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Abstract
We investigate how to partition a rectangular region of length L1 and height L2 into n
rectangles of given areas (a1, . . . , an) using two-stage guillotine cuts, so as to minimize
either (i) the sum of the perimeters, (ii) the largest perimeter, or (iii) the maximum aspect
ratio of the rectangles. These problems play an important role in the ongoing Vietnamese
land-allocation reform, as well as in the optimization of matrix multiplication algorithms.We
show that the first problem can be solved to optimality inO(n log n), while the two others are
NP-hard. We propose mixed integer linear programming formulations and a binary search-
based approach for solving the NP-hard problems. Experimental analyses are conducted to
compare the solution approaches in terms of computational efficiency and solution quality,
for different objectives.

Keywords Soft rectangle packing · Guillotine constraints · Complexity analysis · Mixed
integer linear programming

1 Introduction

We consider a family of soft rectangle packing problems in which a rectangular region of
length L1 and height L2 must be partitioned into n rectangles of given areas (a1, . . . , an),
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where
∑n

i=1 ai = L1 × L2. The areas of the rectangles are fixed, and their position, length
and height constitute the decision variables of the problem. Three different objectives are
considered: minimizing the sum of the rectangle’s perimeters, the largest perimeter, and the
largest aspect ratio, leading to three problems called Col-Peri-Sum, Col-Peri-Max, and
Col-Aspect-Ratio respectively. Finally, the layout of the rectangles is subject to strict rules.
As illustrated in Fig. 1, the rectangles should be delimited by two-stage guillotine cuts: first
cutting the rectangular area horizontally to produce several layers (three on the figure), and
then cutting each layer vertically to obtain the rectangles (ten on the figure).

Any solution of these problems can be described as a partition {S1, . . . , Sm} of the rectan-
gle set S = {1, . . . , n} into m layers. Since the length of each layer is fixed to L1, the height
w(Sk) of a layer Sk (and therefore of all its contained rectangles) is given by:

w(Sk) =
∑

i∈Sk ai
L1

, (1)

and the length of each rectangle i ∈ Sk is ai/w(Sk). Based on this observation, the objective
of these problems is to find {S1, . . . , Sm} so as to minimize:

Col-Peri-Sum: Φ1 = 2 ×
m∑

k=1

∑

i∈Sk

(

w(Sk) + ai
w(Sk)

)

= 2 ×
m∑

k=1

(|Sk |w(Sk) + L1) (2)

Col-Peri-Max: Φ2 = 2 × max
k

max
i∈Sk

(

w(Sk) + ai
w(Sk)

)

(3)

Col-Aspect-Ratio: Φ3 = max
k

max
i∈Sk

max

(
ai

w(Sk)2
,
w(Sk)2

ai

)

. (4)

Themain contributions of the paper are as follows. First,we establish a connection between
these three soft rectangle packing problems and the current Vietnamese land-allocation
reform. We characterize their computational complexity, propose an efficient O(n log n)

algorithm for Col-Peri-Sum and demonstrate that the two other problems are NP-hard.
Second, we introduce mixed integer linear programming (MILP) formulations for the NP-
hard problems. For that purpose, the non-linear objective function of Col-Aspect-Ratio is
handled via a change of objective or binary search. Finally, we conduct experimental analyzes

Fig. 1 Partitioning the
rectangular area by two-stage
guillotine cuts—example solution

L1

L2
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to determine the size limit of the instances which can be efficiently solved, and compare the
solutions obtained with different objectives.

2 Applications and related work

2.1 Land reform inVietnam

The agricultural land of Vietnam has been historically classified into several categories. Each
household has been given one plot for each land category, such that even a small agricultural
field can be distributed to many households. These division rules have been applied in most
provinces of Vietnam to ensure equality among households. However, this has led to a large
fragmentation of the land in most provinces of Vietnam [28,29]. In these provinces, each
household owns many small and scattered plots, located in different fields. The province of
Vinh Phuc is a striking example: some households have up to 47 plots, where each plot has
an average area of only ten square meters [21].

The land fragmentation turned out to be detrimental in the industrialized era. First of
all, households cannot use machines to cultivate small plots, leading to a high production
cost. Moreover, fragmented plots are costly to maintain, and the excessive number of tracks
separating the plots causes a waste of agricultural land [14,17,24,25,29]. Therefore, the
Vietnamese government considers land fragmentation to be “a significant barrier to achieving
further productivity gains in agriculture”, and initiated a land reform to deal with the situation.
This reform aims to reduce the number of land categories in order to merge small plots into
large fields and repartition these fields into larger plots for households. This reform has led to
successful results in some provinces, as characterized by a significant increase in rice yield
attaining 25% in Quang Nam province [7,29].

The land reform involves two critical tasks: merging small plots into larger fields, and
repartitioning these fields equitablywhile respecting the predefined quantity of land attributed
to each household. In this study, we consider the case of rectangular fields, as this is the most
common partition in practice. The fields should be first split by parallel edge-to-edge tracks to
facilitate the use of machines, and the resulting sections should then be separated into plots,
leading to the two-stage guillotine constraints discussed in the introduction of this paper.

Finally, farmers and local authorities may have distinct objectives and motivations. Local
authorities aim tominimize wasted land due to the creation of tracks, a goal which is captured
by the Col-Peri-Sum objective. In contrast, farmers wish to have their plots as square as
possible to facilitate cultivation. This goal can be expressed as a worst-case optimization to
ensure a fair allocation, leading to the Col-Peri-Max and Col-Aspect-Ratio objectives.
These objectives are not strongly conflicting, but they often lead to different solutions.

Land-consolidation strategies have been implemented in various other countries, e.g.,
in Germany [4–6], Turkey [8–10,16], Japan [1], Cyprus [11], China [18], and Brazil [15].
However, each country, depending on its own topology, culture, and practice has converged
towards a different problem setting. In particular, the two-stage guillotine-cut restrictions
and the objective functions relevant to the Vietnamese case have not yet been encountered
in other land-consolidation applications. Still, some related problems can be found in the
operations research and computer science literature, as discussed in the following.
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2.2 Soft rectangle packing problems

Partitioning an area into polygons of fixed shape or area is a class of problems which has been
regularly studied in the operations research and computational geometry literature. Beaumont
et al. [2,3] defined two optimization problems that seek to partition the unit square into a
number of rectangles with given areas, so as to optimize parallel matrix-multiplication algo-
rithms in heterogeneous parallel computing platforms. The first problem aims to minimize
the sum of all rectangle perimeters, whereas the second problem aims to minimize the largest
perimeter. These problems are special cases of Peri-Sum and Peri-Max where the general
rectangular region is a square. The authors introduced an 7/4-approximate algorithm and an
2/

√
3-approximate algorithm for these problems, respectively.
Later on, Nagamochi and Abe [26] considered the general Peri-Sum, Peri-Max

and Aspect-Ratio problems without guillotine constraints. The authors introduced an
O(n log n)-time algorithm which produces a 1.25-approximate solution for Peri-Sum, a
2/

√
3-approximate solution for Peri-Max, and finds a solution with aspect ratio smaller than

max{R, 3, 1 + maxi∈{1,...,n−1} ai+1
ai

} for Aspect-Ratio, where R denotes the aspect ratio
of the original rectangular area. [12] also designed an 2/

√
3-approximate algorithm and a

branch-and-cut algorithm for Peri-Sum.
Other close variants of Peri-Sum have been studied. Kong et al. [22,23] considered

the problem of decomposing a square or a rectangle into a number of rectangles of equal
area so as to minimize the maximum rectangle perimeter. VLSI floorplan design and facility
location applications also led to a number of related studies [20,27,31]. Ibaraki andNakamura
[19] proposed a local search and mathematical programming algorithm to solve rectangular
packing problems, where the shapes of the rectangles are adjustable within certain perimeter
limits.

Finally, Beaumont et al. [3] considered Col-Peri-Sum and Col-Peri-Max as a building
block to design approximation algorithms for Peri-Sum and Peri-Max when the general
rectangular region is a square. The authors introduced an exact O(n2 log n) algorithm for
Col-Peri-Sum and two approximation algorithms for Col-Peri-Max. The complexity sta-
tus of Col-Peri-Max remains open. Moreover, Col-Aspect-ratio has not been studied
up to this date. These methodological gaps are a strong motivation for additional research.

3 COL-PERI-SUM can be solved inO(n logn)

A polynomial-time algorithm inO(n2 log n) for Col-Peri-Sum was proposed in [3]. In this
section, we introduce a simple algorithm in O(n log n) for this problem. To that extent, we
show that after ordering the rectangles’ indices by non-decreasing area, the Col-Peri-Sum
problem can be reduced inO(n) to the concave least-weight subsequence problem (CLWS),
solvable to optimality in O(n) time [30].

Definition 1 (Concave real-value weight function) A real-value weight function w(i, j)
defined for integers 0 ≤ i < j ≤ n is concave if and only if, for 0 ≤ i0 < i1 < j0 < j1 ≤ n,
w(i0, j0) + w(i1, j1) ≤ w(i0, j1) + w(i1, j0).

Definition 2 (Concave least-weight subsequence problem) Let w(i, j) be a concave real-
value weight function defined for integers 0 ≤ i < j ≤ n. Find an integer k ≥ 1 and a

sequence of integers 0 = l0 < l1 < · · · < lk−1 < lk = n such that
∑k−1

i=0 w(li , li+1) is
minimized.
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We first assume that the indices of the rectangles have been ordered in O(n log n) by
non-decreasing area: a1 ≤ · · · ≤ an . Then, we highlight a property of Col-Peri-Sumwhich
allows us to focus the search on a smaller subset of solutions.

Theorem 1 Consider a solution s of Col-Peri-Sum with cost Φ1(s), represented as a parti-
tion {S1, . . . , Sm} of the rectangle set. Let i ∈ Sk and j ∈ Sl be two rectangles from different
subsets such that ai > a j . Any solution s′ obtained by swapping these two rectangles within
their respective subsets is such that:

⎧
⎪⎨

⎪⎩

Φ1(s′) < Φ1(s) if |Sk | > |Sl |
Φ1(s′) = Φ1(s) if |Sk | = |Sl |
Φ1(s′) > Φ1(s) otherwise

Proof Simply evaluate the cost difference using Eq. (2):

Δ = Φ1(s′) − Φ1(s)

= 2

L1

⎛

⎝|Sk |
⎛

⎝a j −ai +
∑

x∈Sk
ax

⎞

⎠+|Sl |
⎛

⎝ai −a j +
∑

x∈Sl
ax

⎞

⎠−|Sk |
∑

x∈Sk
ax−|Sl |

∑

x∈Sl
ax

⎞

⎠

= 2

L1
(|Sk | − |Sl |) (a j − ai ). ��

This theorem defines some important features of the optimal solutions for Col-Peri-Sum:

– First, without loss of generality, any solution of Col-Peri-Sum can be presented in such
a way that |S1| ≥ · · · ≥ |Sm | (re-ordering the subsets according to their cardinality).

– With this representation, if k < l and |Sk | = |Sl |, there exists an optimal solution such
that ai ≤ a j for all i ∈ |Sk | and j ∈ |Sl |.

– Finally, if k < l and |Sk | > |Sl |, all optimal solutions satisfy ai ≤ a j for all i ∈ |Sk |
and j ∈ |Sl |.

As a consequence, there exists an optimal solution s∗ = {S1, . . . , Sm} of Col-Peri-Sum such
that each Sk for k ∈ {1, . . . ,m} is a subsequence (of consecutive indices) of the sequence
〈a1, a2, . . . , an〉. Therefore, we can find an optimal solution of Col-Peri-Sum by solving a
least weight subsequence problem instance over the set of integers 0 ≤ i < j ≤ n with the
weight function:

wP(i, j) = 2

⎛

⎝L1 + ( j − i)

L1

j∑

k=i+1

ak

⎞

⎠ ,

wherewP(i, j) represents the sum of the perimeters of the rectangles of indices (i+1, . . . , j)
when positioned in a single layer. Finally, Theorem 2 proves that this weight function is
concave, leading to an instance of CLWS.

Theorem 2 The weight function wP(i, j) is concave.
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Proof For 0 ≤ i0 < i1 < j0 < j1 ≤ n, one can directly verify that:

Δ′ = w(i0, j1) + w(i1, j0) − w(i0, j0) − w(i1, j1)

= 2

L1

⎛

⎝( j1−i0)
j1∑

x=i0+1

ax+( j0−i1)
j0∑

x=i1+1

ax−( j0−i0)
j0∑

x=i0+1

ax−( j1−i1)
j1∑

x=i1+1

ax

⎞

⎠

= 2

L1

⎛

⎝(i1 − i0)
j1∑

x= j0+1

ax + ( j1 − j0)
i1∑

x=i0+1

ax

⎞

⎠ > 0. ��
Therefore, after a prior ordering of the rectangles in O(n log n), an optimal solution of

Col-Peri-Sum can be found by solving an instance of CLWS, e.g., using theO(n) algorithm
of Wilber [30]. Col-Peri-Sum can thus be solved in O(n log n) in the general case, and in
O(n) if the rectangles are ordered by non-decreasing (or non-increasing) area in the input.

4 NP-hardness results

In the previous section, we have proposed an efficient O(n log n) algorithm for Col-Peri-
Sum. In contrast, we will show that the “min-max” version of this problem, Col-Peri-Max,
as well as the Col-Aspect-Ratio problems are more difficult.

Let Col-Peri-Max-Φ and Col-Aspect-Ratio- Φ be the decision problems in which
onemust determinewhether there exists a solution of value atmostΦ forCol-Peri-Max, and
Col-Aspect-Ratio, respectively. We will show that these two problems are NP-complete,
by reduction from 2-Partition [13], hence establishing the NP-hardness of Col-Peri-Max
and Col-Aspect-Ratio.

Theorem 3 Col-Peri-Max-Φ is NP-complete.

Proof In 2-Partition, we are given n positive integers c1, . . . , cn , and should determine
whether there is a partition S1 ∪ S2 = {1, . . . , n}, S1 ∩ S2 = ∅ such that

∑
x∈S1 cx =∑

x∈S2 cx .
Let cmax = maxi∈{1,...,n} ci , and consider the following Col-Peri-Max-Φ instance:

– a rectangular area of length L1 = 1
2

∑n
i=1 ci and height L2 = 2cmax;

– for i ∈ {1, . . . , n}, rectangle i has an area ai = ci × cmax; and
– Φ = 4 × cmax.

Assume that 2-Partition is True: there exists a partition (S1, S2) such that
∑

x∈S1 cx =∑
x∈S2 cx . Consider a solution of Col-Peri-Max-Φ in which the set of rectangles has been

partitioned with (S1, S2) into two layers. Each layer has the same total area, forming a
solution in which all rectangles have one side of height L2

2 = cmax. With this configuration,
the rectangle of largest area has the largest perimeter, equal to 4 × cmax = Φ, and thus
Col-Peri-Max-Φ is True.

Assume that the 2-Partition instance is False. Consider a solution of Col-Peri-Max,
and let Sk be the layer which contains the largest rectangle with area c2max. The sum of areas
in Sk is different from

L1×L2
2 , and thus the height of this layer is different from cmax. Hence,

the soft rectangle of area c2max is not arranged as a square, its perimeter exceeds 4 × cmax,
and Col-Peri-Max-Φ is False. ��
Theorem 4 Col-Aspect-Ratio- Φ is NP-complete.
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Proof Aspreviously, consider an instance of 2-Partitionwith n positive integers c1, . . . , cn .

Let C = ∑n
i=1 ci and M = 2(C+1)2

mini∈{1,...,n} ci . Define an instance of Col-Aspect-Ratio- Φ as
follows:

– a rectangular area of length L1 = M + 1
M + C

2 and height L2 = 2;
– n soft rectangles with areas c1, . . . , cn as well as two soft rectangles of area M and two

soft rectangles of area 1
M ; and

– Φ = M .

If 2-Partition is True, there exists a partition (S1, S2) such that
∑

x∈S1 cx =
∑

x∈S2 cx = C
2 . We build a solution of Col-Aspect-Ratio with two layers containing

the rectangles of S1 and S2, respectively, as well as one pair of rectangles of area M and 1
M

each. Each layer has length M + 1
M + C

2 and height 1. In this configuration, a maximum
aspect ratio of M , is jointly attained by the largest and smallest rectangles in each layer, and
thus Col-Aspect-Ratio- Φ is True.

Now, assume that 2-Partition is False. We distinguish three possible classes of solu-
tions:

– Consider a solution of Col-Aspect-Ratio with one layer. The rectangle of size 1
M has

an aspect ratio of 4M , which exceeds Φ.
– Consider a solution of Col-Aspect-Ratio with two or more layers, where at least one

layer does not contain a rectangle of size M . Let c be the area of the largest element in
this layer. Two cases should be distinguished:

– If c = 1
M , then the layer contains one or two small rectangles of area 1

M and no

other rectangle. The aspect ratio of one such rectangle can be computed as the ratio
of its length l1 ≥ 1

2 (M + 1
M + C

2 ) over its height l2 ≤ 2 × 2
M

2M+ 2
M +C

. As such,

Φ ≥ M × (M+ 1
M + C

2 )2

4 > M .

– Otherwise, there exists at least one rectangle ci in the layer and the total area of the
layer does not exceed C + 2

M . The length l1 and height l2 of the rectangle of area ci

satisfy l1 ≥ ci
C+ 2

M
× (M + 1

M + C
2 ) and l2 ≤ 2 × C+ 2

M

2M+ 2
M +C

. Thus,

Φ ≥ ci (M + 1
M + C

2 )2

(C + 2
M )2

>
minni=1ci × M2

(C + 1)2
= M .

– Finally, consider a solution of Col-Aspect-Ratiowith two layers,where each layer con-
tains exactly one rectangle of size M . Since there is no feasible solution of 2-Partition,
the total areas of the layers are different (the smaller rectangles are too small to re-balance
the sum). In the layer of smallest area, the rectangle of area M has a length l1 > M and
height l2 < 1, and thus an aspect ratio Φ = x

y > M .

In all cases, there is no solution with an aspect ratio smaller or equal to Φ, and thus
Col-Aspect-Ratio- Φ is False. ��

5 Mixed integer linear programmingmodels

SinceCol-Peri-Max andCol-Aspect-Ratio areNP-hard, we proposeMILP formulations
for these problems. These formulations can be solved to produce optimal solutions for small
and medium scale instances.
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These models describe a solution with n layers in which some of the layers can be empty.
We associate one binary variable xik and one continuous variablewik for each rectangle i and
layer k. Variable xik takes value 1 if and only if rectangle i belongs to layer k, and variable
wik represents the length of the soft rectangle i when placed in layer k, and 0 otherwise.
Finally, each binary variable yk takes value 1 if layer k is non-empty, and 0 otherwise.

5.1 Formulation of COL-PERI-MAX

The mathematical formulation of Col-Peri-Max is given in Eqs. (5)–(17):

min Φ2 (5)

s.t. 2(L1 + L2)(xik − 1) + 2

⎛

⎝wik +
n∑

j=1

a j x jk
L1

⎞

⎠ ≤ Φ2i, k ∈ {1, . . . , n} (6)

n∑

k=1

xik = 1 i ∈ {1, . . . , n} (7)

n∑

i=1

xik ≥ yk k ∈ {1, . . . , n} (8)

xik ≤ yk i, k ∈ {1, . . . , n} (9)
n∑

i=1

wik = L1yk k ∈ {1, . . . , n} (10)

wik ≤ L1xiki, k ∈ {1, . . . , n} (11)

ai xik ≤ L2wik i, k ∈ {1, . . . , n} (12)

a jwik − aiw jk ≤ a j L1(2 − xik − x jk)i, j, k ∈ {1, . . . , n}, i �= j (13)

aiw jk − a jwik ≤ ai L1(2 − xik − x jk) i, j, k ∈ {1, . . . , n}, i �= j (14)

x ji ∈ {0, 1} i, j ∈ {1, . . . , n} (15)

wik ≥ 0 i, k ∈ {1, . . . , n} (16)

yk ∈ {0, 1} k ∈ {1, . . . , n} (17)

Φ2 ≥ 0 (18)

Constraints (7)–(9) ensure that every rectangle is included in a layer and that yk takes
value 1 when at least one rectangle is contained in layer k. Constraints (10) state that the
sum of the length of the rectangles of each layer k equals L1 if this layer is used (yk = 1),
and 0 otherwise. Constraints (11) and (12) impose that (wik = 0) ⇔ (xik = 0). Finally,
Constraints (13) and (14) ensure that if two rectangles i and j are in the same layer k, then
ai/wik = a j/w jk .

This formulation can be strengthened with the addition of some simple optimality cuts
which eliminate symmetrical solutions:

yk ≥ yk+1 k ∈ {1, . . . , n − 1} (19)

xik = 0 i ∈ {1, . . . , n}, k ∈ {i + 1, . . . , n} (20)

The first set of constraints forces the use of layers according to the order of their indices, while
the second set of constraints forces any rectangle i to belong to a layer of index k ∈ {1, . . . , i}.
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5.2 Formulation of COL-ASPECT-RATIO

The objective function Φ3 is nonlinear, and we did not find a direct MILP formulation of
Col-Aspect-Ratio. Instead, we propose two alternative approaches to generate optimal
solutions for this problem. The first approach relies on a change of objective which leads
to a linear formulation returning the same optimal solutions as Col-Aspect-Ratio. The
second approach exploits the fact that the decision problem Col-Aspect-Ratio- Φ can be
formulated as a MILP. Solving this subproblem in a binary search allows us to solve the
original optimization problem.

5.2.1 First approach—change of objective function

We introduce an alternative objective function Φ4 for Col-Aspect-Ratio, expressed as:

Φ4 = max
k

max
i∈Sk

|w(Sk) − ai
w(Sk )

|
√
ai

. (21)

The following lemma will be used to prove the equivalence between the two objectives:

Lemma 1 Given two soft rectangles i and j with side lengths (li , hi ) and (l j , h j ), we have

max(li , hi )

min(li , hi )
≥ max(l j , h j )

min(l j , h j )
⇐⇒ |li − hi |√

li hi
≥ |l j − h j |

√
l j h j

.

Proof Without loss of generality, we can assume that li ≥ hi and l j ≥ h j . Then,

max(li , hi )

min(li , hi )
≥ max(l j , h j )

min(l j , h j )

⇐⇒ li
hi

≥ l j
h j

⇐⇒
√

li
hi

≥
√

l j
h j

⇐⇒
(√

li
hi

−
√

l j
h j

) ⎛

⎝1 + 1
√

li
hi

l j
h j

⎞

⎠ ≥ 0

⇐⇒
√

li
hi

−
√
hi
li

≥
√

l j
h j

−
√
h j

l j

⇐⇒ li − hi√
li hi

≥ l j − h j
√
l j h j

⇐⇒ |li − hi |√
li hi

≥ |l j − h j |
√
l j h j

��

Theorem 5 Let s3 and s4 be two optimal solutions obtained with objectives Φ3 and Φ4,
respectively. Then, Φ3(s3) = Φ3(s4), Φ4(s3) = Φ4(s4), and s3 and s4 are optimal for the
objectives Φ4 and Φ3, respectively.
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Proof For any solution s, as a consequence of Lemma 1, if Φ4(s) attains its minimum for a
rectangle i ∈ {1, . . . , n} of length li and height hi , then Φ3(s) attains its minimum for the
same rectangle, and vice-versa. Therefore Φ4(s) = |li−hi |√

li hi
and Φ3(s) = max(li ,hi )

min(li ,hi )
.

Now, assume thatΦ4(s4) andΦ3(s3) attain theirminimumfor rectangles x and y, respectively.
Therefore,

Φ4(s4) = |lx − hx |√
lx hx

, Φ3(s4) = max(lx , hx )

min(lx , hx )
,

Φ4(s3) = |ly − hy |
√
lyhy

, Φ3(s3) = max(ly, hy)

min(ly, hy)
.

Since s4 is an optimal solution for objective Φ4, Φ4(s4) ≤ Φ4(s3) and:

|lx − hx |√
lx hx

≤ |ly − hy |
√
lyhy

Therefore, as a consequence of Lemma 1, we have

max(lx , hx )

min(lx , hx )
≤ max(ly, hy)

min(ly, hy)

Similarly, since s3 is an optimal solution for objective Φ3, Φ3(s3) ≤ Φ3(s4) and:

max(ly, hy)

min(ly, hy)
≤ max(lx , hx )

min(lx , hx )

Overall,

Φ3(s3) = max(ly, hy)

min(ly, hy)
= max(lx , hx )

min(lx , hx )
= Φ3(s4),

and s4 is an optimal solution for objective Φ3. A similar proof shows that s3 is an optimal
solution for objective Φ4. ��

Based on this change of objective function, Col-Aspect-Ratio can be formulated as:

min Φ

s.t. Constraints (7)–(15)

δik + L1(1 − xik) ≥ wik −
n∑

j=1

a j x jk
L1

i, k ∈ {1, . . . , n} (22)

δik + L2(1 − xik) ≥ −wik +
n∑

j=1

a j x jk
L1

i, k ∈ {1, . . . , n} (23)

Φ ≥ δik√
ai
i, k ∈ {1, . . . , n} (24)

δki ≥ 0i, k ∈ {1, . . . , n}. (25)

Solving this formulation to optimality generates an optimal solution for Col-Aspect-
Ratio. The value of this solution must be recomputed a-posteriori according to the original
objective. The model uses n2 additional continuous variables δik , as well as a continuous
variable Φ representing the value of the alternative objective function. According to Con-
straints (22) and (23), if a rectangle i is in layer Sk , then δik = |li − hi | where li and hi
represent the length and height of the rectangle in the current solution, otherwise δik = 0.
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5.2.2 Second approach—binary search

Another solution approach consists in modeling the decision problem Col-Aspect-Ratio-
Φ as a MILP. In this case, a maximum aspect ratio Φ is set as a constraint, and the goal is to
find a feasible solution. The feasibility model can be written as follows:

Constraints (7)–(15)

L1hk =
n∑

i=1

ai xikk ∈ {1, . . . , n} (26)

wik ≤ Φhki, k ∈ {1, . . . , n} (27)

hk ≤ Φwik i, k ∈ {1, . . . , n} (28)

hk ∈ Rk ∈ {1, . . . , n} (29)

In this model, each variable hk for k ∈ {1, . . . , n} stores the height of layer Sk , while
Constraints (27)–(28) force the aspect ratio to be no higher than Φ. To solve the original
optimization problem, we perform a binary search overΦ and solve Col-Aspect-Ratio- Φ

at each step. The starting interval is set to [Φlow, Φup], where Φlow = 1, Φup = Φ3(s1),
and s1 is an optimal solution for Col-Peri-Sum found inO(n log n) time. The binary search
stops as soon as Φup − Φlow < 0.01.

6 Computational experiments

To complete the theoretical results of this article, we conducted computational experiments
to evaluate the efficiency of the solution methods for the three problems and compare their
solutions. All algorithmswere implemented inC++ and themathematicalmodelswere solved
with CPLEX version 12.4. The experiments were performed on a single thread of an Intel
i7-3615QM 2.3GHz CPU with 10GB RAM, running Mac OS Sierra version 10.12.6, and
subject to a CPU time limit of one hour for each run.

We randomly generated benchmark instances with n ∈ {10, 15, 20, 25, 30, 35, 40} soft
rectangles. These instances are subdivided into three classes. Three instances were generated
for each class and size for a total of 63 instances.

– Class U—The area of each item is sampled in a uniform distribution: X ∼ U(1, 200).
– ClassMU—The area of each item is sampled in a mixture of three uniform distributions:

X ∼ 1
3 [U(1, 10) + U(11, 50) + U(51, 150)].

– Class MN—The area of each item is sampled in a mixture of three normal distributions:
X ∼ 1

3 [N (5, 2) + N (25, 10) + N (125, 50)], but another sample is taken whenever the
area is larger than 200.

Finally, the dimensions of the hard rectangle are generated as follows. Let A be the sum of
the areas of the soft rectangles. Length L1 is randomly generated with uniform probability in
{�√A/3�, . . . , �√3A�}. The length of the other side is set to L2 = �A/L1�. Then, A − L1L2

soft rectangles are randomly selected, and the area of each rectangle is reduced by one unit.
After this procedure, the area of the hard rectangle coincides with the sum of the areas of
the soft rectangles. All benchmark instances are available at https://w1.cirrelt.ca/~vidalt/en/
research-data.html.
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6.1 Performance analysis

This section compares the CPU time needed to solve Col-Peri-Sum, Col-Peri-Max, and
Col-Aspect-Ratio. As expected, the solution of Col-Peri-Sum inO(n log n) is extremely
fast, with ameasuredCPU time of the order of a fewmilliseconds for all considered instances,
such that we concentrate our analyzes on the mathematical programming algorithm for Col-
Peri-Max as well as the reformulation and binary search approaches for Col-Aspect-
Ratio. To speed up the solution methods, we always generate the optimal solution for Col-
Peri-Sum and use it as an initial feasible solution.

Tables 1, 2 and 3 report, for each instance class and algorithm, the number of nodes in
the search tree (Nodes), the CPU time in seconds (Time), as well as the best lower bound
(LB) and upper bound (UB) found. For the reformulation-based approach for Col-Aspect-
Ratio, columns LB4 and UB4 correspond to objective Φ4, and the value of the primal
solution for objective Φ3 is indicated in column UB3. TL in column Time means that the
CPU time limit of 3600 seconds has been attained. Finally, for the binary search approach
for Col-Aspect-Ratio, we indicate the number of completed iterations in column ItBS.

As observed in these experiments, the proposed MILP models can be solved to optimality
for all benchmark instances with 10 soft rectangles, as well as a few instances with up to
30 rectangles for Col-Peri-Max and 40 rectangles for Col-Aspect-Ratio. Yet, the num-
ber of search nodes and CPU time grow very quickly with the number of soft rectangles
n. Despite the symmetry-breaking inequalities, some instances with 15 rectangles lead to
over a million search nodes. The reformulation approach and the binary search approach for
Col-Aspect-Ratio find 31/63 and 30/63 optimal solutions, respectively. The reformula-
tion approach is generally faster than the binary search algorithm for small instances. Yet, a
drawback of this algorithm is that it searches for an optimal solution according to objective
Φ4. When optimality is attained, this solution is optimal for Φ3 due to Theorem 5. When an
optimality gap remains, the primal solution obtained from the algorithm gives a valid upper
bound for objectiveΦ3, but the dual information (and performance guarantee) is lost. Finally,
we did not observe a significant difference of performance when comparing the results of
the three instance classes (U,MU and MN). We noted that two larger instances with 35 and
40 rectangles were solved to optimality for class MU, a phenomenon which did not happen
for U and MN.

In general, the limitations of available mathematical programming algorithms are already
visible when solving small instances (with 10 to 40 rectangles) of Col-Peri-Max and Col-
Aspect-Ratio. Future progress on exact approaches for NP-hard problems may allow to
solve larger instances in the future, but extensive research may be needed before handling
more realistic instances with over a hundred rectangles. Alternatively, heuristics and meta-
heuristics could be used to solve larger problems. As we noted a complexity gap between
Col-Peri-Sum and the other two problems, we are interested to see if the solution of Col-
Peri-Sum can constitute a viable heuristic for the two more difficult objectives. This is the
focus of the next section.

6.2 Solution evaluations in relation to other objectives

The objective functions of the three considered problems are different but not strongly
conflicting. Yet, Col-Peri-Sum can be solved in O(n log n), while Col-Peri-Max and
Col-Aspect-Ratio are NP-hard. In this last analysis, we investigate how close these prob-
lems are from each other in practice. This is achieved by evaluating the optimal solution for
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Table 4 Optimal solutions for one objective evaluated according to the other objectives

Evaluated as Col-Peri-Sum—Φ1 Col-Peri-Max—Φ2 Col-Aspect-Ratio—Φ3

Solved as Φ1 Φ2 Φ3 Φ1 Φ2 Φ3 Φ1 Φ2 Φ3

MN-p01 1.00 1.30 1.00 1.12 1.00 1.07 1.60 13.09 1.00

MN-p02 1.00 1.11 1.00 1.00 1.00 1.00 1.00 22.02 1.00

MN-p03 1.00 1.55 1.00 1.04 1.00 1.04 1.00 12.86 1.00

U-p01 1.00 1.06 1.00 1.08 1.00 1.09 1.01 4.27 1.00

U-p02 1.00 1.00 1.13 1.00 1.00 1.31 1.60 1.60 1.00

U-p03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MU-p01 1.00 1.23 1.05 1.05 1.00 1.13 1.07 5.97 1.00

MU-p02 1.00 1.06 1.01 1.00 1.00 1.00 1.00 22.69 1.00

MU-p03 1.00 1.19 1.00 1.05 1.00 1.05 1.00 7.09 1.00

MN-p04 1.00 1.41 1.08 1.00 1.00 1.09 1.08 38.85 1.00

MN-p05 1.00 1.24 1.02 1.00 1.00 1.04 1.00 9.76 1.00

U-p05 1.00 1.04 1.02 1.01 1.00 1.03 1.67 2.31 1.00

MU-p04 1.00 1.11 1.02 1.13 1.00 1.06 2.24 21.59 1.00

MU-p06 1.00 1.27 1.01 1.00 1.00 1.00 1.24 29.31 1.00

MN-p07 1.00 1.15 1.25 1.24 1.00 1.55 1.16 14.65 1.00

MN-p08 1.00 1.23 1.14 1.15 1.00 1.33 1.22 9.31 1.00

U-p09 1.00 1.06 1.00 1.06 1.00 1.10 1.37 6.35 1.00

MU-p09 1.00 1.24 1.04 1.00 1.00 1.07 5.74 29.47 1.00

Average 1.00 1.18 1.04 1.05 1.00 1.11 1.50 14.01 1.00

one problem according to the objective function of each other. In particular, we are interested
to see if the solution of Col-Peri-Sum can be used as a simple heuristic for Col-Peri-Max
and Col-Aspect-Ratio.

For this analysis, we gathered all instances that are solved to optimality for all three
problems: all instances with n = 10; instances U-p05,MU-p04,MU-p06,MN-p04, andMN-
p05 with n = 15; and instances U-p09, MU-p09, MN-p07, and MN-p08 with n = 20. For
each objectiveΦx , we evaluated the qualityΦy(s∗

x ) of its optimal solution s∗
x relatively to each

other objective y ∈ {1, 2, 3}, and report the results as the performance ratio Φy(s∗
x )/Φy(s∗

y )

in Table 4.
These experiments first confirm the fact that the three objectives produce significantly

different solutions. For these instances, the optimal solutions of Col-Peri-Sum are within an
average factor of 1.05 of the optimal solutions of Col-Peri-Max when evaluated according
to objectiveΦ2, and are better than the optimal solutions of Col-Aspect-Ratiowith a factor
of 1.11. Similarly, the optimal solutions of Col-Peri-Sum give a better approximation of
the optimal solutions of Col-Aspect-Ratio than the optimal solutions of Col-Peri-Max
(with a factor of 1.50 compared to 14.01).

One likely explanation for these observations is that the objective of Col-Peri-Max
mainly concentrates the optimization on rectangles of large area, so as to minimize their
perimeter. In Col-Peri-Max, small rectangles almost never play a role as they are unlikely
to realize the maximum. In Col-Aspect-Ratio, in contrast, small and large rectangles are
equally important, since the maximum aspect ratio can be attained regardless of the rectangle
area. Finally, Col-Peri-Sum must optimize the perimeter of all rectangles, regardless of
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their area, so as to minimize the total sum. This objective leads to optimal solutions which
tend to have good overall aspect ratios, regardless of rectangle size.

Finally, Col-Peri-Sum produced five optimal solutions for Col-Peri-Max and six opti-
mal solutions for Col-Aspect-Ratio over 18 instances. In one exceptional case (instance
p03 of class U), the three methods converged towards the same optimal solution. This situa-
tion happened because the optimal solution contained a single layer, but other situations can
lead to this behavior: e.g., if a feasible solution exists in which all soft rectangles take the
shape of a square, then this solution is indeed optimal for the three objectives.

7 Conclusions

In this paper, we investigated three soft rectangle packing problems: Col-Peri-Sum, Col-
Peri-Max andCol-Aspect-Ratio. The effective resolution of these problems is of foremost
importance for the ongoing land-allocation reform in Vietnam. The objectives considered
in these problems model different aspects of fairness and wasted-land minimization. We
proposed an O(n log n) exact algorithm for Col-Peri-Sum. Then, we demonstrated that
the two others problems are NP-hard, and proposed compact MILP formulations to solve
them. In the case of Col-Aspect-Ratio, an objective reformulation and a binary search
scheme were proposed to overcome non-linearities. Through a set of experimental analyzes
on 63 benchmark instances, we observed that the resolution of the MILP formulations is
currently practicable for problem instances involving 10 to 40 soft rectangles. For larger
instances of Col-Peri-Max and Col-Aspect-Ratio, we also observed that theO(n log n)-
time algorithm for Col-Peri-Sum produces good average results, allowing to use it as a
simple and effective heuristic for these problems.

The research perspectives are numerous. The proposed formulations can possibly be
improved with additional valid inequalities or optimality cuts, and the set-partitioning for-
mulation of the problem can certainly be exploited to develop efficient branch-and-price
algorithms. Metaheuristics could also be developed to provide solutions for larger instances
or integrate additional restrictions or objectives. Finally, whether Col-Peri-Max and Col-
Aspect-Ratio are strongly NP-hard remains an interesting open question.
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