

The emerging Scalable HEVC (SHVC) video coding standard provides an efficient solution for transmission of video over heterogeneous and time dynamic networks, terminals, and usage environments. The encoding complexity and the error sensitivity associated to the efficient HEVC coding tools adopted in SHVC make this scalable codec less attractive to some emerging applications such as video surveillance, visual sensor network, and remote space transmission

where these requirements are critical. To address the requirements of these application scenarios including scalability, this paper proposes a novel HEVC based framework offering quality scalability on top of a HEVC compliant base layer while appropriately combining the predictive and distributed coding paradigms. To achieve the best enhancement layer compression efficiency, two novel coding tools are proposed, notably a machine learning based side information creation mechanism and an adaptive correlation modeling process. The experimental results reveal that the rate-distortion performance of the proposed DSVC-HEVC solution outperforms the relevant alternative coding solutions, notably by up to 52.9% and 23.7% BD-rate gains regarding the HEVC-Simulcast and SHVC standard solutions, respectively, for an equivalent prediction configuration, while achieving a lower encoding complexity.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology (Volume: PP, Issue: 99)

Page(s):

1

ISSN : 1051-8215

DOI: 10.1109/TCSVT.2016.2543120 Date of Publication : 16 tháng ba 2016

Sponsored by : IEEE Circuits and Systems Society

Publisher: IEEE

Personal Sign In | Create Account

IEEE Xplore Abstract - Adaptive Scalable Video Coding: a HEVC based Framework Combining the P...

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7434627&url=http://ieeexplore.ieee.org/xpls/a...

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2016 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.