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ABSTRACT Human motion tracking is a prevalent technique in many fields. A common difficulty
encountered in motion tracking is the corrupted data is caused by detachment of markers in 3D motion
data or occlusion in 2D tracking data. Most methods for missing markers problem may quickly become
ineffective when gaps exist in the trajectories of multiple markers for an extended duration. In this paper,
we propose the principal component eigenspace based gap filling methods that leverage a training sample
set for estimation. The proposed method is especially beneficial in the scenario of motion data with less
predictable or repeated movement patterns, and that of even missing entire frames within an interval of a
sequence. To highlight algorithm robustness, we perform algorithms on twenty test samples for comparison.
The experimental results show that our methods are numerical stable and fast to work.

INDEX TERMS Missing marker problem, MoCap data, 2D tracking data, principle component analysis

I. INTRODUCTION
Human motion tracking has always received wide attentions
due to increasing demand in many applications, includ-
ing human computer interaction (HCI), automatic surveil-
lance, biomedical application (e.g. stroke rehabilitation),
virtual reality, video games, animation and movie FX pro-
ductions. The tracking techniques may be categorized into
two groups, i.e. marker-based tracking (e.g. Vicon multiple
camera system) and markerless tracking. However, human
motion tracking remains challenging due to the motion
complexity and highly articulated structure of human body.
One of the well-known problems is of the self-occlusion
between body parts. Although multiple camera systems
may provide a constrained setting with minimal occlusion,
the loss of tracking markers is a frequent challenge in 3D
tracking from the current MoCap devices, as well as in 2D
tracking from a monocular video [1]–[5]. For example,
sport exercises and dancing usually twist and rotate body
resulting in movements at high degree of freedom and the
absence of markers. Particularly, some markers may be
absent throughout (e.g. a marker dropping off) or multi-
ple frames may be missed in some extreme scenarios (e.g.
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a blackout when all markers disappear at the same time [6]).
The resultant incomplete motion data compromises the accu-
racy of the motion analysis [4], and therefore may require
a post-processing to fill missing data just as some commer-
cial MoCap software packages have done, such as EVaRT
(Motion Analysis Corporation, Santa Rosa CA, USA), Qual-
isys Track Manager (Qualisys AB, Gothenburg, Sweden),
or Vicon (OxfordMetrics, Limited, Oxford, England). As raw
MoCap data volume is always too large, the need for improv-
ing the efficiency of such data post-processing is of substan-
tial interest in MoCap community [4], [7].

This paper aims at the ‘‘missing marker problem’’ and the
extension of this problem, that is, the entire time frames are
missed within an interval of a sequence. It may further be
applied to motion editing, such as combining twomotion type
pieces into one piece.

The usual gap filling methods include linear, spline inter-
polation and reconstructing the marker trajectory in a local
segment coordinate system, which are restricted to the gaps
of short duration [8]. The recent low-rank matrix completion
methods [9] make use of the sparsity of motion data rather
than the traditional polynormal interpolations. The rising
issues include that (1) performance tends to degrade notice-
ably when increasing the number of gaps or enlarging the
length of gaps [6]; (2) interpolation will become difficult if

76980 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0734-1556
https://orcid.org/0000-0002-8508-7488
https://orcid.org/0000-0001-6743-088X
https://orcid.org/0000-0002-4745-2579
https://orcid.org/0000-0003-2878-2131


Z. Li et al.: PCA-Based Robust Motion Data Recovery

multiple markers are dropping off, particularly missing whole
frames within an interval of a sequence; (3) it remains chal-
lenging when the motion sequence covers multiple motion
types with less predictable or repeated movement patterns
(e.g. walking and running are both involved in the same
motion sequence) [10]. Most of the off-the-shelf methods
tend to work on ONE piece in order to avoid a large training
time cost. Consequently, a challenging issue is rising, i.e. it is
unlikely for these methods to robustly deal with diverse types
of motion.

To tackle the above challenges, our proposed methods
employ the principal component analysis (PCA) technology
to motion data recovery. While using a training set for good
numerical stability, it has been shown that the proposed meth-
ods do not introduce large computational cost during training.
The main contributions include,

1) a principal component eigenspace based learning
mechanism is presented;

2) the proposed method work well both on the scenarios
of missing entries in markers’ trajectories and that of
missing whole frames within an interval of a motion
sequence;

3) the proposedmethod is fast to work almost in real-time.

II. RELATED WORK
Most of the gap filling methods can be roughly categorized
into three groups as follows.

A. POLYNOMIAL INTERPOLATION
Polynomial interpolation is the standard gap filling proce-
dure that is built in many commercial marker-based motion
tracking systems. Linear interpolation, spline interpolation
and monotone piecewise cubic interpolation [11] are well
known examples of this kind of method. They usually work
well for small gaps, typically 0.2 seconds [12], whereas they
are unsuitable for big gaps. Hence, many new interpolation
techniques are proposed to leverage the available temporal
information or spatial characteristics. For instance, missing
markers in a short sequence can be estimated using Kalman
filters [13]–[15]. In addition, methods based onGaussian pro-
cess dynamic models [16] or linear dynamic systems (LDS)
[17] are suited for real-time applications. Hidden Markov
Model (HMM) has also been employed to model human
motion [4]. Moreover, some algorithms are developed based
on the principal components analysis (PCA). However, they
lack a training sample set. For example, Federolf [8] applied
the mapping between PCA spaces to motion data interpola-
tion. However, this approach is unsatisfactory if gaps occur
in multiple markers or the movements are less predictive or
cyclic. This is because the number of principle component
eigenvectors cannot be changed adaptively. To tackle this
issue, Gløersen et al. [10] assigned the weights to the indi-
vidual gaps and omitted either some whole frames or some
markers’ trajectories in a data-driven way in order to reduce
overfitting problem in least squares. These efforts obtained

encouraging but not perfect results, particularly motion data
with less predictable or repeated movement patterns. Liu
and McMillan [18] filled the missing data through the pro-
jection onto PCA eigenspace and then refined the estima-
tions through a local linear model that is yielded by the
Random Forest classifier. However, although these methods
can usually deal with small gaps effectively (typically less
than 0.5 second for human full-body motion), they can be
inadequate and fail when applied to larger gaps [6], which
is analyzed in the section IV-B.

Moreover, [6] presents multiple regression models, such
as Global linear regression (GLR), Local polynomial
regression (LPR), Local generalized regression neural net-
work (LGRNN) in order to unify these methods with their
scheme of Probabilistic Model Averaging (PMA). While
thesemodels can bemore or less effective, they are less robust
due to lack of training data.

B. LOW-RANK DECOMPOSITION TECHNIQUES
Recently, methods based on the low-rank decomposition
techniques have shown promising performance [7], [9], [19],
[20]. The distinct merit is to preserve the spatial-temporal
characteristics embedded in natural human motion and solve
the out-of-sample problem compared to many data-driven
methods [21], [22]. However, the low-rank regression is suit-
able to approximate linear structures while human motion is
nonlinear and lies on a Riemannianmanifold. To approximate
nonlinear structures, [7] introduced truncated nuclear norm
to make subspaces simultaneously optimized. Ref. [9] fur-
ther showed that the representation of motion data in a high
dimensional Hilbert space was of low-rank and presented a
multiple kernel learning based low-rank matrix completion
method. The key point of these methods is that the observed
incomplete datasets are represented in a matrix form, which
assumes that the dataset is redundant enough and thus the low
rank matrix completion techniques can be applied accord-
ingly. Herein the low-rank constraint must be satisfied. How-
ever, this rarely holds when the motion data lacks repeated
movement patterns [9], [23].

C. MODEL-BASED METHODS
The skeleton model-based methods have been widely stud-
ied, which usually impose the skeleton constraints to
existing methods. For example, Li et al. [14] proposed
a skeleton-constrained method, BoLeRO, which enforces
the bone-length constraints in a linear dynamical system.
Tan et al. [24] combined the skeleton constraints with Sin-
gular Value Thresholding (SVT) [25] while Peng et al. [26]
applied Nonnegative Matrix Factorization (NMF) to a block-
based skeleton model. Similarly, the constraint of fixing bone
length is employed to drive natural looking reconstruction [9],
[14], [24] through such skeleton constraints usually result in
high computational complexity due to iterative optimization
procedures. Moreover, such methods are usually defined for
a special skeleton model based on a pre-defined marker set.
To remove pre-processing, [15], [27] presented the individual
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automatic methods to estimate a skeleton structure in MoCap
data in order to scale the whole dataset to fit with the targeted
actor.

III. METHOD
The basic idea of our proposed methods is to apply a set of
training samples to missing marker problem [15]. A motion
sequence is usually represented in a matrix form, i.e. A ∈
Rm×n, where n denotes the number of the markers’ coor-
dinates and m denotes the frame number. Missing markers
usually results in some gaps in a motion matrix. In some
extrenal scenarios, it is possible that all the frames within
a short interval are accidentally missed from the motion
matrix. A training sample set contains K motion sequences,
i.e. {Ai} , i = 1, . . . ,K which may involve a variety of short
motion sequences to cater for diverse motions.

A. FILLING GAPS
Consider the scenario of multiple gaps distributing over a
motion matrix B ∈ Rm×n. We can create a 0/1 template to
indicate the locations of gaps in the incomplete matrix B and
apply it to each training sample to form a set of sample pairs,

i.e. complete-incomplete matrix pairs
{
Ai;A

(0)
i

}K
i=1

, where
the gaps are indicated by zero entries in the incomplete matrix
A(0)i .
Consider that the training set is composed of K pieces,

which are from a long motion sequence. It can be expressed

in a matrix form, A =

A1. . .
AK

. In terms of PCA paradigm,

we can apply Singular Value Decomposition (SVD) to the
whole training set A and every sample A(0)i respectively to
span the individual eigenspaces,{(

ATA
)
= U6UT(

A(0)i
T
A(0)i

)
= U (0)

i 6iU
(0)
i

T (1)

and assume that,

AiU = A(0)i U (0)
i T , i = 1 . . .K (2)

up to a transformation matrix T which facilitates the transfor-
mation from the incomplete matrix complete matrix. This is
because U spans the common eigenspace of all the samples
while U (0)

i spans the individual eigenspace for each sample.
The projection of the sample Ai onto the common U may be
equivalent to that of the incomplete A(0)i onto the individual
U (0)
i up to a factor. Due to singularity issue, we retain the first

r eigenvectors of U and U (0)
i according to rank. Thus T is a

r × r matrix. We can solve it in a least squares sense through
K matrix equations in Eq.(2),

T =

(
K∑
i=1

U (0)
i

T
A(0)i

T
AiUT

)(
K∑
i=1

U (0)
i

T
A(0)i

T
A(0)i U (0)

i

)−1
(3)

For an incomplete matrix B, we can yield an estimation of
complete matrix of B as,

B∗ = BU (0)
B TUT (4)

whereU (0)
B contains the first r eigenvectors of the incomplete

B. In practice, the estimated complete matrix can be formed
through filling the missing gaps of B by B∗. (The estimated
complete matrix is still denoted as B∗ thereafter.)

Moreover, let’s consider the other scenario, i.e. all the
samples are from different sources. As there are no temporal
continuity in-between samples, the training set may be rep-
resented as, A = (A1, . . . ,AK ).Applying SVD to the whole
training set A and every sample A(0)i respectively yields,{(

AAT
)
= V6V T(

A(0)i A(0)i
T)
= V (0)

i 6iV
(0)
i

T (5)

and assume that,

V TAi = FV (0)
i

T
A(0)i , i = 1 . . .K (6)

up to a transformation matrix F which facilitates the trans-
formation from the incomplete matrix to the complete matrix.
We have the same explanation on this assumption as in Eq.(2),
and select the first r eigenvectors according to rank. We can
solve F in a least squares sense through K matrix equations
in Eq.(6),

F=

(
K∑
i=1

V TAiA
(0)
i

T
V (0)
i

)(
K∑
i=1

V (0)
i

T
A(0)i A(0)i

T
V (0)
i

)−1
(7)

To recover the complete matrix from an incomplete matrix B,
an estimated complete matrix of B can be expressed as,

B∗ = VFV (0)
B

T
B (8)

where V (0)
B contains the first r eigenvectors of the incomplete

B. Similarly, the estimated complete matrix is formed through
filling the missing gaps of B by B∗.

We present two interpolation methods Eq.(4) and Eq.(8),
in order to deal with two practical scenarios, one is that a
training dataset is of a long motion sequence; and the other is
that a training dataset consists of many short pieces that may
be from different sources, in which the motion data is usually
scaled to the same level in advance. We hope to point out that
mathematically speaking, Eq.(4) and Eq.(8) have no essential
difference except the form of input matrix A. Thus, there is
no distinct difference on their performance.

B. WHOLE TIME FRAMES ARE MISSED
Consider the scenario of missing all the frames within an
interval of a sequence. The incomplete motion matrix B ∈
Rm×n may be reduced as B̃ ∈ Rj×n by removing the missing
columns from B. The removed columns are grouped in B̌ ∈
R(m−j)×n that will be estimated.We can reduce all the training
samples, Ai, i = 1 . . .K ,likewise and obtain two kinds of
submatrices for each sample, i.e. reduced version Ãi and
removed part Ǎi.
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The training set is expressed as A = (A1, . . . ,AK ). Apply-
ing SVD to the training set A and each sample respectively
yields, (

AAT
)
= V6V T (9)

Due to the singularity issue, we select the first r eigenvec-
tors of V according to rank, that is, V is anm× r eigenmatrix
and m > j > r . In terms of the row indices of the pair (B̃, B̌)
in the original B, the V can be partitioned into two parts; one
is the group Ṽ with the same row indices of B̃ and the other
is the group V̌ with the same row indices of B̌.
Projecting Ai onto V yields,

V TAi = αi (10)

which can be further split as,

Ãi = Ṽαi (11)

Ǎi = V̌αi (12)

where V T
= (Ṽ T , V̌ T ) and Ai = (ÃTi , Ǎ

T
i ), i = 1 . . .K .

They both share the same projection αi. This is due to the
following observation. Given an eigenvector matrix V and
the projection α of some sample P onto V , the sample can
be expressed as P = Vα. It can be noted that if dividing V
into two parts, V T

= (V T
1 ,V

T
2 ), the P may be reconstructed

by these two parts individually, P = (V1α,V2α), in which the
same projection α is shared by these two parts of V .
It can be noted that Eq.(11) provides an approximate solu-

tion for αi in a least square sense. For all the training samples,
wemay apply the weighted least squaremethod to it to further
improve accuracy, that is,

min
W

K∑
i=1

∥∥∥∥(Ãi − Ṽαi)T W (
Ãi − Ṽαi

)∥∥∥∥ (13)

where the weight is a j×j diagonal matrix,W = diag(wl), l =
1 . . . j. Then, we can update αi by,

α∗i =
(
Ṽ TWṼ

)−1
Ṽ TWÃi (14)

Substituting α∗i to Eq.(12), the missing part Ǎi can be
expressed as,

Ǎi = V̌
(
Ṽ TWṼ

)−1
Ṽ T Ãi (15)

Consequently, the missing rows B̌ may be estimated as,

B̌ = V̌
(
Ṽ TWṼ

)−1
Ṽ T B̃ (16)

IV. EXPERIMENTS
A. EXPERIMENT SETUP
All the experiments are performed on the Southeast Asian tra-
ditional dance dataset.1 This dataset covers a large variety of
dancing actions, such as squat, sway, and stretching. Instead

1https://www.euh2020aniage.org/testthaidancedownload

of cyclic motion such as walking on a treadmill or low-
frequency motion like balancing in a one-leg stance [8], long
sequences in this database usually involve multiple motion
types, which are highly complicated and lowly predictable as
shown in Fig.1. In 3D dancing datasets, every frame contains
15 markers (e.g., head, neck, shoulder etc.). Apart from 3D
motion data, we perform our method on 2D tracking data
as well. The 2D tracking data are obtained using the open
source codes-OpenPose2 and every frame contains 25 mark-
ers. It is natural that some markers are missed in 2D/3D
motion datasets due to occlusions or marker dropping off. For
robustness test, we use twenty pieces of 3D motion data as
test samples which is different the current experiment setting,
i.e. one test sample with multiple random masks [6]. It is
not sufficient to justify algorithm robustness according to the
comparison of testing algorithms on ONE sample.
The experiments focus on two scenarios, that is, there are

multiple gaps over a sequence and a small set of whole time
frames are missed in a sequence.
In the experiment of filling gaps, we make the gap evenly

distributed over the whole motion data using a predefined
0/1 mask as the template shown in Fig.2, in which the suc-
cessive gaps have the same interval in the column dimension.
The main merit is that multiple test samples can be tested
instead of one test sample available with different masks,
which is suitable to evaluate numerical stability of algorithms.
Moreover, we also compare our methods with the state-

of-the-art gap filling methods. Ref. [6] proposes the Proba-
bilistic Model Averaging (PMA), which combines multiple
methods together with probabilistic model averaging, such as
weighted PCA-based method (WPCA) [10], Global Linear
Regression (GLR) [6], Local Interpolation (LI) [12], Local
Polynomial Regression (LPR) [6], and Local Generalized
Regression Neural Network (LGRNN) [6]. The algorithms
are evaluated in terms of (1) the length of the gaps, and (2)
the number of the gaps.
For comparison, we use the Mean Absolute Error (MAE)

[6] as the recovery error metric,

ε =
1
g

g∑
j=1

1

n2j −
(
n1j + 1

) n2j∑
n=n1j

∥∥m̂j (n)− mj (n)∥∥ (17)

where g denotes the number of gaps created, n1j and n2j
signify the location (in frames) of the introduced gap j, m̂j
andmj are respectively the recovered and the original trajecto-
ries.Additionally, our methods, Eq.(4) and Eq.(8), essentially
have no difference since they both employ PCA technology.
Thus, we only show the results by Eq.(4) in the following
tests.

B. RESULTS
1) FILLING GAPS
The first comparison is undertaken when the length of gaps
is varying. Our recovery method, Eq.(4), is performed on

2https://github.com/CMU-Perceptual-Computing-Lab/openpose
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FIGURE 1. Examples of the 3D dancing data and the corresponding 2D tracking data of the Southeast Asian Dance Database.

FIGURE 2. Illustration of the masks, where the yellow blocks represent
the locations of gaps. Left: mask for artificially creating evenly distributed
gaps on probe 2D tracking data. Right: mask for generating corrupted
data on 3D motion data.

both the 3D motion data and 2D tracking data. The results
are compared with [6] based on our 3D dancing datasets.
Unlike [6], we randomly select 20 test samples from the 3D
motion datasets and apply the predefined 0/1 mask in Fig.2 to
these test samples. We iterate our methods and the meth-
ods mentioned in [6] on these test samples and separately
average the recovery errors of each method over all the
iterations.

Table 1 shows the mean recovery errors along with the
different gap lengths, which are intuitively shown in Fig.3 as
well. It can be noted that our method significantly outper-
forms the others. Although LGRNN is slightly better than our
methodwhen the duration of gap is very short, e.g., 20 frames,
it becomes gradually worse as the gap length increasing.
Moreover, the performances of the methods mentioned in [6]
are sensitive to the length of gaps. As PMA is the averaging
of several methods, its quality of reconstruction relies on
the individual methods. It is better than the worst (i.e. LPR
in this test) but also inevitably weaker than the strongest
(i.e. LGRNN). We hope to point out that our method takes
advantage of a training dataset and is robust to deal with
various test samples. In contrast, the state of the art methods
[6] only exploits the current test sample for interpolation. It is

FIGURE 3. Mean recovery errors for different gap lengths. 5 evenly
distributed gaps are placed on the sequences with varying gap length, i.e.
the duration of 20 frames, 50 frames, 80 frames and 100 frames.

TABLE 1. Mean recovery errors for different gap lengths. All values are in
units of (mm).

natural that they perform numerically unstable under multiple
sample tests.

We further show the comparison of WPCA’s and our
method’s performance in Fig.4 to illustrate the algorithm
robustness. It can be noted that due to the motion complexity
of these 20 samples, the MAEs look visibly undulant. Com-
pared with WPCA, our method noticeably tends to stable.
Comparing with the others in [6], we can conclude the similar
result.
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FIGURE 4. Comparison of WPCA and our method’s performance.

TABLE 2. Average recovery error of the proposed methods on 20 pieces
of 3D motion data at different missing rate. Every testing sample is a
200-frame segment of 3D motion sequences. Gaps start from the 101st
frame to the end. Missing rate is the percentage of missing entry number
over the total entry number in a motion matrix. All values are in
units of (mm).

The 2nd comparison is undertaken when the gap number
is changed. We further test our method on the 20 test samples
with different gap numbers, i.e. 1 gap, 2 gaps, 3 gaps, 5 gaps
and 8 gaps are placed on the 3Dmotion data respectively, and
each gap contains 100 frames. Table 2 shows the results of 3D
motion data, and Table 3 shows the results of 2D tracking
data. It can be noted that the average recovery error increases
very slow. Even when gaps appear in every other marker, with
missing rate up to 26%, the average recovery error is less
than 6 mm on 3D motion data (see Table 2) and is merely
5 pixels on 2D tracking data (see Table 3). The error level is
acceptable in practice. For intuitiveness, Fig.5 further shows
the estimated trajectories of the missing markers in all the
20 test samples when there are 5 gaps. It can be noted that
almost all the reconstructed trajectories are closely fitting
the ground truth. Regardless of 2D or 3D data, our method
yields relatively stable results which justifies the importance
of using training data again.

The above comparisons show a good performance of our
method against the start-of-the-art methods in [6]. Our advan-
tage mainly relies on the training data, that is, using PCA
learning mechanism is more robust to gap length or motion
complexity than the existing gap filling methods.

TABLE 3. Average recovery error of the proposed methods on 2D tracking
data. All values are in units of (pixels).

2) MISSING WHOLE TIME FRAMES
It remains challenging to estimate the missed whole time
frames. Most of the existing methods, including the state-of-
the-art methods in [6], cannot work in the case of the blackout
or markers dropping off. They usually need at least 3 or
4 present markers as references for reconstruction. We focus
on a short blank interval in a sequence and apply our method
Eq.(16) to estimate it.

The recovery error metric Eq.17 is simplified as,

ε =
1

n2 − (n1 + 1)

n2∑
n=n1

∥∥m̂ (n)− m (n)∥∥ (18)

where m(n) denotes the n-th original frame and m̂(n) denotes
the n-th recovered frame.

We preform our method Eq.16 on both 3D motion data
and 2D tracking data. To illustrate the numerical performance
of our method, we plot the MAE of every single marker on
3D and 2D data along with the increasing missing frames,
as shown in Fig.6 and Fig.7 separately. In addition, the aver-
age MAEs of all markers is provided in Fig.8. It can be noted
that the proposed method, Eq.16, can satisfactorily recovery
the blank areas with missing rate less than 20% on 3Dmotion
data, and even up to 40% on 2D tracking data.

Moreover, to illustrate the numerical performance of
Eq.16, we compare our method Eq.4 and Eq.16 as follow.
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FIGURE 5. The predicted trajectories of the missing markers in all the test samples when there are 5 gaps. There are 5 missing markers and
15 trajectories of x-y-z coordinates. Dash lines denote the ground-truth trajectories and color lines denote the estimated trajectories.

FIGURE 6. The MAE of every single joint. Method Eq.16 is tested on 3D motion data with different numbers of missing frames.

We set the gap duration as 30 frames and then miss markers
from the firstmarker to the end. Before the endmarker, we run
our method Eq.4 on 20 test samples, while performing our
method Eq.16 in the extremal case, i.e. missing all the mark-
ers (or missing whole time frames within the gap duration).
The results are plotted in Fig.9. It is reasonable that the errors
increase with increasing the number of missing markers since
the available spatial information is getting less and less when
missing markers more and more.

Furthermore, to evaluate the quality of the estimated
frames, we show the worst estimated frames, i.e., the middle
frame of a blank area, in Fig.10 and Fig.11. For comparison,

we also show both end frames of the blank area since these
two frames have very small deviations. It can be noted that the
worst estimated frames are still acceptable when the frame
missing rate is less than 15% on both 2D tracking data and
3D motion data.

The PCA learning mechanism through using a training
sample set in our methods is to cover diverse motion types
to cater for various ‘‘missing marker problems’’. In general
performance will be improved through enlarging training
datasets. A rising issue is that a large training dataset usually
results in an exponential training time. In contrast, applying
a large training dataset to our algorithms does not result in
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FIGURE 7. The MAE of every single joint. Method Eq.16 is tested on 2D tracking data with different numbers of missing frames.

FIGURE 8. The MAE of all joints in the extreme scenario. Method Eq.16 is
tested with increasing missing frames on 3D motion data (left) and 2D
tracking data (right) respectively.

FIGURE 9. MAEs of missing markers from 1 to all. The gap duration is set
as 30 frames.

a high time cost, which is shown in Table 4. Since Eq.(4)
and Eq.(8) have no essential difference, Table 4 only shows
the results by Eq.(4) here. However, it can be noted that the
running time of our method is comparable with those of the
existing methods.

TABLE 4. The running times.

Compared Fig.6, 7 and 8 with Table 1, 2 and 3, it can
be noted that the performance of Eq.(4) is noticeably better
than that of Eq.(16). This is because for filling gaps, our
method, Eq.(4), does not remove the whole time frames with
gaps. For missing whole time frames, our method, Eq.(16),
has to remove them from the motion matrix. In contrast,
the existing methods [8], [10], [18] all remove the whole-time
frames with gaps when filling gaps. It is inevitable that many
spatial information is discarded as well. Therefore, for large
gap duration, their performance is noticeable worse than our
method, Eq.(4). Fig.9 further justifies that removing whole
time frames results in performance degradation as well.

Moreover, recalling our methods, Eq.(4), Eq.(8) and
Eq.(16), it can be noted that the eigenspaces are pre-
estimated. In essential, our methods are linear time
algorithms.
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FIGURE 10. Rendered results of the whole frames recovery for 2D tracking data with different frame missing rates.

FIGURE 11. The worst cases of our method on 3D motion data with increasing whole frame missing rates.

V. CONCLUSION
Wepresent PCA based simple and robust methods to solve the
missing marker problems. As the PCA learning mechanism
requires training sample sets, we propose three algorithms

with respect to three practical scenarios, including that (1)
the training set may be of a long motion sequence, (2) the
dataset may be a set of short pieces from different sequences,
and (3) the gap may be of a blank area of missing entire time
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frames in a piece. The proposed algorithms are performed
on 3D motion data and 2D tracking data respectively. The
experiments show that our methods are numerical stable and
low time complexity, and outperform the state of the art meth-
ods. In particular, due to the PCA learning mechanism, our
methods can effectively deal with the motion sequences with
less predictable or repeatedmovement patterns or a blank area
in which all the time frames are accidentally missed.

However, ourmethods have some limitations. For example,
one marker is missed throughout the whole sequence. It is
very challenging to interpolate the trajectory of the missed
marker since there is no mean vector available for the missed
trajectories. Moreover, adding more training samples will
increase the likelihood of overtraining our models, thereby
limiting the ability to generalize. We will aim at these chal-
lenges in our future work.
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