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Abstract 

Recently, Compressive Sensing (CS) has been applied to array signal processing. In 

theory, Direction-of-Arrival (DOA) estimation based on CS recovery can work well in 

correlated environments. However, a large number of sensors (i.e., linear measurements) are 

still needed for CS recovery. To improve on this, we propose a new CS-based DOA estimation 

method with a recently designed antenna structure called the Asymmetric Antenna without 

Phase Center (Asym-AWPC). The best reconstruction is achieved by solving the l1-norm 

optimization problem, which is cast as an l1-regularized least-squares program. Simulated 

results indicate the effectiveness of the proposed CS-based Asym-AWPC DOA estimator in a 

multipath environment over a recent Asym-AWPC DOA estimator but using the Multiple 

Signal Classification (MUSIC) rather than CS. Further improvement on the resolution can be 

achieved by tuning the degree of asymmetry in designing the Asym-AWPC. 

 

Keywords: Array processing, direction of arrival, multiple signal classification (MUSIC), 

uniform circular array, antenna-without-phase-center, multipath, compressive sensing, less 
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1. Introduction 

Direction-of-Arrival (DOA) estimation always plays a key role in radar, navigation, or 

wireless communications. Multiple Signal Classification (MUSIC) and Estimation of Signal 

Parameters via Rotation Invariance Techniques (ESPRIT) are well-known subspace-based 

DOA techniques. However, these algorithms only work well if the signals are uncorrelated. 

Meanwhile, wireless environments are complex due to the inherent multipath characteristic. 

This characteristic causes the signals to be correlated (i.e., some signals are scaled and 

delayed versions of an original signal) or even coherent (i.e., some signals are the same as the 

origin signal) [1]. In such environments, these subspace-based methods either perform poorly 

or, worse, fail because the covariance matrix of the source signals becomes rank deficient [2]. 

Several preprocessing techniques such as Forward-Backward Averaging, Toeplitz 

Completion, Forward-Backward Spatial Smoothing are used to improve the rank but their 

ability is limited to several array geometries such as Nonuniform Linear Array [2], Uniform 

Linear Array [3], and some special Uniform Circular Arrays [4]. Moreover, these techniques 

are only applied for cases where the number of sources is small [2]. 

Compressive Sensing (CS) is a signal processing technique for efficiently acquiring and 

reconstructing a sparse or compressible signal with fewer samples than the Nyquist-Shannon 

theorem [5-8]. The last few years have seen a tremendous progress in CS theory and 

applications. It can be applied for array signal processing in both time and spatial domains 
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[6]. For DOA estimation, a CS-based method has been proposed in [9] and has some initial 

advantages of compressing data in the time and spatial domains. It is limited to working only 

with uncorrelated signals. Another CS-based method is able to operate with single-snapshot 

correlated signals [10]. However, the required number of sensors is rather large; for example, 

about 30 sensors are needed for estimating 5 signals. This paper focuses on dealing with 

correlated and coherent signals, and thus we are interested in the application of CS for DOA 

estimation. 

The theory of CS shows that under certain conditions of source sparsity and system 

incoherence, a sparse source signal can be reconstructed from a limited number of linear 

measurements of the source [6, 11]. Among several well-known algorithms of CS,    

minimization has been demonstrated effective for exact reconstruction [5, 10]. In 360
0
 DOA 

estimation, according to CS, the signal length,   , is at least 360 (if the resolution is 1
0
), 

which is much larger than the number of the sources to be estimated. Therefore, in DOA 

estimation, the signal in the spatial domain can be considered sparse, justifying the use of CS. 

The other conditions in order to apply CS for DOA estimation are Restricted Isometry 

Property (RIP) and incoherence. Both RIP and incoherence can be obtained by designing the 

measurement matrix    to be random; i.e., measurements are merely randomly weighted 

linear combinations of the sparse or compressible signal. In the case where the sparsity basis 

matrix   is an identity matrix,   always is incoherence with   and RIP is satisfied if random 

Gaussian measurements    (        ⁄ ) [5]. 

Taking an example where the CS-based DOA estimator would operate for a maximum of 6 

sources, we would then need an antenna array geometry with at least    (         ⁄ )  
 (  ) sensors. If we use a conventional array, such as the Uniform Linear Array (ULA), the 

size of the array for the CS-based DOA estimator is about     ⁄  where   is the wavelength. 

Moreover, the observations must be multiple by a random matrix as in [12] to satisfy RIP and 

incoherence conditions. Meanwhile, one would only need to use 7-sensor array to estimate 6 

uncorrelated sources using MUSIC. 

Based on the above analysis, our aim is to make use of the advantage of CS for DOA 

estimation to reduce hardware complexity greatly in terms of the antenna size, the RF front-

end circuit number, and memory for storing entries of the random matrix. This is realized by 

proposing to use the recently proposed antenna structure called Asymmetric Antenna without 

Phase Center (Asym-AWPC) [13], rather than using the conventional ULA. The Asym-

AWPC is optimized for working in the 360
0
 range with some desirable properties (ambiguity-

free, compact, and array isotropic). In addition, DOA estimation using the Asym-AWPC has 

been proposed in [13], with the MUSIC algorithm. However, it only works well in 

uncorrelated environments. We propose in this paper a DOA estimator based on the Asym-

AWPC and uses CS that is able to work in correlated environments. 

The paper is organized as follows. In Section 2, we review a recent DOA estimation 

method using the Asym-AWPC antenna and the MUSIC algorithm in [13], abbreviated by 

Asym-AWPC-MUSIC. In Section 3, we propose a new DOA estimation method using the 

Asym-AWPC antenna and the CS algorithm, abbreviated by Asym-AWPC-CS. The 

resolution of Asym-AWPC-CS is further improved in Section 4. 
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Figure 1. Asym-AWPC Structure with 4 Dipoles 

2. DOA Estimation based on Asym-AWPC and MUSIC 
 

2.1. Asym-AWPC 

An Asym-AWPC includes four dipoles A, B, C and D as shown in Figure 1. The distances 

between the A, C, B and D dipoles and the origin are respectively   ,   ,    and   . The 

structure is asymmetric in the sense that      , or      . According to antenna theory, 

the total electric field of the sensors in the antenna array is expressed by 

 ( )   
  

  

      

  
|  | ( )            

(1) 

where   is the wave number,    is the distance between the origin and the source, |  | is the 

amplitude of the current of each sensor,   is the direction of propagation, and  ( ) is the 

array factor (AF). The AF is given by 

 ( )                                                             (2) 

where     
        

       
   and       

  are the phases of the currents at A, 

C, B and D, respectively. The amplitude pattern,  ( )and the phase pattern,  ( ), of the 

Asym-AWPC are obtained by 

 ( )  √  { ( )}    { ( )},  (3) 

 ( )    ( ), 
 (4) 

where  
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The Asym-AWPC is proposed in [13] to resolve the ambiguity, which is the similarity of 

two or more steering vectors corresponding to widely separated angles in the array manifold. 

The ambiguity can be checked by: 

 (     )  
|  (  ) (  )|

‖ (  )‖‖ (  )‖
  

(7) 

where  (  ) and  (  ) are two arbitrary steering vectors at directions   , and   . If  (  ) 
and  (  )  are co-linear then  (     )    and if they are orthogonal, meaning that 

|  (  ) (  )|   , and hence  (     )   . The array geometry is ambiguity-free if 

 (     )   . The performance is improved as   gets smaller. 

Besides, it is desirable to decrease mutual coupling while keeping the antenna size small. 

Therefore, the following geometrical configuration should be selected [13]: 

(           )  (  ⁄    ⁄  √   ⁄  (√  ⁄    ) )  (8) 

Figure 2(a) plots   of the Asym-AWPC with       . The result shows that   (     )  
  except when      ; that means the antenna has no ambiguity. 

 

2.2. Data Model 

Consider   narrowband zero-mean Gaussian sources   ( )   ( )     ( ) impinging on 

the Asym-AWPC, assuming that the elevation angle is equal to 90
0
. The antenna is rotated in 

  steps in the clockwise direction. At step  , for          , the received signal is 

modeled as 

  ( )  ∑  ( ) (      ) 
  (      )    ( )

 

   

  
(9) 

where    is the incident angle of the i-th source,    is the antenna rotation angle, and   ( ) 
is the spatially zero-mean white Gaussian noise with variance of   , statistically independent 

of the sources. In matrix form, the data model becomes 

 ( )   ( ) ( )   ( )  (10) 

where  ( )  [  ( )   ( )     ( )]
  is the source vector,  ( )  [  ( )   ( )     ( )]

  

is the noise vector,  ( )  [  ( )   ( )     ( )]
  is the received vector, and  ( ) is the 

steering matrix defined by 

 ( )  [ (  )  (  )    (  )]  (11) 

In (11),  (  ) is the steering vector associated with the  -th source and is given by 

 (  )  [
 (  ) 

  (  )

 
 (   (   )  ) 

  (   (   )  )
]  

(12) 
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(a) (b) 

Figure 2. Ambiguity Checking for Asym-AWPC with: (a)       , (b)        

The well-known MUSIC algorithm, based on exploiting the eigenstructure of the spatial 

covariance matrix of the output vector, was proposed by Schmidt in 1979. MUSIC can 

provide information about the number of incident signals, the strength, and DOA of each 

signal with very high resolution. However, it requires accurate array calibration [14]. 

The spatial covariance matrix of the output vector is expressed as 

    { ( ) 
 ( )}      

       (13) 

where  { }  denotes the statistical expectation operator, and    is the source covariance 

matrix. In practice, the spatial covariance matrix is estimated by the following sample spatial 

covariance matrix:  ̂  
 

 
∑  ( )  ( ) 
   , where         and   is called the number of 

snapshots. 

Next, this covariance matrix is eigen-decomposed as  ̂   ̂ ̂ ̂ , where  ̂ contains the 

eigenvectors and  ̂      {          }  is a diagonal matrix satisfying         
              

 . The MUSIC spatial spectrum is then obtained by 

      ( )  
  ( ) ( )

  ( ) ̂ 
  ̂  ( )

  
(14) 

where  ̂  is the noise source matrix which is formed by the last     columns of  ̂ , 

corresponding to     eigenvalues          . The orthogonality between   ( ) and  ̂   

will minimize the denominator of (14). Therefore, the   largest peaks in the MUSIC spatial 

spectrum correspond to the DOAs of the signals impinging on the antenna. 

 

2.3. Results and Discussions 

Although MUSIC is a well-known super-resolution algorithm, its performance decreases if 

sources are correlated. Some following numerical examples demonstrate operation of Asym-

AWPC-MUSIC in multipath environment. Six sources are presented at azimuth (-60
0
, -40

0
, -

20
0
, 20

0
, 40

0
, 60

0
) and the signal-to-noise ratios (SNRs) are all equal to 25dB. The snapshot 

number is 10. The Asym-AWPC with        is rotated with      and         ⁄ . 

The sources are set in four cases: 

 



International Journal of Control and Automation 

Vol.7, No.8 (2014) 

 

 

60   Copyright ⓒ 2014 SERSC 

(a) Case 1: 6 uncorrelated sources (b) Case 2: 2 correlated sources with 
(correlation-magnitude, correlation-

phase)=(1,10)  

(c) Case 3: 2 coherent sources (d) Case 4: 6 coherent sources 

Figure 3. Asym-AWPC-MUSIC in Multipath Environment with        

 Case 1: all 6 sources are uncorrelated. 

 Case 2: sources -20
0
 and 40

0
 are correlated, the others are uncorrelated. 

 Case 3: sources -20
0
 and 40

0
 are coherent, the others are uncorrelated. 

 Case 4: all 6 sources are coherent. 

The DOA estimation results are shown in Figure 3. In all the figures, the dashed vertical 

lines present the true DOAs. The results show that the uncorrelated sources (-60
0
, -40

0
, 20

0
, 

60
0
) are always revealed by high sharp peaks in all cases while the correlated sources (-20

0
, 

40
0
) depend on the correlation coefficient in terms of the correlation-magnitude and the 

correlation-phase. Figure 4(a) provides information about values of the MUSIC peaks versus 

the correlation-magnitude (the correlation-phase is equal to 0
0
). Values of the peaks which 

correspond to the four uncorrelated sources are always high and steady whereas those of the 

other two correlated sources decrease slightly in the interval [0.1, 0.9] and drop suddenly 

in  
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(a) Values of MUSIC peaks versus 
correlation-magnitude 

(b) Values of MUSIC peaks versus 
correlation-phase 

Figure 4. Values of MUSIC Peaks versus Correlation Coefficient 

the interval (0.9,1]. Figure 4(b) shows the trend of values of the MUSIC peaks versus 

correlation-phase (correlation-magnitude is 1). The values of uncorrelated peaks are also high 

and steady in all range whereas those of the others decrease sharply close to 0
0
 and 360

0
. 

Hence, we can conclude that the performance of Asym-AWPC-MUSIC degrades in a 

multipath environment. Worse, Asym-AWPC-MUSIC even fails if the sources are coherent. 

 

3. DOA Estimation based on Asym-AWPC and CS 

As previously explained, the required number of sensors and the RF front-end are rather 

large and the hardware complexity increases because of storing entries of random matrix 

measurements of CS. In this section, the number of sensors is reduced to four by using the 

Asym-AWPC. 

 

3.1. Data Model 

Let    (        ) be a set of angles, Ds be the total number of angles we want to scan, 

    . Using Asym-AWPC with the steering vector given by (12), we define an angle 

scanning matrix of size      as  (  )  [ (  )  (  )    (   )] , where   is the 

number of spatial samples, corresponding to the number of rotation steps of Asym-AWPC. 

We also define an      sparse vector  ( )  [  ( )   ( )      ( )]
 

, with   nonzero 

coefficient  ( )   ( ) at positions corresponding to the D sources, and zero coefficients at 

the remaining      positions. Therefore, the signal model of (10) can be rewritten as 

 ( )   (  ) ( )   ( )  (15) 

Once  ̂ has been estimated, the CS spatial spectrum of CS recovery is expressed by [12]: 

   (  )  
 

 
∑  ̂  ( )
 
   , (16) 

where           
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(a) Case 1: 6 uncorrelated sources  (b) Case 2: 2 correlated sources with 
(correlation magnitude, correlation 

phase)=(1,10)  

(c) Case 3: 2 coherent sources (d) Case 4: 6 coherent sources 

Figure 5. Asym-AWPC-CS and Asym-AWPC-MUSIC with         in Multipath 
Environment for DOA Estimation of 6 Sources 

3.2. Reconstruction Algorithm:   -Regularized Least Squares 

Many CS-based reconstruction algorithms, which are based on optimization, have been 

proposed. In this paper we choose the   -optimization in (17) because of high accuracy [5, 6]: 

 ̂        ‖ ́‖       subject to         ́     (17) 

where ‖ ‖  (∑ |  |
 

 )  ⁄  denotes the    norm of vector  . Problem (17) is also cast as an 

  -Regularized Least-Squares program which is solved by several standard methods such as 

interior-point methods [15]. With   -regularized least squares, we solve an optimization of the 

form 

   ‖    ‖ 
   ‖ ‖   (18) 

where ‖ ‖  ∑ |  |
  
   ,         is the measurement matrix,   is an arbitrary vector in    , 

     is observation vector and     is the regularization parameter [15]. 



International Journal of Control and Automation 

Vol.7, No.8 (2014) 

 

 

Copyright ⓒ 2014 SERSC   63 

The Truncated Newton Interior-Point method, described in detail in [15], is chosen to solve 

(18) because of good convergence rate. The performance of the Truncated Newton Interior-

Point method depends on   and mutual coherence  , which is defined, with an arbitrary 

measurement matrix, as [16] 

     
     

|  (  ) (  )|

‖ (  )‖‖ (  )‖
  

(19) 

The Truncated Newton Interior-Point method is slow when   is too small (gives a not very 

sparse solution) and   is close to 1 [16]. 

 

3.3. Results and Discussions 

The performance of Asym-AWPC-CS is compared to that of Asym-AWPC-MUSIC in this 

section. The simulation scenarios are the same as those in Section 2.3. The results are shown 

in Figure 5. The dashed lines show the results of the MUSIC algorithm while the solid lines 

show those of the CS algorithm. Values of peaks of the Asym-AWPC-CS are steady in all 

cases while those of Asym-AWPC-MUSIC decrease when the sources are correlated. This is 

due to the fact that DOA estimation using CS does not depend on correlation of sources. 

However, in Figures 5(a), 5(b), and 5(c), we also see that the peaks resolved by the Asym-

AWPC-MUSIC are sharper than those of the Asym-AWPC-CS. Therefore, the Asym-AWPC-

CS is a promising method for a compact DOA estimator in a multipath environment, but the 

resolution need be improved. 

 

4. Improved Resolution by Decreasing Mutual Coherence 
 

4.1. Asym-AWPC Measurement Matrix Characteristics 

In this section, we will consider measurement matrix characteristics of the Asym-AWPC in 

terms of orthogonality, statistical distribution, and mutual coherence. The orthogonality of the 

columns of the measurement matrix is proved in Section 2.1. However, the orthogonal level 

depends on the configuration of the Asym-AWPC. Figure 2(a) and Figure 2(b) present the 

orthogonality of all pairs of steering vectors of Asym-AWPC with        and       , 

respectively. 

In CS, the measurement matrix is often designed to be random. The statistical distribution 

of the measurement matrix is important because it affects the solution obtained by CS. The 

measurement matrix constructed by the Asym-AWPC is however deterministic. We examine 

the variation of the values of the measurement matrix for three different cases: (i) normal 

distribution, (ii) Asym-AWPC with       , and (iii) UCA, as shown in Figure 6. All 

matrices have the same size of       . The left hand side shows the scale-data-and-

display-as-image (SDDI) of the three matrices and the right hand side is the histograms of a 

specific row of the matrices (row 12 was chosen randomly). The results indicate that there is 

no variation in the values for the chosen row when the matrix is designed in accordance with 

the UCA structure. This explains the reason why we cannot apply CS for the UCA. 

In the general case, the mutual coherence of a measurement matrix is expressed by (19) in 

which the function to be maximized is the same as that in (7). The ambiguity checking factor 

 (     ) defined by (7) is shown in Figure 2. The value of (7) is really high if |     | is 

close to 0
0
 or 360

0
. That means, the mutual coherence in DOA estimation mainly depends on 
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(a) SDDI of normal distribution 

 

(b) HIS of normal distribution 

 

(c) SDDI of Asym-AWPC with 
       

 

(d) HIS of Asym-AWPC with        

 

(e) SDDI of UCA 

 

(f) HIS of UCA 

Figure 6. Scale-data-and-display-as-images (SDDI) and Histograms (HIS) at row 12 of 
the Absolute Measurement Matrices 
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the resolution (closely spaced angles). Therefore, the mutual coherence in DOA estimation 

should change as follows: 

     
|     |  

|  (  ) (  )|

‖ (  )‖‖ (  )‖
 

(20) 

where   is the resolution of the system. Figure 7 displays the mutual coherence in the range [-

175
0
,175

0
] with      versus the asymmetry factor    of the Asym-AWPC. At     ,   

gets smaller as    increases. 

 

Figure 7. Mutual Coherence in [-1750, 1750] Range with      

 

4.2. Results and Discussions 

The spatial spectrum of the Asym-AWPC-CS with        and        are presented 

in Figure 8 in forms of dashed and solid line, respectively. Figure 8(a) indicates that the 

sharpness of the peaks when        is worse than those when       . The resolution 

ability is shown in Figure 8(b) with true angles (-60
0
, -40

0
, -20

0
, 20

0
, 25

0
, 60

0
). The two close 

peaks at 20
0
 and 25

0
 can be resolved by        but       . 

 

(a)        
 (b)        

Figure 8. j Spectrum of CS with        and        
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5. Conclusions 

In this paper we have investigated DOA estimation in a multipath environment wherein the 

number of sensors is small, even less than that of the sources. This is done by combining the 

special antenna structure Asym-AWPC and CS algorithm. The obtained estimation results are 

good for all cases in the wireless environment while those of the MUSIC algorithm degrade 

or even fail for cases in which the sources are highly correlated or coherent. The resolution of 

the Asym-AWPC-CS spectrum can be improved if we design the Asym-AWPC with a larger 

asymmetry factor    that effective makes the mutual coherence smaller. 
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