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Abstract: Thank to strong grow of MicroElectroMechanicalSystem (MEMS) technology, high 

performance and small size sensors are widely used in many areas such as landslide, navigation, 

mobile phones, etc. However, there are several kinds of errors are still existing in MEMS based 

sensors that need a carefully analyzing and calibration. By each year, the performances of 

commercial sensors are also improved. In this paper, we focused on characterizing the stochastic 

errors of accelerometers and gyroscopes integrated with a latest smart phone of Apple Inc. 

Iphone6+. The MP67B is a custom version of the InvenSense 6-Axis device (3-Axis gyroscope 

and 3-Axis accelerometer) made for Apple. This research will play an important step to decide 

whether we can create an Inertial Navigation System (INS) in the same device (i.e. the smart 

phone, the users do not need to equip a single device for positioning application). The Allan 

variance method is exploited to analyze the stochastic errors in these sensors. Experiments proved 

that the main sources of errors in these sensors are white noises. The Iphone5 can operate as a low-

cost solution of positioning and navigation device. 
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1. Introduction
∗∗∗∗ 

Nowadays, thanks to the progress of MEMS technology, the inertial sensor become smaller, 

cheaper and more precise. They are widely used in the INS/GPS integrated systems. However, the 

measurement data of sensors are usually affected by different types of error sources, such as sensor 

noises, scale factor, and bias variations, etc. This sensors need testing and calibration before applying 

to real applications. Based on different error sources, the errors which exist in inertial sensors can be 

divided into deterministic errors and stochastic errors [1-3]. Major deterministic error sources include 

bias, scale errors, which can be removed by specific calibration procedures [1], [4]. The stochastic 

errors include Quantization Noise, Random Walk, Bias Instability (1/f or flicker noise), Rate Random 

Walk and Rate Ram [5]. The random errors cannot be removed from the measurements and should be 

_______ 
∗
 Corresponding author. Tel.: 84-983711805 

   E-mail: phamvantang@gmail.com 



P.V. Tang et al. / VNU Journal of Science: Mathematics – Physics, Vol. 32, No. 2 (2016) 34-42 35 

reduced by the filters. Therefore, the analysis and the characterization of random errors of MEMS 

inertial sensors are a necessity to improve the accuracy [6].  

The Allan variance (AV) and the Power Spectral Density (PSD) are two main methods used to 

estimate the stochastic characterization existing in inertial sensors. The PSD is the most commonly 

used representation of the spectral decomposition of a time series. It is a powerful tool for analyzing 

and characterizing data, and for stochastic modelling [5]. The Allan variance is a time domain analysis 

technique originally developed to study the frequency stability of oscillators. This method was initially 

studied by David Allan in 1966 [7]. The Allan variance is a method of representing the root mean 

square (RMS) random-drift errors as a function of averaging times. It is simple to compute and 

relatively simple to interpret and understand. The Allan variance method can be used to determine the 

characteristics of the underlying random processes that give rise to the data noise.  This technique can 

be used to characterize various types of noise terms in the inertial sensor data [8]. 

In this paper, we focused on identification of the stochastic errors of accelerometers and 

gyroscopes in MP67B IMU which is built in Iphone6 and Iphone6Plus. It will play an important 

decisive whether we can combine this IMU with a navigation algorithm to create an Inertial 

Navigation System (INS) in the same device. 

2. Allan Variance method 

Allan variance analysis is commonly and efficiently used to identify and obtain the variances for 

most of the random errors. Allan variance is based on the method of cluster analysis. Assume that 

there are  consecutive data points, each having a sample time of . Forming a group of  

consecutive data points (with ), each member of the group is a cluster (Fig. 1).  

 

Associated with each cluster is a time , which is equal to  . If the instantaneous output rate of 

the inertial sensor is Ω , the cluster average is defined as [9] 
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Fig 1.  Scheme of data structure used in Allan variance algorithm. 
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 The Allan variance of length  is defined as follows [9] 
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where < > is the averaging value over the ensemble of clusters. 

Clearly, for any finite number of data points (N), a finite number of clusters with length  can be 

formed. Hence, equation (3) represents an estimation of the quantity σ
2
 ( ), whose quality of an 

estimate depends on the number of independent clusters of a fixed length that can be formed. The 

Allan variance is a measure of the stability of the sensor output. A log-log plot of the square root of the 

Allan variance  versus  provides a means of identifying and quantifying various noise terms that 

exist in the inertial sensor data. The cluster sampling can be done in following three ways: Fully 

Overlapping Allan Variance; Non Overlap Allan Variance and Not Fully Overlapping Allan Variance [10]. 

 

3. Analysis of stochastic noise terms in Allan variance 

In general, any number of stochastic noise components may be present in the data depending on 

the type of device and the environment in which the data are obtained. Noise terms in Allan variance, 

which are known to exist in the inertial sensor data, are represented as given below [5], [11]: 

Fig 2. (a) Nonoverlapped cluster sampling method. (b) Fully 

overlapping cluster sampling method. (c) Not fully over lapping 

cluster sampling method [10]. 

(a) 

(b) 

(c) 
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3.1. Quantization noise 

This noise is strictly due to the quantized nature of the sensor’s output. The quantization noise is 

inherent in the amplitude quantization process. Allan variance for quantization noise is given by 

 ( )
2

2

2

3 zQ
σ τ

τ
=  (4) 

where Qz is the quantization noise coefficient and τ is the sample interval. Therefore the quantization 

noise is represented by a slope of -1 in a log-log plot of σ(τ) versus τ. The magnitude of this noise can 

be read off the slope line at . 

3.2. Angle (velocity) random walk  

The angle random walk is characterized by a white noise on the gyro angle (or accelerometer 

velocity) output. The Allan variance for angle (velocity) random walk is given by 

 ( )
2

2 Q
σ τ

τ
=  (5) 

where Q is the angle (velocity) random walk coefficient. Equation (5) indicates that a log-log plot of 

σ(τ) versus τ has a slope of -1/2. The valued of Q can be obtained directly by reading the slope at 

. 

3.3. Bias instability 

This noise is also known as flicker noise. The origin of this noise is the electronics, or other 

components susceptible to random flickering. Because of its low-frequency nature, it shows as the bias 

fluctuations in the data. Allan variance for bias instability is given by 

 ( )
2

2

0.664

B
τσ

 
=  
 

 (6) 

Hence, the bias instability value can be read off the root Allan variance plot at the region where the 

slope is zero. 

3.4. Rate random walk 

This is a random process of uncertain origin, possibly a limiting case of an exponentially 

correlated noise with a very long correlation time. The Allan variance of rate random walk is given by 

 ( )
2

2

3

K
σ

τ
τ =  (7) 

This indicates that rate random walk is represented by a slope of + 0.5 on a log-log plot of σ(τ) 

versus τ. 

3.5. Rate ramp 

This is more of a deterministic error rather than a random noise. It could also be due to a very 

small acceleration of the platform in the same direction and persisting over a long period of time. 

Allan variance of rate ramp is given by 
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This indicates that the rate ramp noise has slope of + 1 in the log-log plot of σ(τ) versus τ. 

A typical Allan variance plot is shown in Fig 3. In most cases, different noise terms appear in 

different regions of τ. This allows easy identification of various random processes that exist in the 

data. It can be assumed that the Allan variance at any given τ is the sum of Allan variances due to the 

individual random processes at the same τ 

 

4. Experiment and result 

Figure 4 shows the package views of the MP67B 6-Axis IMU supplied by InvenSense and found 

in iPhone 6 and 6 Plus. It consists of 3-Axis gyroscope + 3-Axis Accelerometer made for Apple and 

integrated in the iPhone 6 and iPhone 6 Plus. For the 3-Axis gyroscope, its design now uses a single 

structure vibratory compared to three different structures for the previous generation of gyros. This 

new design results in a shrink of 40% of the 3-axis gyro area. The size of the sensor package is 

3.0×3.0×0.8 mm
3
. 

 

Fig 4. Package views of the MP67B 6-Axis IMU. 

Fig 3.  σ(τ) Sample plot of Allan variance analysis results [5]. 
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Deterministic errors could be eliminated by a careful calibration. Figure 5 shows the photo of this 

IMU in a calibration process. The sensor data in the first 600 seconds are shown in Fig. 6.  

 
Fig. 5. The device in a calibration process. 
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Fig. 6. Sensor data in the first 600 seconds. 

 

In order to characterize the stochastic errors of this IMU, one hour static data was acquired. After 

that, the Allan method is applied to the whole data set, log-log plot of the Allan stanđard deviation 

versus the cluster time is shown in Fig. 7 for the acceleration data and Fig. 8 for the gyro data. Figs. 7 

and 8 clearly shown that the random walk is the dominant noise for both the short and long cluster 

times. For the X-axis acceleration curve, for example, a straight line with a slope of -0.5 fitted to the 

vertical line of  (as mentioned in sub-section 3.2) at a value of 0.0048. Thus, the random walk 
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coefficient for the MP67B X-axis accelerometer is estimated as  = . For the 

X-axis gyro curve, for example, a straight line with a slope of -0.5 fitted to the vertical line of  

at a value of 0.0011. Thus, the random walk coefficient for the MP67B X-axis gyro is estimated as 

. Also in Fig. 9, for the long cluster times, the bias instability noise is 

appeared with its deviation of 0.00026. Thus, the bias instability coefficient is estimated at 0.00039 

rad/s. 

10
0

10
1

10
-3

τ [sec]

σ
( τ

)

 

 

Ax

Ay

Az

 

Fig. 7 MP67B accelerometer Allan variance results. 
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Fig. 8 MP67B gyroscope Allan variance results. 

Table 1 lists the identified error coefficients for all of the gyro and acceleration sensors. 

Table 1. Identified error coefficient for MP67B 

 
 

computed by MDEV 
 

computed by ADEV  

Other noises 

Ax 0.00480 0.00481  

Ay 0.00820 0.00681  

Az 0.00950 0.01068  

 
 

computed by MDEV 
 

computed by ADEV  

 

Gx 0.00110 0.00117  

Gy 0.00091 0.00123 
Flicker noise:  

B=0.00039 rad/s. 

Gz 0.00069 0.00070  
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Power Spectral Density (PSD) shows hơ the power is allotted along the frequency range. For 

example, Fig. 9 shows a log-log plot of PSD of the X-axis accelerometer. PSD  of this data is fitting to 

S(f) = f^(-0.029). It closes to white noise (i.e. random walk). Fig. 10 shows a log-log plot of PSD of 

the Y-axis gyro. PSD  of this data is fitting to a S(f) = f^(-0.61). The spectrum is close to flicker noise 

(i.e. bias instability). 

 

 

Fig. 9. MP67B X-axis accelerometer PSD result. 

 

Fig. 10. MP67B Y-axis gyroscope result. 

5. Conclusion 

This paper characterizes successful the stochastic errors of from the output data of the IMU 

MP67B in Iphone6 and Iphone6Plus. The Allan variance method is an effective technique for error 

modeling and parameter estimation. For the MP67B, the white noise is the dominant error term for 

both the gyros and accelerometers. For the long cluster times, the bias instability noise appeared for 

the Y-axis gyro. This analysis also proves that the inertial sensor MP67B in Iphone6 and Iphone6Plus 

have meet requirement of a medium accuracy positioning and navigation device. 
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