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Abstract

Human gesture recognition is a rather new field and many

challenges, especial when motion capture devices become

more popular. Sign language recognition is a concrete

example of gesture recognition. Various studies have shown

that the vector machine methods with Gaussian kernels are

among the most prominent models for an accurate gesture

classification. In this study, we present the application of

vector machine learning methods to sign language recognition

problem. We demonstrate that the vector machines (VMs)

could also achieve the state-of-the-art predictive performance.

The experimental results on the Auslan data set show the

feasibility and effectiveness of these methods.

Objectives

- Support Vector Machines

- Simplification of Support Vector Machine

- Relevance Vector Machines

- A sign language is expressed as a sequence of gestural

patterns to convey a meaning. A sign consists of a number of

physical components such as the handshape location palm

orientation movement of the palms…

Methods

- Constructing the models of classifier to learn classification

signs from the gesture data samples.

- From raw data, we use the method to extract the global

features and metafeatures.

- We used grid search to select parameters for SVM,

SimpSVM and RVM models.
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Conclusion

We present our study on the effectiveness of the vector

machine learning methods when applied to the sign language

recognition problem. Our experimental results show that the

method SVM, SimpSVM and RVM could achieve good

classification, feasible, can be applied to solve the sign

language recognition problem..
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We compare predictive performance and number of basis

functions of SVM, SimpSVM and RVM models on the three

types of features: global, meta and both. The results show that

when the number of features increases, all three methods

increase accuracy. Only use global features, classification

accuracy of three methods are low. If using metafeatures,

classification accuracy is higher. And it would be better off, if

we use a combination of the two feature types above.

The confusion matrices compare the number of errors

wrongly classified by SVM, SimpSVM and RVM for all

signs. All three SVM, SimpSVM and RVM failed almost the

same number of signs.


