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Numerical results 
In recent years, many authors have focused on the static 

and dynamic of eccentrically stiffened shell structures 

because the shells as other composite structures, usually 

reinforced by stiffening members to provide the benefit of 

added load-carrying static and dynamic capability with a 

relatively small additional weight penalty. In additions, 

eccentrically stiffened shallow shell is a very important 

structure in engineering design of aircraft, missile and 

aerospace industries. As a result, there are many 

researches on the static and dynamic of eccentrically 

stiffened shell structures, especially structures made of 

composite material.  

As well as know a functionally graded material (FGM) 

is a two-component composite characterized by a 

compositional gradient from one component to the other. 

In contrast, traditional composites are homogeneous 

mixtures, and they therefore involve a compromise 

between the desirable properties of the component 

materials. Since significant proportions of an FGM 

contain the pure form of each component, the need for 

compromise is eliminated. The properties of both 

components can be fully utilised. This is mainly due to 

the increasing use of FGM as components of structures in 

the advanced engineering. 

In this paper, the nonlinear analysis of eccentrically 

stiffened FGM annular spherical segment shells is 

investigated. The segment-shells are reinforced by 

eccentrically longitudinal and transversal stiffeners made 

of full metal or full ceramic depending on situation of 

stiffeners at metal-rich side or ceramic-rich side of the 

shell respectively. The paper analyzed and discussed the 

effects of material and geometrical properties, elastic 

foundations and eccentrically stiffeners on the stability of 

the eccentrically stiffened FGM annular spherical 

segment. 

 

 

 - The volume fraction index (non-negative number) 

          - The deflection of the annular spherical shell 

 - The Winkler foundation modulus 

 - The shear layer foundation stiffness of Pasternak. 

 - The normal strains 

 - The shear strain at the middle surface of the 

spherical shell 

  - The changes of curvatures and twist 

 - The distance between eccentrically longitudinal 

and latitude stiffeners respectively. 

 - The cross-sectional area of eccentrically 

longitudinal and latitude stiffeners respectively. 

  - The width and height of eccentrically 

longitudinal and latitude stiffeners respectively. 

 - The numbers of eccentrically longitudinal and 

latitude stiffeners respectively. 

 - The Young’s modulus of the stiffeners. if the 

stiffeners are reinforced at the surface of the ceramic-rich, 

if the stiffeners are reinforced at the surface of the metal-

rich. 

 

 

 

 An FGM annular spherical segment or a FGM open 

annular spherical shell limited by two meridians and two 

parallels of a spherical shell resting on elastic foundations 

with radius of curvature R, base radii of lower and upper 

bases      respectively, open angle of two meridional 

planes  and thickness . The FGM annular spherical 

segment reinforced by eccentrically longitudinal and 

transverse stiffeners is subjected to external pressure  

uniformly distributed on the outer surface as shown in 

Fig.1. 

Eq. (7) is used for determining the nonlinear 

stability of eccentrically stiffened functionally graded 

annular spherical segment under uniform external 

pressure.To validate the proposed approach, the 

critical loads of eccentrically stiffened FGM annular 

spherical segment with elastic foundations are 

compared with the critical load of FGM annular 

spherical segment under uniform external pressure by 

Phuong in the same conditions and geometrical 

parameters, the results are presented in table 1. 

 

 

 

Table 2. Effects of the elastic foundations  and mode 

on the critical loads of annular spherical segments 

under external pressure 

 

 

 

 

 

 

 

 

 

Fig.2. shows the effects of volume fraction index k 

(0,1.5) on the nonlinear stability of eccentrically 

stiffened functionally graded annular spherical 

segment subjected to external pressure (mode 

(m,n)=(3,1)). As can be seen, the load–deflection 

curves become lower when  increases.  

 

 

 

 

 

 

 

 

Fig. 2. Effects of k  on the nonlinear stability of 

eccentrically stiffened FGM annular spherical segment 

Basic equations 

Nomenclature 

Conclusions 

The present paper aims to propose a nonlinear 

analysis of eccentrically stiffened FGM annular 

spherical segment shells on elastic foundations under 

uniform external pressure. Approximate solutions are 

assumed to satisfy the simply supported boundary 

condition and Galerkin method is applied to obtain 

closed-form relations of bifurcation type of nonlinear 

stability. The effects of material, geometrical 

properties, elastic foundations, combination of 

external pressure and stiffener arrangement, stiffener 

number on the nonlinear stability of eccentrically 

stiffened FGM annular spherical segment are analyzed 

and discussed. 

 

 

 

 

 

 

 

 

 

Fig. 1. Configuration of a FGM annular spherical segment shells and 

eccentrically stiffened FGM annular spherical shell. 

The nonlinear equilibrium equations of a perfect shell based on the 

classical shell theory [1] 

 

 

 

 

 

 

 

 

 

The constitutive stress-strain equations by Hooke law for 

the shell material are omitted here for brevity. 

 

 

 

 

 

 

 

 

Depending on the in-plane behavior at the edge of boundary 

conditions will be considered in cases the edges are simply supported, 

immovable and movable. 

Case A: The edges of the annular spherical segment are simply 

supported and movable. 

Case B: The edges of the annular spherical segment are simply 

supported and immovable. 

From each boundary conditions in case A and B, approximate 

solutions for the nonlinear equations of            , introduction of these 

solutions into obtained 3 nonlinear equations of            , we obtain the 

equations, which have form 

Applying Galerkin method for the resulting, that are 

 

 

 

 

 

we obtain the following equations form for 2 case 

 

 

 

Eq. (13) allows determine the deflection curve equation with form 
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