
Reducing Temporal Redundancy in MJPEG using
Zipfian Estimation Techniques

Ngoc-Sinh Nguyen, Duy-Hieu Bui, Xuan-Tu Tran
SIS Laboratory, VNU University of Engineering and Technology (VNU-UET),

144 Xuan Thuy road, Cau Giay, Hanoi, Vietnam. Email: {sinhnn 55,hieubd,tutx}@vnu.edu.vn

Abstract—Motion JPEG simply compresses each frame in a
video sequence using JPEG still image compression standard.
This video codec satisfies power consumption and real-time prop-
erties of embedded systems while having very low complexity.
However, the downside is its inefficiency in reducing the bit-rate
because there are still redundancies between encoded frames.
In this paper, we focus on reducing temporal redundancies
in MJPEG using a motion detection algorithm, called Zipfian
estimation. The Zipfian estimation helps MJPEG extract sepa-
rately the moving blocks and the stationary blocks then removes
temporal redundancies by minimizing encoded bit-stream of
stationary blocks and encoding only the residuals of the moving
blocks between adjacent frames. Experimental results show that
the proposed method can provide twice compression ratio as
much as the conventional MJPEG, and an approximate quality
and bit-rate as the H.264/AVC (Intra-mode). Even the proposed
method uses the Zipfian estimation, it still has smaller number
of operations than the conventional MJPEG if the percentage of
the static scene is equal or greater than 60%. Compared with
the H.264/AVC Intra mode when turning off the rate-distortion
optimization, the running time of the proposed method is still
only a half.

I. INTRODUCTION

The size of digital videos is the most concerned issue when
putting them into limited storage systems and transmitting
them through limited bandwidth communication channels.
Video compression reduces the size of video without degrad-
ing the quality of video into an unacceptable level. This allows
more videos to be stored in a given amount of storage systems
and requires smaller bandwidth in transmission. The most
popular video standard today is the H.264/AVC which achieves
39% bit-rate reduction than the previous standard, the MPEG-
4 [1]. Last year, the newest video coding standards, the High
Efficiency Video Coding (HEVC) [2] has been released and
can achieve even 50% bit-rate reduction than the H.264/AVC.
However, these standards are too complex and therefore, they
are not suitable for embedded systems with limited resources.

MJPEG is a purely spatial video compression using the
JPEG standard. It compresses independently each frame of
video into JPG format. Compared to the H.264/AVC, the
MJPEG requires lower CPU performance and has higher
processing speed that satisfies power consumption and real-
time properties of embedded systems. However, the size of
encoded video using MJPEG is much larger than using the
H.264/AVC, which raises the requirements of the storage space
and network bandwidth.

JPEG is the most popular image compression standard [3]
thanks to its simplicity and efficiency. JPEG removes spatial

redundancies that are low effect on human’s eyes system.
Figure 1 shows the main processes in JPEG encoder lossy
form. It includes forward Discrete Cosine Transform (FDCT),
Quantization, Zigzag Ordering, Entropy Encoding. The FDCT
converts pixel values into frequency domain. The transformed
coefficients are quantized using quantization table to remove
spatial redundancies, and read in a zigzag scan. Finally, the
zigzag sequence is encoded by Entropy Encoding.

Fig. 1. JPEG encoder.

In this paper, to improve the compression ratio of the
conventional MJPEG while keeping its simplicity, we applied
a low complexity but robust motion detection algorithm, called
Zipfian estimation [4], [5], to the MJPEG. We focus on reduc-
ing temporal redundancy in MJPEG using Zipfian estimation
techniques. As the conventional MJPEG, the proposed codec
encodes frames into JPG bit-stream but instead of encoding
original frames, the codec encodes only the residual of motions
and minimizes encoded bit-stream of stationary blocks.

The rests of the paper are organized as follows. Section II
introduces Zipfian estimation. Section III describes the pro-
posed codec architecture. Section IV presents the experimental
results. Finally, conclusions and remarks will be provided in
Section V.

II. ZIPFIAN ESTIMATION

Zipfian estimation is the one of the fastest motion detection
algorithms [4], [5], see Algorithm 1. It is improved from basic
Σ − ∆ background subtraction algorithm [6]. The algorithm
builds a model of static scene, called background, then ana-
lyzes the difference between current frame and the background
to get the moving pixels, called foreground. Firstly, the algo-
rithm computes a threshold according to the frame index t: p
is the value of the index module 2m (m is the number of bits
representing a pixel). π is the value of the greatest power of 2
that divides p. Then, the threshold is equal 2m divided by π.
The background Mt is updated whenever variance Vt is greater
than σ. Next, Ot is the absolute difference between It and
Mt. To avoid auto-reference, the variance Vt is updated using

a constant period Tv (usually the power of 2 and in the range
from 1 to 64). N is an amplification factor of the variance Vt
(usually from 1 to 4). Finally, moving or stationary of a pixel is
decided by comparing the absolute difference to the variance.
As shown in Algorithm 1, the Zipfian estimation works on any
size fixed-point arithmetic using only comparison, increment
and absolute difference. The work in [7] indicates that Zipfian
is much faster than the others.

Algorithm 1: Zipfian estimation [6]
find the greatest 2p that divides (t mod 2m)
set σ = 2m/2p

foreach pixel x do
if Vt−1(x) > σ then

if Mt−1(x) < It(x) then Mt(x)←Mt−1 + 1
if Mt−1(x) > It(x) then Mt(x)←Mt−1 − 1

foreach pixel x do
Ot(x) = |Mt(x)− It(x)|

foreach pixel x do
if t mod TV = 0 then

if Vt(x) < N ×Ot(x) then Vt(x)← Vt−1(x) + 1
if Vt(x) > N ×Ot(x) then Vt(x)← Vt−1(x)−1

foreach pixel x do
if Ot(x) < Vt(x) then Et(x)← 0

III. THE PROPOSED VIDEO CODEC ARCHITECTURE

As mentioned above, in this work, we improve the com-
pression ratio of the conventional MJPEG by applying the
Zipfian motion estimation algorithm. Therefore, the Zipfian
motion estimation algorithm has been combined with the
JPEG standard to reduce not only spatial redundancy but also
temporal redundancy in video coding. The proposed encoding
architecture is shown in Figure 2. The proposed encoder
has three main tasks: detecting 8 × 8 motion blocks, JPEG
encoding the moving blocks and the stationary blocks, and
reconstructing the residuals for the next frame.

The first task consists of the following processes: Zigzag
block ordering, Motion detection, and Extracting moving
block. The Zigzag block ordering process rearranges the block
processing order of the luma component as in Figure 3, while
the Motion detection process detects the moving pixels and
computes the sum of the moving pixels in each block by
Zipfian estimation of the luma component. If the sum of the
moving pixels in a block is equal to or greater than a threshold
β which is the minimum number of the moving pixels per
block (usually from 8 to 24), this block will be assigned to 1
(temporary moving block), otherwise 0 (temporary stationary
block). Next, the Extracting moving block process works as
a filter. It discards the single marked 1 blocks and creates
a border around the moving zones by considering the rela-
tionship between blocks. Algorithm 2 shows the Extracting
moving block process in the gray channel. The types of blocks
in the color channels depend on the corresponding blocks in
the gray channel of the MCU.

Algorithm 2: Extracting moving blocks
Set a constant to define the moving or stationary block
const = 2
Find the number of the temporary moving neighbors of
the current blocks x
sum = 0
foreach neighbor of block x do

if neighbor = “temporary moving” then
sum+ = 1

if sum > const | {x = 1 && sum > 0} then
x=moving

else
x=stationary

Fig. 3. Zigzag block order at downsampling: Y only (left), YUV:420 (right).

JPEG compression is the main algorithm in the second task.
For the still blocks, all the pixel values are assigned to zero in
frequency domain. Hence, those blocks are directly encoded
by Entropy encoding. The encoded bit-stream of the still
blocks is only the encoded DC values and the End-Of-Block
(EOB) symbols. For the moving blocks, instead of encoding
them directly, we encode the residuals of the moving blocks.
The residuals Dt are the difference between the current frame
It and the previous decoded frame I ′t−1 (Equation 1). This
helps to reduce more bit-rate as in the H.264/AVC.

Dt(x) =
It(x)− I ′t−1(x)

2
(1)

Finally, in the third task, the transformed residuals are
reconstructed to create the reconstructed frame I ′t−1. The
reconstructed frame will be used as a reference frame for the
jpeg encoding process of the next frame.

Our proposed encoder has two more tasks in addition to the
original MJPEG, however, a large number of operations are
saved in forward DCT and quantization processes for the still
blocks. Encoding the residuals of the moving blocks reduces
even more bit-rate than encoding them directly. The encoded
bit-stream of still blocks is minimized, it only contains the
encoded DC values and the EOB symbols.

I ′t(x) = 2×Dt(x) + I ′t−1(x) (2)

The architecture of the decoder is much simpler than the
encoder, as depicted in Figure 4. Based on the information
from Inverse entropy encoding, the still blocks are detected
by the zero DC values and the EOB symbols. For each
still block, the pixel values are directly copied from the

Fig. 2. The proposed encoding architecture.

Fig. 4. The proposed decoding architecture.

reconstructed frame I ′t−1. For the moving blocks, after being
decoded using JPEG algorithm, the pixel values will be rebuilt
using Equation 2. The proposed decoding architecture is much
faster than the default JPEG decoder because we save many
operations in Inverse quantization and Inverse DCT processes
for the still blocks.

IV. EXPERIMENTAL RESULTS

The proposed codec has been implemented using Sys-
temC/C++ programming language – a system-level modeling
language. The testbench reads raw videos and encodes frames
into JPG files. In our project, the bit-rate, the quality and the
complexity of the proposed codec have been compared to the
original MJPEG and H.264/AVC. The test sequences include
Container, Hall, Foreman, and News [9] in CIF resolution.
Figure 5 shows the test results with Hall sequence. The first
row is the original frames, the second row is the encoded
frames, and the last row is the decoded frames at 1st, 75th,
230th frames, respectively.

Fig. 5. Hall sequence results.

The comparison of the compression ratio between the

proposed codec and the conventional MJPEG is shown in
Figure 6. In this test, we use the JPEG compression model [8]
for MJPEG. The quantization parameter of the JPEG com-
pression model is changed from 5 to 100. In our proposed
codec, N = 2, Tv = 4 and β = 16 are fixed values in
Detecting motion process. Figure 6 shows that our proposed
codec provides better/larger compression ratio range than the
conventional MJPEG. The proposed codec can achieves more
than 60:1 compression ratio while MJPEG gets less than 40:1
compression ratio. At the same PSNR, the proposed codec has
much higher compression ratio than the conventional MJPEG.
For example, with PSNR at 30dB, the compression ratio in the
conventional MJPEG is only about 20:1 while the proposed
codec is more than 40:1.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 10 20 30 40 50 60 70

24300 2430 1215 810 608 486 405 347

P
S

N
R

-Y

Compression ratio

Bitrate Kbit/s

container
hall

foreman
news

container-MJPEG
hall-MJPEG

foreman-MJPEG
news-MJPEG

Fig. 6. The comparison between the proposed method and MJPEG.

Figure 7 presents the comparison of the bit-rate and PNSR
between our proposed codec and the reference software of
H.264/AVC: JM [10] with only Intra prediction mode. The
proposed codec gets an approximate PSNR at the same bit-rate
as the H.264/AVC Intra mode. With videos from stationary
cameras such as News and Hall sequences, our codec has
higher PNSR than the H.264/AVC Intra mode.

Fig. 7. The comparison between the proposed method and the H.264/AVC
Intra mode.

The running time of the Hall sequence using the proposed
encoding method and the JM H.264/AVC Intra mode with
rate-distortion optimization (RDO) ‘on’ and ‘off’ is shown
in Figure 8. The test system uses an Intel(R) Core(TM) i3
M 370 CPU at 2.40GHz. At the same bit-rate, running time
of the proposed codec is haft the runing time of the JM
H.264/AVC Intra mode when RDO is off. The running time
of the H.264/AVC Intra mode, when RDO is on, is 6 times
longer than the one of our method at 1500kbps. The proposed
codec has smaller bit-rate range than the H.264/AVC Intra
mode because of the limitation of the MJPEG algorithm.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
 (

s
)

Bitrate (kbit/s)

Proposed encoding
H.264/AVC RDO-off
H.264/AVC RDO-on

Fig. 8. Comparison bit-rate and running time with JM H.264/AVC.

Table I shows the number of operations used in Zipfian
estimation at Tv = 4, forward DCT and quantization. The
number of operations in Zipfians is much smaller than the
one in FDCT and quantization. It is about 1/5 as small as the
number of operations in FDCT and Quantization. This means
that detecting motion of 5 blocks using Zipfian estimation is
still simpler than doing FDCT and quantization of one block in
MJPEG. Obviously, the proposed codec will has the smaller
number of operations than MJPEG if the percentage of the
still blocks is greater than 60%. Figure 9 shows the average
percentage of the still blocks in some sequence with N = 2
and N = 3. In the tested sequences, the percentage of still
blocks is greater than 60% except for the Foreman sequence.

TABLE I
THE NUMBER OF COMPUTATIONS PER BLOCK FOR ZIPFIAN ESTIMATION,

FDCT AND QUANTIZATION IN OUR CURRENT IMPLEMENTATION

Operation Zipfian FDCT quantization
Addition 200 928 64
Multiplication 0 192 64
Shift 20 128 0

This is because the Foreman sequence is recorded from a
moving camera.

Fig. 9. Average percentage of still blocks in some sequences.

V. CONCLUSIONS

We presented the proposed encoding/decoding architecture
to improve the quality and bit-rate of the conventional MJPEG
by combining JPEG image compression and Zipfian estima-
tion. The proposed codec helps the MJPEG remove temporal
redundancies by the minimization of bit-stream for stationary
blocks and encoding only the residuals of the moving blocks.
The experimental results show that our proposed codec gets
much higher compression ratio than the conventional MJPEG
and approximately equal to the JM H.264/AVC Intra Mode at
the same PSNR but with lower complexity.

ACKNOWLEDGMENT

The authors would like to thank Nafosted for travel grant.

REFERENCES

[1] A. Joch and et al., “Performance comparison of video coding standards
using Lagragian coder control,” in IEEE ICIP, 2002, pp. 501–504.

[2] Recommendation ITU-T H.265/HEVC, ITU-T Std., Rev. 1.0, April 2013.
[3] ITU-T Recommendation T.81, The International Telegraph and Tele-

phone Consultative Commitee, September 1992.
[4] A. Manzanera, “Sigma-delta background subtraction and the zipf law,”

CIARP.LNCS, vol. 28-2, pp. 42–51, 2007.
[5] A. Manzanera and L. Lacassagne, “Motion detection: fast and robust

algorithms for embedded system,” 16th IEEE Conf. on Image Processing
(ICIP), pp. 3265–3268, 2009.

[6] A. Manzanera and J. C. Richefue, “A robust and computationally
efficient motion detection algorithm based on sigma-delta background
estimation,” ICVGIP. IEEE, pp. 46–51, 2004.

[7] O. Barnich and M. Droogenbroeck, “ViBe: A universal background
subtraction algorithm for video sequences,” Image processing, IEEE
Transactions, vol. 20, pp. 1709–1724, 2011.

[8] “JPEG compressor open source code,” http://code.google.com/p/
jpeg-compressor/.

[9] “Video sequences,” http://media.xiph.org/video/derf/.
[10] “JM H.264/AVC,” http://iphome.hhi.de/suehring/tml/.

http://code.google.com/p/jpeg-compressor/
http://code.google.com/p/jpeg-compressor/
http://media.xiph.org/video/derf/
http://iphome.hhi.de/suehring/tml/

	Introduction
	Zipfian Estimation
	The Proposed Video Codec Architecture
	Experimental Results
	Conclusions
	References

