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ABSTRACT
The widespread adoption of Internet of Things (IoT) devices built
on different architectures gave rise to the creation and develop-
ment of multi-architecture malware for mass compromise. Cross-
architecture malware detection plays an important role in detecting
malware early on devices using new or strange architectures. Prior
knowledge of malware detection on traditional architectures can
be inherited for the same task on new and uncommon ones. Basing
on CFD and Vex intermediate representation, we propose a fea-
ture selection method to detect cross-architecture malware, called
CFDVex. Experimental evaluation of the proposed approach on
our large IoT dataset achieved good results for cross-architecture
malware detection. We only trained a SVM model by Intel 80386
architecture samples, our method could detect the IoT malware for
the MIPS architecture samples with 95.72% of accuracy and 2.81%
false positive rate.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Security and Privacy→ Systems Security; Intrusion/anomaly de-
tection and malware mitigation.
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1 INTRODUCTION
In the last few years, the Internet of Things (IoT) becomes a more
and more important trend in the world. It has an emergent range of
application domains such as healthcare, energy management, intel-
ligent transport systems, smart building, smart city, military. This
rapidly increasing popularity has attracted the attention of malware
developers, therefore malware is a potential security challenge. In
the first half of 2018, there were more than 120,000 IoT malware
instances detected by Kaspersky IoT Lab, while there were only 193
malware samples in 2014 and 7,242 ones reported in 2017 [1]. Only
some emerging IoT malware such as Tsunami, Mirai, Brickerbot are
really significant and worldwide. Embedded Linux is known as the
most popular operating system (OS) for IoT devices [2]. Therefore,
detecting novel malware on Embedded Linux OS of IoT devices
is a big challenge, due to the diversity of types, a broad range of
applications, increasing computing and processing capabilities of
IoT devices.

One of the most major challenges in designing IoT malware de-
tection systems is the generation of a lightweight cross-architecture
signature generation scheme for detecting and classifying IoT mal-
ware [3]. The signature-based malware detection methods [4] at-
tempt to model the malicious behavior of malware and use the
model in the detection of malware. These methods are widely used
by security vendors, but they are ineffective against IoT malware,
especially those that exploit zero-day vulnerabilities, or unknown
malware

Different from traditional malware, one unique characteristic
of IoT malware is cross-platform capability. In heterogeneous IoT
infrastructures, different processor architectures and OSs are sup-
ported [5]. There is a sharp increase in the number of malware
samples that can run on different OSs such as Windows, Linux,
Android [6]. Besides, a malware source could be compiled on many
CPU architectures, therefore its compiled instances could run on
IoT devices using different CPU architectures such as Intel 80386,
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ARM, MIPS, PowerPC, etc, these kinds of malware are called cross-
architecture malware. There are much research that mention how
to detect multi-platform malware such as Alhanahnah et al. [3],
Alam et al. [7].

IoT devices used to be hardware components with small to
medium size software drivers and applications to enable a lim-
ited interface to those components [8]. Static analysis is a method
of analyzing and examining malware based on their characteris-
tics without execution, which is one of two important research
directions in the malware analysis and detection. Hence, static anal-
ysis can become an efficient method on IoT malware analysis and
detection because encryption and obfuscation techniques are not
commonly used by the malware. In the past, there had been many
researches on static analysis achieved good results in malware de-
tection such as API call [9], PSI (Printable String Information) [10],
opcode (Operation Code) [11], CFG (Control Flow Graph) [12], etc.

Some feature types at high abstract level do not depend on ar-
chitectures such as PSI, API call, etc. They can be used to detect
cross-architecture malware. In the recent years, cross-architecture
malware detection focuses on intermediate representation (IR). Kim
et al. [13] proposed an intermediate representation for binary anal-
ysis, but they can only find semantic bugs in binary lifters. Sepp et
al. [14] proposed an extension of REIL with relational information
by translating the flags (an instruction’s side effects) calculations
into arithmetic instructions. However, REIL cannot handle self-
modifying code because REIL instructions can not be overwritten
or modified during the interpretation of REIL code. It does not sup-
port all the architectures that we wanted. Zhoa et al. [7] proposed
a new intermediate language major in malware analysis, named
MAIL, which can analyze and detect metamorphic malware. MAIL
provides an abstract representation of an assembly program and
hence the ability for a tool to automate malware analysis and de-
tection. The experiments of MAIL referred to testing with ARM
and Intel 80386, but its dataset is a little samples (250 malware
and 1,137 benign), unbalance in size of CFG and do not mention
cross-architecture detection clearly. Therefore, it’s hard to fairly
evaluate its accuracy. In summary, in our knowledge, there is no
research to solve cross-architecture malware detection with full
scripts and a large size dataset enough.

Furthermore, Vex is an intermediate representation used in Val-
grind [15], a famous dynamic binary instrumentation tool. It has an
architecture-agnostic, side-effects-free representation of a number
of target machine languages. The uplifting of binary code into Vex
is quite well supported. It abstracts machine code into a representa-
tion designed to make program analysis easier [16]. Additionally,
the VINE intermediate language (VINE-IL) proposed by Song et al.
[17] is an intermediate language of the static analysis framework
VINE used in the BitBlaze project, which is used in tool Panorama
[18] for malware analysis and detection. VINE first translates a
binary to Vex, and then to VINE-IL.

Internally, Vex is used by Angr [19, 36], a famous open source
malware analysis. Angr chosen Vex as its intermediate representa-
tion because reliable translation methods from many architectures
already existed in Valgrind [20]. Vex was the only choice that of-
fered an open library and supported for many architectures. As
a bonus, it is very well documented and designed specifically for
program analysis, making it very easy to use in Angr.

Control flow-based features, which combine both CFG and op-
code, achieve high malware detection accuracy. Using opcode to
detect malware, was firstly proposed by Bilar [21]. Afterward, many
researches based on opcode like [11, 22, 23] have been done. San-
tos et al. [23] have suggested the Idea method to detect variants
of known malware families based on frequency of appearance of
opcode sequences. From opcode sequences, they built vector repre-
sentation of the executable binaries.

The Control flow-based feature extraction method proposed by
Ding et al. has the ability to detect malicious code with higher ac-
curacy than traditional Text-based methods. However, The Ding et
al.’s method encountered NP-hard problem in a graph, therefore, it
is not feasible with the large-size and high-complexity programs. In
our previous work [24], we proposed the CFD (called as C500-CFG)
algorithm for extraction of Control flow-based features based on the
idea of dynamic programming with polynomial complexity O(N 2),
where N is the number of basic blocks in decompiled executable
codes. Thus, it is more efficient and more effective in detecting
malware than the old one: processing faster, extracting feature of
large files, using less memory and detecting IoT malware with high
accuracy.

Thus, we propose, in this paper, a feature selection method for
cross-architecture malware detection, named CFDVex. Our method
is based on Vex intermediate representation and the idea of CFD
method. The CFD method extracted Control flow-based features
based on opcode, therefore we calculated n-gram of opcode stream
concatenated from all execution paths of CFG. The CFDVex ex-
tracts Control flow-based features based on Vex instead of opcode,
by calculating n-gram of Vex stream concatenated from all ex-
ecution path of CFG. By translating to Vex, Angr could extract
CFG from executable program with high accuracy. Hence, we can
achieve good results by combining synchronously Vex of basic
blocks with CFG extracted based on Vex compare with other IRs.
The Vex intermediate representation is extracted at two levels of
information including Vex command type information and spe-
cific Vex command information, respectively. CFDVex is trained
by Support Vector Machine (SVM)[25] in three scenarios including
Vex-based malware detection, mixed playback capabilities, and the
ability to detect cross-architecture malware. Vex-based malware
detection is a malware detection method based on evaluation and
training on the same architecture dataset. Mixed detection means
training and testing data are multi-architectures dataset. Malware
cross-architecture detection is a malware detection method that
evaluates the model with a different architecture dataset from the
training model.

Costin et al. [26] analyzed 32,000 firmware images, reported
that Linux was the most frequently encountered embedded OS in
their dataset – being present in more than three quarters (86%) of
all analyzed firmware images. Pa et al. [27] proposed IoTPOT, a
honeypot has been collected about 4,000 IoT malware samples such
as Tsunami, Mirai, Bashlite etc. Another IoT malware database that
we can mention is Detux [28] with more than 9,000 samples. Beside
IoT malware samples, it is crucial to collect benign files to be able
to implement detection algorithms. Brash [29] has collected 1,078
benign and 128 malware samples for ARM-based IoT applications.
In their experiments, Alhanahnah et al only collected 130 benign
IoT samples, which is also small compared with the number of
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malware samples. Alhanahnah et al. [3] said that IoT malware
dataset provided by IoTPOT was the largest IoT malware dataset
currently available. But with these above datasets, it is not true.
A sufficiently large and dataset with full architecture types are
needed to ensure fairly and accurately in algorithm evaluation.
Therefore, we collected the IoT dataset which is the largest IoT
dataset currently available.

In this paper, our experimental dataset focuses on two main
architectures of Intel 80386 and MIPS. There are 8 types of archi-
tecture in the IoT dataset, but MIPS and Intel 80386 are larger,
and they represent two popular platforms: PCs and embedded de-
vices. Experimental evaluation of the proposed approach using our
dataset yields malware detection achieved good results. The main
contributions of the paper include:

• We propose an novel CFDVex feature selectionmethod based
on combining between Vex IR and CFD, as a novel feature
extraction method for cross-architecture malware detection.
The CFDVex achieved a high malware detection accuracy
and a low FPR on cross-architecture IoT dataset.

• We make an assessment and evaluate the relationships of
malware on different architectures based on experimentation
using our dataset yields malware detection.

• Webuild IoT dataset which is the largest IoT dataset currently
available for multi-architecture.

The remainder of this paper is organized as follows: Section II
shows knowledge of Vex intermediate representation; In section
III, we present the main idea and introduce our proposal; We ex-
periment and evaluate the performance of the methods in section
IV; Finally, the conclusions are given in section V.

2 VEX INTERMEDIATE REPRESENTATION
The Vex IR [16] abstracts away several architecture differences
when dealing with different architectures, allowing a single analysis
to run on all of them: Register names, Memory access, Memory
segmentation, Instruction side-effects. This representation has four
main classes of objects:

• IR Expressions represent a calculated or constant value;
• IR Operations describe a modification of IR Expressions;
• IR Temporary variables are used as internal registers, IR Ex-
pressions are stored in temporary variables;

• IR Statements model changes in the state of the target ma-
chine, such as the effect of memory stores and register writes,
IR Statements use IR Expressions for values they may need;

• IR Blocks are a collection of IR Statements, representing an
extended basic block in the target architecture.

Vex IR is actually well documented in the libvex_ir.h file [30].
An example of IR translation from opcodes on MIPS architecture
is presented in Table 1. In the example, the (push ebp) opcode is
translated into 5 IR Statements; the (mov ebp, esp) opcode is trans-
lated into 2 IR Statements, each of which contains at least one IR
Expression.

There are 11 types of IR Statements [30] shown in Statement
type Column of Table 2. A statement has many templates for how to
cooperate IR Expressions, Operations and IR Temporary variables.

3 OUR METHOD
The CFDVex feature extraction method extracts Control flow-based
Vex IR behaviors using CFD algorithm idea [24]. Each vertex is a
basic block of a Vex representation sequence instead of an opcode
sequence. An opcode statement contains opcode name and parame-
ters, CFD only gets opcode name, which is first word in an opcode
statement, to generate the opcode sequence. Vex statements have
many forms than opcode statements. They have a lot of types, each
type includes many templates, therefore we must find out how to
select their representation.

We propose two ways to select a Vex statement’s representation
called CFDVex level 1 and level 2. At CFDVex level 1, we only get an
IR Statement type as a Vex statement’s representation. It means a
Vex’s representation of a Vex statement is determined as a Statement
type in Statement type Column of Table 2. And at the CFDVex level
2, a main expression of each statement is selected as the proposed
representations column in Table 2. There are many IR operations
such as Add8, Add32, Sub32, Mul32, Shl32, CmpEQ32 etc, therefore
the Opnames in the proposed representations column in Table 2
get the value corresponding to that statement. There are 2 examples
presented in Table 1 that show how to get Vex level 1 and Vex level
2 from an IR Statement.

Table 1: Opcode translation to Vex IR, Vex level 1 and Vex
level 2

Opcode Vex IR Level 1 Level 2

push ebp

- IMark(0x6570, 1, 0) -
t0 = GET:I32(offset=28) WrTmp Get
t10 = GET:I32(offset=24) WrTmp Get
t9 = Sub32(t10,0x0004) WrTmp Sub32
PUT(offset=24) = t9 Put Put
STle(t9) = t0 Store STle

mov ebp, esp
- IMark(0x6571, 2, 0) -
PUT(offset=28) = t9 Put Put
PUT(offset=68) = 0x6573 Put Put.cons

According to CFD Algorithm [24], there are 3 phases to extract
Control flow-based features from a decompiled executable program.
Firstly, a CFG is extracted from the decompiled executable pro-
gram. Secondly, a Execution graph (E-Graph, called C500-Graph) is
constructed from the CFG based on the E-Graph Algorithm [24].
Finally, from the E-Graph, Control flow-based features with n-gram
based on Vex is computed by Algorithm 1.

In Algorithm 1, the getNgramVexConnect(u,v) function computes
an n-gram Vex frequency vector of the Vex sequence that includes
(n-1) Vex’s representations at the end of vertex u and (n-1) Vex’s
representations at the begin of vertex v, where n is the length of n-
gram. The function getNgramVexOfVertex(u) calculates an n-gram
Vex’s representation frequency vector of the Vex’s representation
sequence of vertex u.

Example for a Vex Level 1 stream of a MIPS ELF block:
Put Put Put WrTmp WrTmp WrTmp Put Store Put Put StoreG CAS

WrTmp WrTmp WrTmp WrTmp WrTmp WrTmp

Example for a Vex Level 2 stream of a MIPS ELF block:
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Input: E-Graph GC = (V, A, r, L, C, D)
n: the length of n-gram

Output: A Control flow-based Vex features vector with
n-gram feature
1: feature = 0
2: for u in V do
3: sumU = 0
4: for v in getChildNodesOf(u) do
5: sumU = sumU + D[u,v]
6: feature = feature + D[u,v] * getNgramVexConnect(u,v)
7: end for
8: feature = feature + getNgramVexOfVertex(u) * sumU
9: end for

Algorithm 1: Extracting Control flow-based Vex features with
n-gram from E-Graph

Table 2: Vex IR statement types, statement templates list and
its proposed representation

Statement type Templates Proposed
representation

Put Put(add) = tmp Put
Put(add) = constant Put.cons

PutI PutI(add) = tmp PutI
PutI(add) = constant PutI.cons

WrTmp tmp = GET (add) Get
Tmp = Constant Constant
Tmp = tmp Copy
Tmp = op Opnames
Tmp = LDle(tmp) LDle
Tmp = LDle(constant) LDle

Store STle (add) = tmp STle
STle (add) = constant STle.cons
STle(tmp) = tmp STle
STle(tmp) = constant STle.cons

LoadG LoadG LoadG
StoreG StoreG StoreG
CAS CAS CAS
LLSC LLSC LLSC
Dirty Dirty(constant) Dirty

Dirty(RdTmp, constant) Dirty.cons
MBE MBE MBE
Exit Exit Exit

Put Put.cons Put.cons Get Get Sub32 Put STle Put Put.cons StoreG
CAS Add32 Sub32 Mul32 Mul32 Shl32 CmpEQ32

After a Control flow-based features with n-gram of an executable
program was extracted by Algorithm 1, a machine learning method
will be used to train and detect malware.

The complexity of E-Graph building algorithm is O(N 2), where
N is the number of basic blocks in a decompiled executable pro-
gram [24]. The complexity of Control flow-based features from
E-Graph extracting algorithm with n-gram is also O(N 2), because
it is determined by the number of for loops at line number 2, 4 in

the Algorithm 1. In summary, the complexity of CFDVex algorithm
is O(N 2).

4 THE EXPERIMENTS
4.1 IoT Dataset
We collected IoT malware from many sources such as IoTPoT [27],
Detux [28], and VirrusShare [33]. After collecting, we filtered only
executable ELF files and checked in VirusTotal [34]. Benign samples
are extracted from more than 23,000 firmware image of routers [35]
such as Asus, Belkin, Tenvis, Dlink, TP Link, Linksys, Trendnet,
Centurylink, Zyxel, Openwrt, etc. Intel 80386 and X86-64 benign
samples were collected from new installation Ubuntu OSs with
some common applications on PCs. Malware and benign samples
spread almost common IoT architectures such as MIPS, ARM, Pow-
erPC, Motorola, SPARC, RenesasSH and PC architectures like Intel
X86-64. The number of samples distributing follow architecture is
presented in Table 3. The Shared column, shows the number of
samples existed in the three sources (Virus-Share, IoTPoT, Detux), is
below 5% of the total malware samples. It means that the collected
malware dataset from the three sources are almost dependent on
each other. Our IoT dataset is a useful dataset for cross-architecture
malware detection. The number of benign samples is one of the
most limited previous researches, but it is large enough in this
dataset. Although there are still absent benign samples of some
architectures, but to our knowledge, our IoT dataset is the largest
IoT dataset currently available, the size of the IoT dataset is 9,380
MB and can be get from http://firmware.vn.

Table 3: Our IoT dataset statistic information

Virus IoTPot Detux Shared Total Total
-Share Mal Benign

MIPS 1,603 935 3,282 798 5,022 1,899
ARM 2,117 912 35 26 3,038 530
Intel 5,492 570 29 5 6,086 1,438
80386
X86-64 586 320 11 3 914 180
SPARC 584 299 8 4 887
Motorola 1,455 294 4 5 1,748
PowerPC 699 353 12 4 1,060 60
Renesas 646 310 2 3 955

13,182 3,993 3,383 848 19,710 4,107

4.2 Environment Setup
Our experiments were run on the 64-bits Ubuntu 16.04.3 operating
system,with 2x12-core CPUs, Intel Xeon E5-1600 family, 64GBRAM.
A CFG of ELF file was extracted by Angr’s CFGEmulated method
because it reached high accuracy [24]. We got a Vex sequence from
a basic block by the Angr framework Angr because of supporting
Vex IR at both level 1 and level 2. Feature extraction and machine
learning method [25] were installed on the Scikit-learn Python
library 0.19.2.
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4.3 Measurements
The performance of the classifiers is evaluated by four criteria:
Accuracy, F1-Score, False Negative Rate (FNR), and False Positive
Rate (FPR). We define the following measures:

Accuracy =
TP +TN

TP +TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 ∗
Precision ∗ Recall

Precision + Recall
(4)

FPR =
FP

TN + FP
(5)

FNR =
FN

TP + FN
(6)

where:
- TP: The number of malware samples truly predicted to be

malware
- FP: The number of benign samples truly predicted to be mal-

ware.
- FN: The number of malware samples truly predicted to be

benign.
- TN: The number of benign samples truly predicted to be benign.

4.4 Feature reduction and Machine learning
method

Chi-Square [31] feature reduction method is used to check the
relevance between two events, which are the appearance of features
and class labels. It is one of most efficient feature reduction methods
in the text classification and get high accuracy when cooperate with
CFD [24]. In Chi-Square, K is an important paramater, define as the
number of dimentions of feature vector after reducing. If K is too
small, it lacks of information to classify. The larger it is, the lower
speed of classification reduce.

Chi-Square applied in [24] reached a high accuracy at K = 300.
The experimental results in CFD [24] clarified that the 2-gram
feature extraction is better than the 3-gram feature extraction for
the same MIPS dataset. Hence, we selected K = 300 and 2-gram for
our experiments.

For Vex IR level 1, there are only 11 elements of the Vex IR
statement types as mentioning in Table 2. If we apply 2-gram feature
selection to CFDVex, there are 121 dimensions for the feature vector.
It’s small, therefore we do not need to reduce dimensions of the
feature vector. For the Vex IR level 2, there are more than 300
elements of the Vex IR statement representation as mentioning
in Table 2. The number of 2-gram vector’s dimensions are large,
therefore we will use a feature reduction method.

The SVM classification is a highly efficient method of binary
classification, also reached high accuracy with CFD [24]. We used
SVM with the sigmoid function kernel and grid search method,
which can find the best parameter set. In the experiments, we use a
5-folk cross-validation method with the best parameter set. Data
are divided into five different parts with four training parts and one

testing part for each experiment. Measures such as accuracy, FPR,
FNR, F1-Score are calculated as the average of five times in these
experiments.

4.5 Performing single comparison on MIPS,
Intel 80386

Ding et al.’s method was too slow to extract features of all MIPS
samples in our IoT dataset, therefore we only use T1 set was a
small part of the IoT dataset, which was presented in our previous
research [24] with 844MIPS samples of 300 benign and 544 malware
samples. Figure 1 shows comparison between Ding et al.’s method
[12], CFD [24] and CFDVex level 2 on MIPS architecture samples
of T1. In the figure, the dotted bar shows accuracy of the three
methods, the solid bar shows F1-Score of the three methods. We
noted that, CFDVex level 2 got a higher accuracy and a higher
F1-Score than Ding et al.’s method, but a little lower than CFD
based on opcode. It means that the Vex IR has a good ability to
detect malware, of course, there is still a loss of information in the
translation process compared to using opcode.

Figure 1: Comparison betweenCFD, Ding et al.’smethod and
CFDVex level 2 on MIPS architecture dataset

The experimental results for the CFDVex method’s malware
detection capacity are shown in Table 4. The average accuracy
for Intel 80386 architecture is 98.6% at the CFDVex level 1 and
98.96% at the CFDVex level 2, the average FPR is approximately
0.62-0.71%. With MIPS architecture, the average accuracy is 97.98%
at the CFDVex level 1 and 98.30% at the CFDVex level 2. The average
FPR is approximately 1.27-1.28%. It proves that the CFDVex has a
high capacity to detect malware running on Intel 80386 and MIPS
architecture with affordable FPR. The CFDVex level 2 got better
outcome than the CFDVex level 1.

4.6 Evaluation of crossed architecture samples
Table 5 shows experimental results of crossed-architecture malware
detection.When we trained by the Intel 80386 dataset and evaluated
by the MIPS dataset, it achieved a high accuracy (95.72%) and a
affordable FPR (3.2%). But if we trained by the MIPS dataset and
evaluated by the Intel 80386 dataset, it got bad results. Its reason is
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Table 4: Malware detection on single architecture

CFDVex CFDVex
Level 1 Level 2

Intel 80386
FPR 0.71 0.62
FNR 2.06 1.6
ACC 98.60 98.96

MIPS
FPR 1.28 1.27
FNR 2.5 1.9
ACC 97.98 98.30

the Intel 80386 dataset contains more types of malware than the
MIPS dataset, only some malware instants of Intel 80386 appeared
on MIPS. Thus, it’s predicted that in the near future there will be a
huge amount of malware that can appear in the direction of moving
from Intel 80386 to MIPS. Although there is no high accuracy de-
tection as with single architecture, but the experiments also proved
that we could detect malware instance on a new architecture by
learning malware samples from existing and common architectures
like Intel 80386.

Table 5: Evaluation of cross architecture malware detection

CFDVex CFDVex
Level 1 Level 2

Intel 80386 for training FPR 3.1 2.81
Testing by MIPS FNR 4.77 2.56

ACC 94.20 95.72
MIPS for training FPR 0.62 1.12
Testing by Intel 80386 FNR 92.02 82.3

ACC 52.7 58.2

4.7 Detection on mixed architecture samples
We generated a mixed dataset from Intel 80386 and MIPS samples at
training and evaluating steps. The experimental results are shown
in Table 6 with ACC is 97.02%, FPR is 1.05% and FNR is 2.51% with
CFDVex level 2. It is still a higher accuracy compare with accuracy
reported in [3] is 85.2% even with larger data samples.

Table 6: Detection on mixed architecture samples

CFDVex CFDVex
Level 1 Level 2

FPR 1.27 1.05
FNR 4.04 2.51
ACC 95.98 97.02

5 CONCLUSIONS AND FUTUREWORK
In this paper we proposed the new method CFDVex to detect cross-
architecture malware by reusing our previous developed tools and
other methods. The CFD has gotten a high detection accuracy with
each architecture of IoT malware through opcode. The Vex interme-
diate representation is used efficiently in many cross-architecture

tools like Valgrind and Angr. Thus, our CFDVex is a feature selec-
tion method for cross-architecture ELF file that is based on Vex
intermediate representation and our CFD method. We generated
the IoT dataset which is the largest IoT dataset currently available
for multi-architecture and conducted systematic experiments of
detection of malware on each architecture, mixed architectures to
improve accuracy, and cross-architecture to detect malware on new
architecture.

Experimental evaluation of the proposed approach using our
IoT dataset achieved good results with rate of the ability to de-
tect Vex-based malware reaching 98.96%, mixed detection reached
97.02% and across from Intel 80386 to MIPS architecture detection
reached 95.72%. Two proposed feature extraction methods have
good capacity of malware detection and CFDVex level 2 get higher
accuracy and lower FPR than level 1 in all experiments.

As our future work, we will (1) verify the CFDVex algorithm
with all datasets to evaluate the performance and effectiveness; (2)
find out a relation of malware instances between different architec-
tures; and (3) improve the CFDVex at level 2 by choosing suitable
representation for each template.
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