
A Method for Automated Test Cases Generation from Sequence
Diagrams and Object Constraint Language for Concurrent Programs

Thi Dao Vu, Pham Ngoc Hung and Viet Ha Nguyen
Faculty of Information Technology, VNU- Vietnam National University

E3 building 144 Xuan Thuy str., Cau Giay dist., Hanoi, Vietnam

Model- based testing plays a significant role in practice and a lot of
researches on it has been investigated in recent years due to great
benefits. Current research focuses on generating executable test cases
from Unified Modeling Language (UML) sequence diagrams and
object constraint language (OCL). In this paper we propose an
automated test cases generation method from sequence diagrams,
class diagrams, and OCL. The method supports UML 2.0 sequence
diagrams including eight kinds of combined fragments describing
control follow of systems. Test cases are generated with respect to the
given concurrency coverage criteria. With strong concurrency
coverage, generating exhaustive test cases for all concurrent
interleaving sequences is exponential in size. The key idea of this
method is to create selection of possible test scenarios in special case
of exploring the message sequence with their possible interleaving in
parallel or weak sequencing fragments. Test data for testing loop
fragments is also generated. We implemented a tool to automate the
proposed method and studied its feasibility and effectiveness.
Experimental results show that the method can generate test cases on
demand to satisfy a given concurrency coverage criterion and can
detect up to 74.5% of seeded faults.

The objectives of this research focuses on four main contents:
(i) propose the method for generating test scenarios with respect to
concurrency coverage criteria for testing concurrent behaviors.
(ii) propose test data generation procedure for each test scenario. The
proposed procedure solves this test data for testing loops.
(iii) develop a tool to automate the proposed method with analyzing
sequence diagrams in xmi file.
(iv) conduct case studies to validate the feasibility and effectiveness
of the proposed method.

- Control-flow graph generation: Given UML 2.0 sequence
diagrams describes behavior of SUT while class diagrams declares
all method signatures and class attributes. Control-flow graph (CFG)
generation from sequence diagram is used by a proposed recursive
algorithm, and constraints of variables are derived from class
diagram to generate test data. The generation of sequence diagram
data structure creates queue which includes message, fragment and
operand. The proposed iterative process is to generate different kinds
of nodes from the queue. At each iteration, it analyzes each element
of queue to create corresponding exit node, connect edge from
current node to exit node, then exit node is considered current node.
The method supports UML 2.0 sequence diagrams including eight
kinds of combined fragments describing control-flow of systems.
- Test scenarios generation: Input of the test scenarios generation is
CFG. The test scenarios denote abstract test cases which represent
possible traces of executions. The output from the scenario
generation is a finite set of scenarios which are complete paths
starting from the initial node to the final node. Basic paths generated
using DFS or BFS algorithm [6, 1] are suitable for node coverage
and edge coverage of graph, but do not address the issues of the
synchronization and data safety. When using that algorithm, we can
not explore the message sequence with their possible interleaving of
operands in par or seq fragment. The proposed algorithm generates
test scenarios from CFG to solve that problem.

[1] M. Dhineshkumar and Galeebathullah (2014) An approach to
generate test cases from sequence diagram, In Proceedings of the
2014 International Conference on Intelligent Computing
Applications, ICICA 14, IEEE Computer Society, Washington, DC,
USA, pp. 345- 349.
[2] Object Management Group (2006) The Unified Modeling
Language UML 2.0 Technical Report formal/06-04-04, The Object
Management Group (OMG).
[3] M. Khandai, A. Acharya, and D. Mohapatra (2011). A novel
approach of test case generation for concurrent systems using uml
sequence diagram, In Electronics Computer Technology (ICECT),
3rd International Conference, vol 1, pp. 157-161.
[4] Bao-Lin Li, Zhi-shu Li, Li Qing, Yan-Hong Chen (2007) Test
case automate generation from uml sequence diagram and ocl
expression, In Proceedings of the 2007 International Conference on
Computational Intelligence and Security, CIS 07, IEEE Computer
Society, Washington, DC, USA, pp. 1048-1052.
[5] H. Minh-Duong, L. Khanh-Trinh, and P.N. Hung (2013) An
assume-guarantee model checker for component-based systems, In
The 10th IEEE-RIVF International Conference on Computing and
Communication Technologies, pp. 22-26.
[6] A. Nayak and D. Samanta (2010) Automatic Test Data Synthesis
using UML Sequence Diagrams, Journal of Object Technology, vol.
09,no.2, pp. 115-144.
[7] M. Shirole and R. Kumar (2012) Testing for concurrency in uml
diagrams, SIGSOFT Softw. Eng. Notes, vol 37, no.5, pp. 1-8.
[8] Mark Utting and Bruno Legeard (2006) Practical Model-Based
Testing: A Tools Approach, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.
[9] Thi Dao Vu, Pham Ngoc Hung and Viet Ha Nguyen (2015) A
Method for Automated Test Data Generation from Sequence
Diagrams and Object Constraint Language, In Proceedings of the
Sixth International Symposium on Information and Communication
Technology, ACM, Hue City, Viet Nam, pp.335-341.

The paper presented the automated test data generation method based
UML sequence diagrams, class diagrams and OCL. The method
supports UML 2.0 sequence diagrams including eight kinds of
combined fragments due to improved control follow graph
generation technique. The key idea of this method is to generate
selection of possible test scenarios in special case of exploring the
message sequence with their possible interleaving in par or seq
fragments. The test scenarios generation method also avoids test
explosion by selecting switch point. Therefore, concurrency errors of
systems can be found. In addition, the new point is to generate test
data in testing loop fragments when comparing with current
approaches, test data is generated in case of body of loop that is only
executed once. The method supports different coverage criteria and
can therefore test concurrent processes quite effectively. Finally, we
have implemented a tool to automate the proposed method and
conducted the case study to validate its feasibility and effectiveness.
We are investigating to determine infeasible or feasible test scenarios
when there is no input data for them to be executed. We also are
going to extend the proposed method for other UML diagrams (e.g.,
state-chart diagrams, activity diagrams). Moreover, we would like to
further investigate and evaluate the fault-detection effectiveness, and
costs, of the concurrency coverage criteria.

Data safety error uncover capability: A test scenarios generated by
algorithm should be able to uncover data safety errors. We use and
compare DFS, BFS and our algorithm in generating the test scenarios
from CFG. DFS algorithm generates test scenarios including test
sequences that are not capable of finding data safety errors because it
does not allow interleaving between the messages of two operands in
par fragment. BFS algorithm does not generate the test sequences in
testing loops while our method uses with two parts, false part and true
part that means zero and more than one loops.
Fault -detection capability:

 Table 1: The mutation score results for each test scenario

Table 2: The mutation score results of our method and random method

Algorithm: Generating the test scenarios
Input: Control-flow Graph G with initial node in and final nodes are fni
Output:T is a collection of test scenarios, t is a test path
1: T=∅, t=∅;
2: curNode=in; //current node starts from in
3: repeat
4: move to next node
5: if (curNode==BN) then
6: t.append(BN);
7: end if
8: if (curNode==DN and decision==TRUE)then
9: Append t with true part BN to merge node
10: else
11: Append t with false part BN to merge node
12: end if
13: If (curNode==FN) then
14: active all sub paths of FN;
15: repeat
16: select random sub path;
17: append t with node up to before or after node
 having isAsyn property //message having isAsyn (true) is a
 switch point
18: until (all sub paths are empty)
19: end if
20: If (curNode==fni)
21: T = T +{t};
22: end if
23: until Graph end
Test data generation: The proposed method solves test data generation
for testing loops by finding values in the test scenarios, using one
predicate at a time and reducing domains of variables step by step. We
develop the dynamic domain reduction procedure [6]. In the test data
generation procedure, loops are handled dynamically. The procedure
finds all the scenarios that contain at most one loop structure. It then
marks those DNs that affect whether another iteration of the loop is
made.Then as the test scenario is traversed,when the DN is encountered,
the loop constraint and variables are checked dynamically to decide
whether to continue with another iteration. Comparing with [6], if
variables always satisfy in next iteration, our procedure exits the loops
to generate test data when the DN is encountered in case of 1, 2, random
n, max and min loops.

