent on the unknown variables w and
F .

3 Solutions

Supposing that the ES-FGM truncated conical shell is simply supported along the periphery of the edge
subjected to uniformly distributed load in the temperature environment. The solution for Eq. (18) could be
approximately assumed as form [4,21]

w = f ex
[
sin (β1x) sin (β2α) + G sin2 (β1x)

]
, β1 = mπ

x0
, β2 = n

sin (γ )
. (19)

Here f and G are the unknowns which denote the linear and nonlinear part of the deflection function w,
respectively. m is the number of half waves along the generatrix and n is the number of full-waves in circum-
ferential direction. The form of this approximate solution which satisfies the geometric boundary condition of
w = 0 at x = 0 and x = x0 was proposed by Sofiyev in [21] for FGM truncated conical shells.

By setting the approximate solution (19) with its boundary condition into Eq. (18) and appling the super-
position method as [21], we receive the solution yield as

F1 = f (t) K1e
−x sin (B1x) sin (B2ϕ) + f (t) K2e

−x cos (B1x) sin (B2ϕ) + f (t) K3Ge−x cos (2B1x)

+ f (t) K4Ge−x sin (2B1x) + ( f 2 (t)G2K51 + f 2 (t) K52 + f (t)GK53
)
cos (2B1x) +

+ ( f 2 (t)G2K61 + f 2 (t) K62 + f (t)GK63
)
sin (2B1x) + f 2 (t) K7 cos (2B1x) cos (2B2ϕ)

+ f 2 (t) K8 sin (2B1x) cos (2B2ϕ) + ( f 2 (t)GK91 + f (t) K92
)
cos (B1x) sin (B2ϕ) +

+ (
f 2 (t)GK101 + f (t) K102

)
sin (B1x) sin (B2ϕ) + f 2 (t)GK11 cos (3B1x) sin (B2ϕ) +

+ f 2 (t)GK12 sin (3B1x) sin (B2ϕ) + f 2 (t)G2K13 cos (4B1x) + f 2 (t)G2K14 sin (4B1x) +
+ f 2 (t) K15 cos (2B2ϕ) + f (t)GK16e

−x − (1/2)
(
1 + e2 x + cos (B2ϕ)

)
TforceS

2
1 , (20)

where Tforce is the axial force and the coefficients Ki (i = 1, ..., 16) depend on the material properties and the
original geometrical shape of the shell a listed in detail below, where ai j may be found in Appendix B:

K1 = − (a14a16 + a15a17)

a214 + a215
; K2 = (a14a17 − a15a16)

a214 + a215
; K3 = − (a26a28 + a27a29)

a226 + a227
; K4 = (a26a29 − a27a28)

a226 + a227
;

K51 = − (a30a32 + a31a33)

a230 + a231
; K52 = − (a34a36 + a35a37)

a234 + a235
; K53 = − (a38a40 + a39a41)

a238 + a239
; K61 = (a30a33 − a31a32)

a230 + a231
;

K62 = (a34a37 − a35a36)

a234 + a235
; K63 = (a38a41 − a39a40)

a238 + a239
; K7 = − (a10a12 + a11a13)

a210 + a211
; K8 = (a10a13 − a11a12)

a210 + a211
;
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K91 = (a18a21 − a19a20)

a218 + a219
; K92 = (a22a25 − a23a24)

a222 + a223
; K101 = − (a18a20 + a19a21)

a218 + a219
;

K102 = − (a22a24 + a23a25)

a222 + a223
; K11 = − (a6a8 + a7a9)

a26 + a27
, K12 = (a6a9 − a7a8)

a26 + a27
, K13 = − (a1a3 + a2a4)

a21 + a22

K14 = (a1a4 − a2a3)

a21 + a22
, K15 = a5, K16 = −a43

a42
.

The Galerkin method is applied twice to solve the nonlinear dynamic problem (17). In particular, the first
time: ∫ x0

0

∫ 2π sin(γ )

0 (L11 (F1) + L12 (w) + L13 (F1, w) + q) ex sin (B1x) sin (B2ϕ) dϕdx

= ∫ x00

∫ 2π sin(γ )

0 I0
∂2w
∂t2

ex sin (B1x) sin (B2ϕ) dϕdx,

and the second time:∫ x0
0

∫ 2π sin(γ )

0 (L11 (F1) + L12 (w) + L13 (F1, w)) ex sin2 (B1x) dϕdx

= ∫ x00

∫ 2π sin(γ )

0 I0
∂2w
∂t2

ex sin2 (B1x) dϕdx .

After the above processes, several transformation steps and renaming, we receive the equation systems to
analyze the nonlinear dynamic problems of ES-FGM truncated conical shells in thermal environments:

l12G
2 f (t)3 + l14 f (t)

3 + l16G f (t)2 + (l191Tforce + l192) f (t) = l21
∂2 f (t)

∂t2
, (21a)

l11G
3 f (t)3 + l13G f (t)3 + l15G

2 f (t)2 + l17 f (t)
2 + (l181Tforce + l182)G f (t) + l20Tforce + l24q =

= l22G
∂2 f (t)

∂t2
, (21b)

in which li jk are coefficients denoted in Appendix C.
To solve the problem in this case, we will find the relationship between the nonlinear component f (t) and

the linear component G.
First, consider the case when the right hand side of Eqs. (21a) and (21b) is zero, in other words, consider

the problem in the static case

l12G
2 f (t)2 + l14 f (t)

2 + l16G f (t) + l191Tforce + l192 = 0, (22a)

l11G
3 f (t)3 + l13G f (t)3 + l15G

2 f (t)2 + l17 f (t)
2 + (l181Tforce + l182)G f (t) + l20Tforce = 0. (22b)

Substituting Tforce from Eq. (22a) into Eq. (22b) yields(
l11 − l12l181

l191

)
( f (t))3 G3 +

(
l15 − l16l181

l191
− l20l12

l191

)
( f (t))2 G2 +

(
l17 − l20l14

l191

)
( f (t))2

+
(
l13 − l14l181

l191

)
G ( f (t))3 +

(
− l192l181

l191
+ l182 − l20l16

l191

)
G f (t) − l20l192

l191
= 0.

(23)

Equations (22a) and (22b) are quadratic equation and algebraic equation, respectively depending on f and
G. Assuming that the relation between G and f (t) could be defined as below [21]

G = λ f (t), (24)

where λ is constant parameter that could be solved by substituting expression (24) into Eq. (23).

λ = − (l191l17 − l20l14)

(−l192l181 + l191l182 − l20l16)
. (25)

From (22a), (22b) and after several transformations, we obtain the expression containing the linear natural
frequency:

∂2 f (t)

∂t2
= ω2

L

(
f (t) + λ11 f (t)

3 + λ22 f (t)
5
)

, (26)
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Fig. 2 The comparison with results in Sofiyev [21]

Table 1 Temperature-dependent coefficients of the constituent materials of the considered FGM truncated conical shells

Material Properties P0 P−1 P1 P2 P3

Si3N4 (ceramic) E (Pa) 384.43e9 0 −3.07e−4 2.160e−7 −8.946e-11
ρ(kg/m3) 2370 0 0 0 0
α(K−1) 5.8723e−6 0 9.095e−4 0 0
ν 0.24 0 0 0 0

SUS304 (metal) E(Pa) 201.04e9 0 3.079e−4 −6.534e−7 0
ρ(kg/m3) 8166 0 0 0 0
α(K−1) 12.330e−6 0 8.086e−4 0 0
ν 0.3177 0 0 0 0

where ωL = √−(l191Tforce + l192)/ l21 is the linear natural frequency and

λ11 = (l14 + l16λ) /(l191Tforce + l192), λ22 = l12λ
2/(l191Tforce + l192).

Equation (26) is a second-order differential equation depending on the time variable. There are some
methods to solve this equation such as theGalerkinmethod, Harmonic balancemethod, Rayleigh–Ritzmethod.
In this paper, the Harmonic balance method is used [21]. In particular, by multiplying both sides of Eq. (26)
with sin(ωt), then integrating both sides from 0 ≤ t ≤ 2π

ω
, we receive the equation describing the oscillation

amplitude and the nonlinear natural frequency of the shell:

ω2
NL = 1

8
ω2
L

(
5A4λ22 + 6A2λ11 + 8

)
. (27)

4 Result and discussion

4.1 Validation

To validate the present formulation, the relation of amplitude and frequency in this study is considered with
the results in Sofiyev [21] in case α = 15◦,30◦, 45◦, 60◦ without stiffened, foundation and no effect of thermal
environment. The geometric parameters are chosen as follows: R1/h = 500, L/R1 = 2, N = 1, �T = 0,
nr = 0. It is clear that there is no significant difference between two studies with the same method.

4.2 Nonlinear dynamic response of truncated conical shell

In this section, the paper concentrates on the nonlinear dynamic response analysis of eccentrically stiffened
functionally graded truncated conical shells in thermal environments with the material property are assumed
that depend on temperature and chosen as Table 1.
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Table 2 The influence of temperature dependence of material properties and semi-vertex angleγ on the natural frequency

γ = 20 γ = 30 γ = 40 γ = 50 γ = 60 γ = 70

TD 1.2654 0.8533 0.6416 0.514 0.432 0.3797
TID 1.2842 0.8664 0.6518 0.5226 0.4396 0.3867

K
K
K
K

force

GPa/m GPa.m

Fig. 3 The effect of environmental temperature variation on the relationship between vibration amplitude and frequency ratio

Table 2 describes the effect of the semi-vertex angle γ and temperature dependence of material properties
on the natural frequency of the FGM truncated conical shell. It can be observed that the value of the natural
frequency decreases when we increase the value of the angle γ . Moreover, the table also shows the significant
difference in temperature dependent (TD) and temperature independent (TID), it means that the temperature
dependence of material properties has a negative influence on the shell. S1/h = 300, S2/S1 = 3, nr = 0,
�T = 0, kw = 0.6 GPa/m, kp = 0.06 GPa.m

To analyze the effect of environmental temperature variation on the relationship between vibration ampli-
tude and frequency ratio in the nonlinear state, the paper considers five values of temperature variation and
the geometric parameters are chosen as shown in Fig 3. It is easy to recognize that, with the same amplitude
value, the frequency ratio increases as the temperature variation increases.

Figure 4 shows the influences of the semi-vertex angle value on the frequency amplitude curves, and the
figure indicates that the shell slope has a notable effect on the relationship between variation amplitude and
frequency ratio. The increase in values of the angle γ from π

12 to π
6 leads to an increase in the frequency ratio.

Figure 5 describes the impact of the stiffeners and the axial force Tforce on the nonlinear vibration behavior.
The graph shows the remarkable effect of the stiffeners on the relationship between amplitude and frequency
ratio. It is comprehensible that the vibration frequency of the stiffened shell is smaller than the frequency of
the unstiffened shell. The figure also demonstrates that the axial force causes a noteworthy reduction in the
frequency ratio with the same amplitude.

The effects of the elasticWinkler and Pasternak foundation on the dynamic response are presented in Fig. 6
and Fig. 7, respectively. Both figures indicate that increasing the values of elastic foundation such as Kw or Kp
causes decreasing values of the vibration amplitude. Furthermore, the influence of the Pasternak foundation is
greater than of the Winkler foundation.

Figure 8 shows how the dynamic response of the truncated conical shell is impacted by the power-law
volume index N . N = 0 is the full ceramic shell and when we raise the value of N , this causes an increase in
the metal ingredient and an decrease in the ceramic ingredient.

From the above-obtained figures, it could be ascertained that the vibration amplitude reduces when we
raise the value of the power-law volume index N .
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GPa/m GPa.m

force

Fig. 4 The influences of the semi-vertex angle value on the relationship between vibration amplitude and frequency ratio in the
nonlinear state

force

force

force

force

GPa/m

MN

MN

K

GPa/m

Fig. 5 The impact of stiffeners and axial force Tforce on the nonlinear vibration behavior

The amplitude of deflection is discovered to be dependent on the value of the force amplitude Q in Fig. 9,
they decrease when decreasing the values of the force amplitude, and the effect of the change of the force
amplitude on the deflection is not small.

The evidence of the impact of the geometric parameters on the deflection–time curves is illustrated in
Fig. 10, with the parameter chosen to be considered the length–thickness ratio L/h. In the case L/h = 35,
the shell has the smallest deflection amplitude compared to the cases L/h = 40, L/h = 45, and the higher
the ratio L/h, the greater the shell deflection, which means that when the shell becomes thinner, the deflection
amplitude of the shell becomes bigger.

5 Concluding remarks

The present paper aims to study the vibration and nonlinear dynamic response of ES-FGM truncated conical
shells on elastic foundations in thermal environments. The truncated conical shells are reinforced by ring
stiffeners made of full metal or full ceramic depending on if the stiffeners are situated at the metal-rich or
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GPa.m

sin
force

GPa/m GPa/m GPa/m

Fig. 6 The effects of the elastic Winkler foundation Kw on the dynamic response

GPa/m
force

sin

GPa.m GPa.m

Fig. 7 The effects of the elastic Pasternak foundation Kp on the dynamic response

ceramic-rich side of the shell, respectively. In addition, the study not only assumes that the material properties
depend on the environmental temperature variation, but also considers the thermal stresses in the stiffeners.
Approximate solutions are assumed to satisfy the simply supported boundary condition, and the Galerkin
method is applied to obtain closed-form relations of bifurcation type of the nonlinear response. From these
expressions, the nonlinear dynamic response of eccentrically stiffenedFGMtruncated conical shells is analyzed
and the results are illustrated in graphical form. The results show that the nonlinear dynamic response of ES-
FGM truncated conical shells is greatly affected and influenced by the inhomogeneous dimensional parameters,
stiffeners, temperatures and elastic foundations.

The numerical results support the following conclusions:

(i) The value of the natural frequency ES-FGM truncated conical shell decreases when the value of the
semi-vertex angle γ of the cone increases.
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GPa/m GPa.m
force

sin

Fig. 8 The impact of the power-law volume index on deflection–time curves

rad/s force

GPa/m GPa.m

kN
kN
kN

Fig. 9 The influence of the amplitude of external force Q on the dynamic response

(ii) The vibration frequency of the stiffened FGM truncated conical shell smaller than the frequency of
unstiffened shell and the axial force causes a noteworthy reduction in the frequency ratio with the same
amplitude.

(iii) In the casewhere amplitude value is constant, the frequency ratio increaseswhen the temperature variation
increases.

(iv) As the elastic foundation coefficients increase, the values of vibration amplitude of the ES-FGM trun-
cated conical shell decrease. Furthermore, the influence of Pasternak foundation is bigger than Winkler
foundation.

(v) The vibration amplitude of the ES-FGM truncated conical shell decreaseswhen the value of the power-law
volume index N increases.
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Fig. 10 The effect of geometry parameter ratio L/h on deflection–time curves

(vi) The deflection amplitude of an ES-FGM truncated conical shell increases when L/h increases. In other
words, in the case where L is constant, the thinner the shells, the bigger the deflection amplitude of the
shell.
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Appendix A

L11 (F1) = − 2 cot(Y )

S21
F1 +

[
−3ex

S21
cot(Y ) + h111

]
1

ex
∂F1
∂x

+
[

−ex

S21
cot(Y ) + h112

]
1

ex
∂2F1
∂x2

+ h113
1

ex
∂3F1
∂x3

+ h114
1

ex
∂4F1
∂x4

+ h115
1

ex
∂2F1
∂φ2

+ h116
1

ex
∂3F1

∂x∂φ2 + h117
1

ex
∂4F1

∂x2∂φ2 + h118
1

ex
∂4F1
∂φ4 ,

L12 (w) = −S1e
x Kww + h121

1

e3x
∂w

∂x
+
[
Kpe2x

S1
+ h122

]
1

e3x
∂2w

∂x2
+ h123

1

e3x
∂3w

∂x3
+ h124

1

e3x
∂4w

∂x4

+
[
Kpe2x

S1
+ h125

]
1

e3x
∂2w

∂φ2 + h126
1

e3x
∂3w

∂x∂φ2 + h127
1

e3x
∂4w

∂x2∂φ2 + h128
1

e3x
∂4w

∂φ4 ,

L13 (F1, w) = 2h13
ex

F1

(
∂2w

∂x2
+ ∂2w

∂φ2

)
+ h13

ex
∂F1
∂x

(
∂2w

∂x2
+ 2

∂w

∂x
+ 3

∂2w

∂φ2

)
+ h13

ex
∂2F1
∂x2

(
∂w

∂x
+ ∂2w

∂φ2

)

+ 2h13
1

ex
∂F1
∂φ

(
∂w

∂φ
− ∂2w

∂x∂φ

)
+ h13

1

ex
∂2F1
∂φ2

(
∂2w

∂x2
− ∂w

∂x

)
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+ 2h13
1

ex
∂2F1
∂x∂φ

(
∂w

∂φ
− ∂2w

∂x∂φ

)
,

L21 (F1) = h211
e2x

∂F1
∂x

+ h212
e2x

∂2F1
∂x2

+ h213
e2x

∂3F1
∂x3

+ h214
e2x

∂4F1
∂x4

+ h215
e2x

∂2F1
∂φ2 + h216

e2x
∂4F1
∂φ4

+ h217
e2x

∂3F1
∂x∂φ2 + h218

e2x
∂4F1

∂x2∂φ2 ,

L22 (w) =
(

−ex

S31
cot(Y ) + h221

)
1

e4x
∂w

∂x
+
(
ex

S31
cot(Y ) + h222

)
1

e4x
∂2w

∂x2
+ h223

e4x
∂3w

∂x3
+ h224

e4x
∂4w

∂x4
+

+ h225
e4x

∂2w

∂φ2 + h226
e4x

∂4w

∂φ4 + h227
e4x

∂3w

∂x∂φ2 + h228
e4x

∂4w

∂x2∂φ2 ,

L23 (w, w) = h231
e4x

[(
∂w

∂x

)2

+
(

∂2w

∂x∂φ

)2

+
(

∂w

∂φ

)2
]

+ h232
e4x

∂w

∂x

(
∂2w

∂x2
− ∂2w

∂φ2

)

+ h233
e4x

∂2w

∂x2
∂2w

∂φ2 + h234
e4x

∂w

∂φ

∂2w

∂x∂φ
,

with hi jk (i, j, k = 1, 2, 3...) defined by

h111 = − (2C∗
22 − 2C∗

11 + 2C∗
21 − 2C∗

12

)
S31

; h112 = − (C∗
22 − 5C∗

11 + 3C∗
21 − 3C∗

12

)
S31

;

h113 = − (−4C∗
11 + C∗

21 − C∗
12

)
S31

; h114 = C∗
11

S31
;

h115 = − (−2C∗
22 + 2C∗

33 − 2C∗
21

)
S31

; h116 = − (−3C∗
21 − C∗

12 + 4C∗
33

)
S31

;

h117 = − (−C∗
21 − C∗

12 + 2C∗
33

)
S31

; h118 = C∗
22

S31
; h121 = − (−2D∗

11 − 2D∗
21 + 2D∗

12 + 2D∗
22

)
S31

;

h122 = − (5D∗
11 + 3D∗

21 − 3D∗
12 − D∗

22

)
S31

;

h123 = − (−4D∗
11 − D∗

21 + D∗
12

)
S31

; h124 = −D∗
11

S31
; h125 = − (2D∗

12 + 2D∗
33 + 2D∗

22

)
S31

;

h126 = − (−D∗
21 − 3D∗

12 − 4D∗
33

)
S31

; h127 = − (D∗
21 + D∗

12 + 2D∗
33

)
S31

; h128 = −D∗
22

S31
; h13 = 1

S31
;

h211 = 2
(
A∗
11 + A∗

12 − A∗
21 − A∗

22

)
S41

; h212 =
(
5A∗

11 + 3A∗
12 − 3A∗

21 − A∗
22

)
S41

; h213 =
(
4A∗

11 + A∗
12 − A∗

21

)
S41

;

h214 = A∗
11

S41
; h215 =

(
2A∗

21 + 2A∗
22 + A∗

33

)
S41

; h216 = A∗
22

S41
; h217 =

(
A∗
12 + 3A∗

21 + 2A∗
33

)
S41

;

h218 =
(
A∗
12 + A∗

21 + A∗
33

)
S41

; h221 =
(
2B∗

11 − 2B∗
12 + 2B∗

21 − 2B∗
22

)
S41

; h222 =
(
B∗
22 − 5B∗

11 + 3B∗
12 − 3B∗

21

)
S41

h223 =
(−B∗

12 + B∗
21 + 4B∗

11

)
S41

; h224 = −B∗
11

S41
; h225 =

(−2B∗
12 − 2B∗

22 + B∗
33

)
S41

; h226 = −B∗
22

S41
;

h227 =
(−2B∗

33 + B∗
21 + 3B∗

12

)
S41

; h228 =
(
B∗
33 − B∗

21 − B∗
12

)
S41

;

h231 = −1

S41
; h232 = h233 = −h231; h234 = −2h231;
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Appendix B

a1 = 64B1
3h213 − 4B1h211; a2 = 256B1

4h214 − 16B1
2h212;

a3 = −
(
1/
4

)
B1
(
3ln2 (e) h232 − 4B1

2h232 + 2 ln (e) h231
) ;

a4 = ln3 (e) h232
8

− 3

2
ln (e) B1

2h232 + ln2 (e) h231
8

− B1
2h231
2

;

a5 = 1

64h216B2
4

(−ln2 (e) B2
2h231 − ln2 (e) B2

2h233 − B1
2B2

2h231 + B1
2B2

2h233 + ln3 (e) h232
+ ln (e) B1

2h232 + ln (e) B2
2h232 − ln (e) B2

2h234 + ln2 (e) h231 + B1
2h231 − B2

2h231

)
;

a6 = 27

2
B1

3h213 + 3

2
B1B2

2h217 − 3

2
B1h211;

a7 = 81

2
B1

4h214 + 9

2
B1

2B2
2h218 + h216B2

4

2
− 9

2
B1

2h212;

a8 = ln2 (e)

8
B2

2h233 − B1
2B2

2h233
2

− ln3 (e) h232
4

+ 13

8
ln (e) B1

2h232 − ln (e) B2
2h232

8
− ln2 (e)

4
h231 + B1

2h231
2

;

a9 = − B1

8

(−4 ln (e) B2
2h233 + 9ln2 (e) h232 − 6B1

2h232 + 2B2
2h232 + 6 ln (e) h231

) ;
a10 = 4B1

3h213 + 4B1B2
2h217 − B1h211;

a11 = 8B1
4h214 + 8B1

2B2
2h218 + 8h216B2

4 − 2B1
2h212;

a12 = ln (e)

4
B1B2

2h231 + ln (e)

4
B1B2

2h233 − 3

8
ln2 (e) B1h232

+ B1
3h232
8

− B1B2
2h232
8

+ B1B2
2h234
8

− ln (e) B1h231
4

;

a13 = 1

8

(
ln3 (e) h232 − ln2 (e) B2

2 (h231 + h233) + ln2 (e) h231 − 3 ln (e) B1
2h232

+ ln (e) B2
2 (h232 − h234) + B1

2B2
2 (h231 + h233) − B1

2h231 − B2
2h231

)
;

a14 = − (1/2) B1
(
B1

2h213 − 4B1
2h214 + B2

2h217 − 2B2
2h218 − h211 + 2h212 − 3h213 + 4h214

) ;
a15 = (1/2)

(
B1

4h214 + B1
2B2

2h218 + h216B2
4 − B1

2h212 + 3B1
2h213

−6B1
2h214 + B2

2h217 − B2
2h218 − h211 + h212 − h213 + h214

)
;

a16 = 1/2B1
(
ln3 (e) (4h224 + 3h223) − 2 ln (e)

(
2B1

2h224 − B2
2h228

)
− B1

2h223 − B2
2h227 + 2 ln (e) h222 + h221

) ;
a17 = 1

2

{
ln4 (e) h224 − 6ln2 (e) B1

2h224 − ln2 (e) B2
2h228 + B1

4h224 + B1
2B2

2h228 + B2
4h226

+ ln3(e)h223 − 3 ln(e)B1
2h223 − ln(e)B2

2h227 + ln2(e)h222 − B1
2h222 − B2

2h225 + ln(e)h221

}
;

a18 = − (1/2) B1
(
B1

2h213 + B2
2h217 − h211

) ;
a19 = (1/2)

(
B1

4h214 + B1
2B2

2h218 + h216B2
4 − B1

2h212
) ;

a20 = (1/8) B1
(−4 ln (e) B2

2h233 + 9ln2 (e) h232 + 2B1
2h232 + 2B2

2h232 + 6 ln (e) h231
) ;

a21 = 1

2
B2

2h233

(
−3

4
ln2 (e) + B1

2
)

+ 3

4
ln3 (e) h232

+ 1

8
ln (e) h232

(
B1

2 + 3B2
2)+ 3

4
ln2 (e) h231 + 1

2
B1

2h231;
a22 = − (1/2) B1

(
B1

2h213 + B2
2h217 − h211

) ;
a23 = (1/2)

(
B1

4h214 + B1
2B2

2h218 + h216B2
4 − B1

2h212
) ;

a24 = B1 cos (γ ) (2 ln (e) − 1)

2S13
; a25 = e−2 x cos (γ ) f (t)

(
ln2 (e) − B1

2 − ln (e)
)

2S13
;
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a26 = 2B1
(
4B1

2h213 − 16B1
2h214 − h211 + 2h212 − 3h213 + 4h214

) ;
a27 = 16B1

4h214 − 4B1
2h212 + 12B1

2h213 − 24B1
2h214 − h211 + h212 − h213 + h214;

a28 = B1
(
4 ln3 (e) h224 − 16 ln (e) B2

1h224 + 3 ln2 (e) h223 − 4B2
1h223 + 2 ln (e) h222 + h221

) ;
a29 = 1

2

{−h224 ln4 (e) + 8B2
1h224

(
3 ln2 (e) − 2B2

1

)− h223 ln3 (e)
+12 ln (e) B2

1h223 − h222 ln2 (e) + 2B2
1h222 − h221 ln (e)

}
; a30 = 2B1

(
4B2

1h213 − h211
) ;

a31 = 4B2
1

(
4B2

1h214 − h212
) ; a32 = (1/2) ln (e) B1 (3 ln (e) h232 + 2h231) ;

a33 = − (1/2) ln (e)
(
ln2 (e) h232 − 2B2

1h232 + ln (e) h231
) ; a34 = a30; a35 = a31;

a36 = (1/4) B1
(
2 ln (e) B2

2h231 − 2 ln (e) B2
2h233 + 3 ln2 (e) h232 − B2

1h232

+ B2
2h232 + B2

2h234 + 2 ln (e) h231
) ;

a37 = 1

4

{
ln2 (e)

(−B2
2h231 + B2

2h233 − ln (e) h232 − h231
) + B2

1h231 − B2
2h231+3 ln (e)

(
3B2

1h232 − B2
2h232 − B2

2h234
)+ B2

1 B
2
2h231 − B2

1 B
2
2h233

}
; a38 = a30; a39 = 2a31;

a40 = a24; a41 = − cos (γ )
(
ln2 (e) − 4B2

1 − ln (e)
)

2S31
;

a42 = −h211 + h212 − h213 + h214; a43 = (1/2) ln (e)
(
ln3 (e) h224 + ln2 (e) h223 + ln (e) h222 + h221

)
.

Appendix C

l11 = 16h13π5 sin (γ )m4 (ex0 − 1)(
x20 + 36m2π2

) (
x20 + 16m2π2

) (
x20 + 4m2π2

)
{

π mx20
(−11 x20 + 4m2π2

)
K61

−x0
(
48m4π4 + 32π2x20m

2 − x40
)
K51

}

+ 16h13π5 sin (γ )m4 (ex0 − 1)(
x20 + 36m2π2

) (
x20 + 64m2π2

) (
x20 + 16m2π2

)
{−x0

(
1728m4π4 + 152π2x20m

2 − x40
)
K13

+2π m
(
2304m4π4 + 88π2x20m

2 − 11 x40
)
K14

}
;

l12 = 4 (ex0 − 1)m2π3h13
x20 sin (γ )

(
x20 + 4m2π2

) (
x20 + 16m2π2

)
{
m2π2

(
cos2 (γ ) − 1

) (
5m2π2 + 2 x20

)
(2K51 + K101)

−n2
(
x20 + 4m2π2

)2 (
K51 − 2m2π2K101

)
}

+
2 (ex0 − 1)m3π4h13

{
3mπ

(
x20 + 4m2π2

) (
cos2 (γ ) − 1

) {
2x0

(
9m2π2 − x20

)
K12 − mπ

(
17 x20 + 72m2π2

)
K11
}

−n2
(
12m2π2 + x20

) {
2
(
4m2π2 − x20

)
K12 + x20

(−x20 + 44m2π2
)
K11
}

}

x30
(
x20 + 16m2π2

) (
x20 + 36m2π2

) (
x20 + 4m2π2

)
sin (γ )

+
4 (ex0 − 1)m2π3h13

{
mπ

(
cos2 (γ ) − 1

) {
mπ

(
168m2π2 + 13 x20

)
K13 + 2

(
11m2π2 + x20

)
x0K14

}
−n2x0

(
x20 + 16m2π2

) {x0K13 − 6mπK14}
}

x20 sin (γ )
(
x20 + 36m2π2

) (
x20 + 16m2π2

)

+
2 (ex0 − 1)m3π4h13

{ (
cos2 (γ ) − 1

) {
2
(
8m4π4 + 3m2π2x20 + x40

)
K61 − m2π2

(
8m2π2 + 11 x20

)
K91
}

+n2x20
(
x20 + 4m2π2

) {3K61 + K91}
}

sin (γ )
(
x20 + 4m2π2

)
x30
(
x20 + 16m2π2

) ;

l13 = − 1

64

h13 (ex0 − 1)
(
cos2 (γ ) s13e1 + s13e2

)
n
(
x20 + 16m2π2

)
x30
(
x20 + 4m2π2

) (
x20 + 36m2π2

)
sin (γ )

;

s13e1 = π4nm3

⎧⎪⎪⎨
⎪⎪⎩

384πmx0
(
7 x20 + 12m2π2

) (
x20 + 6m2π2

)
K12 + 1024π6nm5x20

(
4m2π2 − 11 x20

)
K62

+256
(
x20 + 6m2π2

) (
72m4π4 + 26m2π2x20 − x40

)
K11

−1024πmx0
(−x40 + 48m4π4 + 32m2π2x20

)
K52

− (x20 + 36m2π2
) (−x20 + 2m2π2

) (
896πmx0K101 − 256

(
x20 + 2m2π2

)
K91
)

⎫⎪⎪⎬
⎪⎪⎭

;

s13e2 = π4nm3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

384πmx0
(
x20 + 6m2π2

) (
32n2m2π2 − 12m2π2 − 7 x20 + 8n2x20

)
K12

−1024π2m2x20
(
4m2π2 − 11 x20

)
K62 + 1024πmx0

(−x40 + 48m4π4 + 32m2π2x20
)
K52

−128
(
864m6π6 + 3n2x60 + 456m4π4x20 − 48n2m4π4x20 + 40m2π2x40 − 2 x60

)
K11

−128πmx0
(
8n2 − 7

) (
x20 + 36m2π2

) (−x20 + 2m2π2
)
K101

−128
(
x20 + 36m2π2

) (
8m4π4 + 12n2m2π2x20 + 3n2x40 − 2 x40

)
K91

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

;

l14 = −
4h13π3m2 (ex0 − 1)

(
K7
(
n2x40 − 10m4π4 + 10n2m2π2x20 − 4m2π2x20

)
+K52

(
32n2m4π4 + 20m4π4 + 8m2π2x20 + 2n2x40 + 16n2m2π2x20

)
)

x20
(
x20 + 16m2π2

) (
x20 + 4m2π2

)
sin (γ )
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+
4h13π4m3 (ex0 − 1)

(
K8
(
8m4π4 + x40 + 3m2π2x20 + 24n2m2π2x20 + 3n2x40

)
+K62

(−6m2π2x20 − 2 x40 − 16m4π4 + 24n2m2π2x20 + 6n2x40
)
)

(
x20 + 16m2π2

)
x30
(
x20 + 4m2π2

)
sin (γ )

− 4K15 (ex0 − 1)
(
2n2m2π2 − m2π2 + n2x20

)
m2π3h13

x20 sin (γ )
(
x20 + 4m2π2

) ;

l15 = −
π2m

(
8m3π3h114K51 − 4m2π2h113K61x0
−2mπ K51h112x20 + K61h111x30

)
sin (γ )

x30

+ 24mπ2h13 (2mπK3 − 2mπK16 − K4x0) sin (γ )

48x0

− 16π5h13m4
[
K53

(
48m4π4 − x40 + 32m2π2x20

)− mπ K63x0
(−11 x20 + 4m2π2

)]
(ex0 − 1) sin (γ )(

x20 + 4m2π2
)
x20
(
x20 + 36m2π2

) (
x20 + 16m2π2

)

−

cos (γ ) 16π3m2 (ex0 − 1)

⎧⎪⎪⎨
⎪⎪⎩

(
x20 + 36m2π2

) [(
8m2π2 − x20

) (−x20 + 2m2π2
)+ 18 x20m

2π2S21
]
K51

− (x20 + 36m2π2
) [(−4m2π2 + 2 x20

)+ S21
(
8m2π2 − x20

)]
3mπx0K61

− [2 (4m2π2 − x20
) (
8m2π2 − x20

)+ S21 x
2
0

(
44m2π2 − x20

)]
6mπx0K14

+ [(44m2π2 − x20
) (
8m2π2 − x20

)− 72m2π2S21
(
4m2π2 − x20

)]
x20K13

⎫⎪⎪⎬
⎪⎪⎭

2S21 x
2
0

(
x20 + 4m2π2

) (
x20 + 16m2π2

) (
x20 + 36m2π2

) ;

l16 = π2m cos (γ ) (ex0 − 1)

S21
(
x20 + 16m2π2

)
x20
(
x20 + 4m2π2

)
⎧⎪⎪⎨
⎪⎪⎩

(
x20 + 16m2π2

) (
2m2π2 + 3 S21 x

2
0 − 4 x20

)
πmK101

+ (3 S21 x20 − 24m2π2S21 − 4 x20 + 18m2π2
)
3πmx20K12

+ (54 x20m2π2S21 + 2 x40 − 25 x20m
2π2 + 72m4π4

)
x0K11

+ (x20 + 16m2π2
) (
6m2π2S21 − m2π2 + 2 x20

)
x0K91

⎫⎪⎪⎬
⎪⎪⎭

+
( (

πn2h115x40 − n2m2π3h117x20 + 2m2π3h112x20 − 2h114m4π5
)
cos2 (γ ) − m2π3h112x20 cos

4 (γ )

+n2m2π3h117x20 + h114m4π5 − m2π3h112x20 + πn4h118x40 − πn2h115x40 + m2π3h114m2π2 cos4 (γ )

)
K101

2x30 sin
3 (γ )

+
(
mπ2

(
h113m2π2x0 − h111x30

)
cos4 (γ ) − mπ2 h111x30 + h113m3π4x0 + n2mπ2 h116x30+ (

2mπ 2h111x30 − n2mπ2 h116x30 − 2h113m3π4x0
)
cos2 (γ )

)
K91

2x30 sin
3 (γ )

−
h13mπ2

(
2 cos2 (γ )m2π2 − cos2 (γ ) x20+2n2x20 + x20 − 2m2π2

)
K2

8x20 sin (γ )
+

h13mπ2
(
2 cos2 (γ )m2π2 + cos2 (γ ) x20+2n2x20 − x20 − 2m2π2

)
K4

4x20 sin (γ )

− h13m2π3
(
cos2 (γ ) − 1 + 4n2

)
K3

4x0 sin (γ )
+ h13m2π3

(
cos2 (γ ) − 1

)
K16

2x0 sin (γ )

+ h13m2π3
(
3 cos2 (γ ) − 3 + 4n2

)
K1

8x0 sin (γ )

+ 2h13π4m3 (ex0 − 1)(
x20 + 4m2π2

)
x30
(
x20 + 16m2π2

)
sin (γ )

⎧⎨
⎩
(
cos2 (γ ) − 1

) [ (3m2π2x20 + x40 + 8m4π4
)
2K63

−m2π2
(
8m2π2 + 11 x20

)
K92

]

+ (x20 + 4m2π2
) [
6n2x20K63 − n2x20K92

]
⎫⎬
⎭

+
4h13π3m2 (ex0 − 1)

{(
2m2π2

(
5m2π2 + 2 x20

) (
cos2 (γ ) − 1

)− n2
(
x20 + 4m2π2

)2)
K53

+ ((−x20 + 5m2π2
) (
cos2 (γ ) − 1

)+ 2n2
(
x20 + 4m2π2

))
π2m2K102

}

x20
(
x20 + 4m2π2

) (
x20 + 16m2π2

)
sin (γ )

;

l17 = 8π3m2 (−1 + ex0 ) cos (γ )

x0S21
(
x20 + 16m2π2

) (
x20 + 4m2π2

)
{ (

2 x20 − 4m2π2 − x20 S
2
1 + 8m2π2S21

)
3πmK62

− (x40 − 10m2π2x20 + 16m4π4 + 18m2π2S21 x
2
0

)
K52

}

+ sin (γ )

x30

(−8m4π5K52h114 + 4x0m3π4K62h113
+2x20m

2π3K52h112 − x30mπ2K62h111

)

+ h13mπ2
(
K2x20 − m2π2K2 + 2mπ K1x0

)
cos2 (γ )

4x20 sin (γ )

− 2h13π4m3
(
2m2π2 − x20

) (
4K92m2π2 − 7K102x0mπ + 2K92x20

)
(ex0 − 1) cos2 (γ )(

x20 + 4m2π2
)
x30
(
x20 + 16m2π2

)
sin (γ )

+ h13mπ2
(−2mπ K1x0 − K2x20 + m2π2K2 + 2mπ n2K1x0 + n2K2x20

)
4x20 sin (γ )
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+
2h13m3π4 (ex0 − 1)

(
K102mπx0

(
16n2m2π2 − 8n2 x20 + 7 x20 − 14m2π2

)
+K92

(
12n2m2π2x20 + 8m4π4 + 3n2x40 − 2 x40

)
)

(
x20 + 4m2π2

)
x30
(
x20 + 16m2π2

)
sin (γ )

;

l181 = 4π3m2
(
e3 x0 − 1

)
sin (γ ) h13S21

(
24π2m2

(
2B2

1 − 1
)+ 144πmx0 B1 − 4B2

1

(
4π2m2 + 9 x20

))
3
(
16π2m2 + 9 x20

) (
4π2m2 + 9 x20

)

+ 4m2π3 (ex0 − 1) sin (γ )(
16π2m2 + x20

) (
4π2m2 + x20

)
(
12π2m2

(
2B2

1h13S
2
1 − h13S21

)+ 12π mx0 B1S21h13−8B2
1 S

2
1h13π2m2 − 2B2

1 S
2
1h13 x

2
0

)
;

l182 = π x0 sin (γ ) cot (γ )

S21[
3K16

(
S21 − 1

)−
(
3K3

(
S21 − 1

)− 6mπ

x0
K4S

2
1 + 4m2π2

x20
K3 + 4mπ

x0
K4

)]

+ 24π4m3
(
2 x20 − 4m2π2 + 8m2π2S21 − S21 x

2
0

)
(ex0 − 1) cos (γ ) K63

x0S21
(
x20 + 16m2π2

) (
x20 + 4m2π2

)

− 8π3m2
(
16m4π4 − 10m2π2x20 + x40 + 18m2π2S21 x

2
0

)
(ex0 − 1) cos (γ ) K53

x20 S
2
1

(
x20 + 16m2π2

) (
x20 + 4m2π2

)

+
4K3 sin (γ )

(
32h114m4π4 − 8π2m2h112x20 − 12π2m2h114x20+12π2m2h113x20 − h112x20 + h111x40 − h114x40 + h113x40

) (
e−x0 − 1

)
m2π3

x40
(
x20 + 16m2π2

)

+ 4K16 sin (γ ) (−h112 − h114 + h113 + h111)
(
e−x0 − 1

)
m2π3

x20 + 4m2π2
+

− 8 sin (γ ) K4
(
8h113m2π2 − 20h114m2π2 − h114x20 − 2h111x20 + h112x20

) (
e−x0 − 1

)
m3π4

x30
(
x20 + 16m2π2

)

− 16KwinklerS21π
5m4

(
e3 x0 − 1

)
sin (γ )(

9 x20 + 16m2π2
) (
9 x20 + 4m2π2

)

− 8π5m4
(
8m2π2 − x20

)
(ex0 − 1) sin (γ ) Kpasternak

x20 S1
(
x20 + 16m2π2

) (
x20 + 4m2π2

)

− π2m
(
8m3π3h114K53 − 2mπ K53h112x20 − 4m2π2h113K63x0 + K63h111x30

)
sin (γ )

x30

+
8π5e−x0m4

(
32m4π4h124 + 13h122x40 − 8m2π2h122x20 + 18h123x40−36m2π2h123x20 + 24h124x40 − 100m2π2h124x20 + 9h121x40

)
(−1 + ex0 ) sin (γ )

(
x20 + 16m2π2

)
x40
(
x20 + 4m2π2

) ;

l191 = 2π2m
(
e3 x0 − 1

)
sin (γ ) h13S21

3
(
4π2m2 + 9 x20

)
(

π m − π mB2
2 + 12x0 + 3π mB2

1 + 3x0 B1

3

)
;

l192 = π x0 sin (γ ) cot (γ )

(
3S21 (B1K2 + K1) + B2

1K1 − 2B1K2 − 3K1
)

2S21

+ −2π3m2
(
e3 x0 − 1

)
sin (γ ) KwinklerS21

3
(
4π2m2 + 9 x20

)

+ π2m (ex0 − 1) sin (γ ) cot (γ )
[
x0
(
3B1K102S21 − B2

1K92 + 2K92
)+ 2π m

(
3B1K92S21 + B2

1K102 − 2K102
)]

S21
(
4π2m2 + x20

)
+ x0π sin (γ )

2

[(
B2
1 B

2
2h117 + B4

2h118 + B4
1h114 − B2

1h112 − B2
2h115

)
K102

+ (B3
1h113 + B1B

2
2h116 − B1h111

)
K92
]

−2π2m (ex0 − 1) sin (γ )
(
x0B1Kpasternak + π m

(
B2
1Kpasternak + B2

2Kpasternak − Kpasternak
))

S1
(
4π2m2 + x20

)

+ e−x0π2m (ex0 − 1) sin (γ ) x0 ( f11e31K1 + f11e32K2) + 2π m ( f11e32K1 + f11e31K2)

4π2m2 + x20
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+ e−x0π2m (ex0 − 1) sin (γ )(
4π2m2 + x20

) (x0 f11e33 + 2π m f11e34) ;

f11e31 = (
B1h111 − 2 B1h112 + 3 B1h113 − B3

1h113 + 4 B3
1h114 − B1B

2
2h116 + 2 B1B

2
2h117 − 4 B1h114

) ;
f11e32 =

(−B2
1h112 − 6 B2

1h114 − B2
2h115 + B2

2h116 + 3 B2
1h113 + B4

1h114+B2
1 B

2
2h117 + B4

2h118 − B2
2h117 − h111 + h112 − h113 + h114

)
;

f11e33 = (−B3
1h123 − 4B3

1h124 − B1B
2
2h126 − 2B1B

2
2h127 + B1h121 + 2B1h122 + 3B1h123 + 4B1h124

) ;
f11e34 =

(
B4
1h124 + B2

1 B
2
2h127 + B4

2h128 − B2
1h122 − 3B2

1h123 − 6B2
1h124−B2

2h125 − B2
2h126 − B2

2h127 + h121 + h122 + h123 + h124

)
;

l20 = m2π3 sin (γ )(
4π2m2 + 9 x20

)
[

4
3

(
e3 x0 − 1

)
cot (γ )

(
3S21 + 1

)+ 4 (ex0 − 1) cot (γ )

− S21
4

(
e2 x0 − 1

)
(h111 + 2h112 + 4h113 + 8h114)

]
;

l21 = − 2π3 sin (γ )m2
(
S31 − S32

)
3S31

(
4m2π2 + 9

(
ln

(
S2
S1

))2
)−1

;

l22 = −16
π5 sin (γ )m4

(
S31 − S32

)
S31

(
16π2m2 + 9

(
ln

(
S2
S1

))2
)−1 (

4π2m2 + 9

(
ln

(
S2
S1

))2
)−1

;

l24 =
((

8π3m2 + 2π x20
8π2m2 + 2x20

− 2
π x20

8π2m2 + 2x20

)
ex0 − 8π3m2

8π2m2 + 2x20

)
sin (γ ) + 4ex0π2mx0 cos (γ )

8π2m2 + 2x20
.
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