
Formal analysis of imprecise system
requirements with Event‑B
Hong Anh Le1*, Shin Nakajima2 and Ninh Thuan Truong3

Introduction
Requirement engineering is a process of specifying, analyzing, and checking provided
services and constraints of a system. It is one of the most significant steps in software
development. System requirements aim to take into account various demands of all the
stakeholders, where detecting and resolving conflicts is important. The requirements
sometimes include imprecise descriptions where ambiguous, vague or fuzzy terms, such
as “very good”, “far”, or “less important”, are used. This is because the stakeholders do not
care much about describing the system precisely or imprecise requirements are more
suitable in some contexts. In software development, imprecision in the requirement
specification also causes many problems. Formal specification methodologies, however,
require the requirements to be described precisely. Hence, there is a gap between impre-
cise requirements and formal specification methods. Therefore, frameworks which are
formal enough to be used for analyzing as well as representing imprecise requirements
are desirable.

The method with Fuzzy sets, proposed by Zadeh (1965), is one such formal frame-
work, where the Fuzzy If–Then rules are sometimes employed to represent imprecise
system requirements. Informal statements expressed in natural languages such as “very
far” or “too close” can be naturally captured using Fuzzy sets, which enables further

Abstract

Formal analysis of functional properties of system requirements needs precise descrip-
tions. However, the stakeholders sometimes describe the system with ambiguous,
vague or fuzzy terms, hence formal frameworks for modeling and verifying such
requirements are desirable. The Fuzzy If–Then rules have been used for imprecise
requirements representation, but verifying their functional properties still needs
new methods. In this paper, we propose a refinement-based modeling approach for
specification and verification of such requirements. First, we introduce a representation
of imprecise requirements in the set theory. Then we make use of Event-B refinement
providing a set of translation rules from Fuzzy If–Then rules to Event-B notations. After
that, we show how to verify both safety and eventuality properties with RODIN/Event-
B. Finally, we illustrate the proposed method on the example of Crane Controller.

Keywords: Imprecise requirements, Event-B, Analysis

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Le et al. SpringerPlus (2016) 5:1000
DOI 10.1186/s40064‑016‑2657‑8

*Correspondence:
lehonganh@humg.edu.vn
1 Hanoi University of Mining
and Geology, Bac Tu Liem,
Hanoi, Vietnam
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2657-8&domain=pdf

Page 2 of 16Le et al. SpringerPlus (2016) 5:1000

analysis on the specifications. The analysis involves continuous numerical reasoning
since the Fuzzy set is essentially based on the idea of representing the fuzziness degree
in terms of Real numbers between 0 and 1.

In general, system requirements include functional specifications, whose various
properties are checked at this same level of abstraction before starting further develop-
ment steps. The requirements written in terms of Fuzzy If–Then rules can be an ade-
quate representation, but require further techniques for checking properties formally,
which may elucidate perspectives different from those for detecting and resolving con-
flicts of the requirements. The Fuzzy If–Then rules have been translated into other for-
mal frameworks such as PetriNet (Intrigila et al. 2005; Yang et al. 2003) or Z notation
(Chris and Paul 2003). Unfortunately, these existing approaches have disadvantage in
that they do not provide adequate verification methods for temporal properties such as
safety or eventuality. The existing approaches are discussed in more detail in “Related
work” section.

This paper employs Event-B and its refinement-based modeling approach for specifi-
cation and verification of both safety and eventuality properties when the requirements
are represented by the Fuzzy If–Then rules. In particular, we apply the proof methods
proposed in Hoang and Abrial (2011) to verify the eventuality properties. Our prior
work (Le et al. 2014) initially proposed to use Event-B to formalize imprecise require-
ment. It provided the basic result of checking safety property of imprecise requirement
using Event-B. This paper reports the concrete results of formal checking of both safety
and eventuality properties for imprecise system requirements. The contributions of the
paper are as follows: (1) providing a presentation of fuzzy terms in classical set theory,
(2) providing a set of translation rules from Fuzzy If–Then rules to Event-B language
constructs, which makes use of the refinement modeling approach that Event-B sup-
ports, and (3) demonstrating how both safety and eventuality properties of a set of the
Fuzzy If–Then rules can be verified using RODIN (Abrial et al. 2010), a supporting tool
for Event-B.

The rest of the paper is structured as follows. Section “Backgrounds” provides some
background of fuzzy sets, fuzzy If–Then rules, and Event-B. In “Imprecise requirements
analysis with Event-B” section, we give a representation of fuzzy sets in classical sets.
Using such representation, we first introduce a set of translation rules to model fuzzy If–
Then rules by Event-B. Then, we propose a refinement-based modeling method to spec-
ify and check eventuality properties. In fourth section presents the example of a crane
controller to illustrate the proposed method in detail. We summarize “Related work” in
fifth section. “Conclusions” are given in final section.

Backgrounds
In this section, we briefly introduce an overview of fuzzy logics (in the broad sense)
that mainly serve for describing and analyzing impreciseness. We also summarize basic
knowledge of Event-B.

Page 3 of 16Le et al. SpringerPlus (2016) 5:1000

Fuzzy sets and fuzzy If–Then rules

In order to deal with systems which are too complex or too ill-defined to admit of pre-
cise descriptions, Zadeh (1965) introduces a logical framework which is not traditional
two-valued, but multi-valued logics whose values are interpreted by Fuzzy sets.

Fuzzy sets are actually functions that map a value that might be a member of a set to a
number between zero and one indicating its actual degree of membership. A fuzzy set F
defined on a universal set X is a set, each element of which is a pair of values (x,µF (x)),
where x ∈ X and µF (x) : X → [0, 1].

Fuzzy sets use so-called linguistic variables in addition to numerical variables. The val-
ues of a linguistic variable are labels of fuzzy subsets of X which have the form of phrases
or sentences in a natural or artificial language. For example, height is a linguistic variable
labeled x, and the values of x might be “tall”, “not tall”, “very tall”, or “tall but not very tall”.
Generally, a value of a linguistic variable is a concatenation of atomic terms that can be
divided into main categories shown below:

 • Primary terms: which are labels of specified fuzzy subsets of the universal set (for
instance: tall in the above example).

 • Hedges: such as “very”, “slightly”, etc.
 • Negation and connectives symbols (i.e not, and, or).

A fuzzy hedge is an operator which transforms the fuzzy set F(x) into the fuzzy set F(hx).
The hedges are the functions that generate a larger set of values for linguistic variables.
For instance, using hedge very along with negation not applied to the term tall, we can
have very tall or not very tall.

A more general concept, which plays an important role in the fuzzy sets approach to
analyzing imprecise description, is Fuzzy If–Then rules. They are mainly used for speci-
fying behavior of the system. It has a form: IF x is A THEN y is B where A and B are
fuzzy sets; x and y are linguistic variables. Here is an example: IF the weather is bad
THEN the speed is slow.

Event‑B and Rodin

Event‑B

Event-B Abrial (2010) is a formal method for system-level modeling and analysis. Key
features of Event-B are the use of set theory as a modeling notation, the use of refine-
ment to represent systems at different abstraction levels and the use of mathematical
proofs to verify consistency between refinement levels. A basic structure of an Event-B
model consists of MACHINE and CONTEXT.

An Event B CONTEXT describes a static part where all the relevant properties and
hypotheses are defined. A CONTEXT consists of carrier sets, constants, axioms. Carrier
sets, denoted by s, are represented by their names, and are non-empty. Different carrier
sets are completely independent. The constants c are defined by means of a number of
axioms P(s, c) also depending on the carrier sets s.

A MACHINE is defined by a set of clauses. A machine is composed of variables, invar-
iants, theorems and events. Variables v are representing states of the model. Invariants
I(v) yield the laws that state variables v must always satisfy. These laws are formalized

Page 4 of 16Le et al. SpringerPlus (2016) 5:1000

by means of predicates expressed within the language of First Order Predicate Calculus
with Equality extended by Set Theory. Events E(v) present transitions between states.
Each event has the form evt = any x where G(x, v) then A(x, v, v′) end, where x are local
variables of the event, G(x, v) is a guard condition and A(x, v, v′) is an action. An event is
enabled when its guard condition is satisfied. The event action consists of one or more
assignments. We have three kinds of assignments for expressing the actions associated
with an event: (1) a deterministic multiple assignment (v := E(t, v)), (2) an empty assign-
ment (skip), or (3) a non-deterministic multiple assignment (v : |P(t, v, x′)).

To deal with complexity in modeling systems, Event-B provides a refinement mecha-
nism that allows us to build the system gradually by adding more details to get a more
precise model. A concrete Event-B machine can refine at most one abstract machine. A
refined machine usually has more variables than its abstraction as we have new variables
to represent more details of the model. In superposition refinement, the abstract vari-
ables are retained in the concrete machine, with possibly some additional variables. In
data refinement, the abstract variables v are replaced by concrete ones w. Subsequently,
the connections between them are represented by the relationship between v and w, i.e.
gluing invariants J(v, w).

In order to check if a machine satisfies a collection of specified properties, Event-B
defines proof obligations (POs) which we must discharge. Some of the proof obligations
relevant to discussion here are invariant preservation (INV), convergence (VAR), dead-
lock-freeness (DLF). INV PO means that we must prove that invariants hold after event’s
execution. The proof obligation is as follows: I(v),G(x, v),A(x, v, v′) ⊢ I(v′), where v′ is
value of variable v after executing the event. VAR PO means that events cannot take
control forever. To prove this, we use a variant V which is mapped to a finite set, then
this variant is proved to be decreased in each convergent event. It is described as follows.
I(v),G(x, v),A(x, v, v′) ⊢ V (v′) ⊂ V (v). Deadlock-freeness for a machine ensures

that there are always some enabled events during its execution. Assume that a machine
contains a set of n events ei(1 ≤ i ≤ n) of the following form: evt = any x where G(x, v)
then A(x, v, v′) end. The proof obligation rule for deadlock-freeness is as follows:
I(v) ⊢

∨n
i=1(∃xi · G(xi, v)).

Event-B provides ways to express safety properties directly by using the invariants.
While safety properties guarantee that bad things do not happen, an eventuality prop-
erty is one of liveness properties assuring that the system will reach a defined good state.
Event-B does not support to specify liveness properties directly but we can follow the
approach (Hoang and Abrial 2011) to verify properties such as existence (�♦P), progress
(�(P1 =⇒ ♦P2)), or persistence (♦�P), where P is any first order logic formula, ♦ and
� are standard operators of Linear Temporal Logic (LTL), under weak-fairness assump-
tion. We will discuss here in detail existence property. Assume that a given machine M
with n events ei(1 ≤ i ≤ n), ei = any x where G(x, v) then A(x, v, v′) end. They claim that
if M is convergent in ¬P and M is deadlock-free in ¬P, then �♦P is satisfied in M. This
approach uses the variant clause to prove convergence of a machine and we introduce an
auxiliary refined machine at the last refinement step to apply this proof method.

Page 5 of 16Le et al. SpringerPlus (2016) 5:1000

Rodin

Rodin, an extension of the Eclipse platform, allows to create Event-B models with an
editor. It also automatically generates the proof obligations of a model that can be dis-
charged automatically or interactively. The architecture of the tool is illustrated in Fig. 1.
Event-B UI provides users interfaces to edit Event-B models. Event-B Core has three
components: static checker (checking the syntax of Event-B models), the proof obliga-
tion generator (producing simplified proof obligations that make them easier to dis-
charge automatically), and the proof obligation manager (manging proof obligations and
the associated proofs). The Rodin Core consists of two components: the Rodin reposi-
tory (managing persistence of data elements) and the Rodin builder (scheduling jobs
depending on changes made to files in the Rodin repository).

Imprecise requirements analysis with Event‑B
First, this section presents an approach to specifying imprecise requirements in classi-
cal set theory. This representation is the basis of its formalization in Event-B. After that,
we introduce a new refinement-based approach to analyzing eventuality properties of
imprecise system requirements.

Presentation of imprecise requirements in classical sets

As stated above, fuzzy sets can be used as the foundation for representing imprecise
requirements. The behavior of such requirements can be described by Fuzzy If–Then
rules. We will show that imprecise requirements, which are described by Fuzzy If–Then
rules, can be represented in classical sets.

First, the general form FR, also called well-defined form, of an imprecise requirement
can be represented as:

where x and y are linguistic variables, Yi ∈ Y and Pi ∈ P are fuzzy values, and δ and γ are
fuzzy hedges which are applied on the fuzzy sets Y and P respectively.

Definition 1 (Imprecise requirement) An imprecise requirement is defined as a 6-tuple
FR = �x,m, δ, γ ,Yi,Pi�, where x and m are linguistic variables, δ and γ are fuzzy hedges,
and Yi and Pi are fuzzy values.

IF x is δYi THENm is γPi

Event−B UI

Eclipse platform

Rodin Core Event−B Library

Event−B Core

Fig. 1 Rodin tool architecture

Page 6 of 16Le et al. SpringerPlus (2016) 5:1000

Recall that, in classical set theory, sets can be combined in a number of different ways
to produce another set such as Union, Intersection, Difference, or Cartesian product.
Below we recall some definitions related to Cartesian product of multiple sets is also
defined using the concept of n-tuple.

Definition 2 (ordered n-tuple) An ordered n-tuple is a set of n objects with an order
associated with them. If n objects are represented by x1, x2, . . ., xn, then we write the
ordered n-tuple as 〈x1, x2, . . . , xn〉.

Definition 3 (Cartesian product) Let A1, . . . ,An be n sets. Then the set of all ordered
n-tuples 〈x1, . . . , xn〉 , where xi ∈ Ai, ∀i, 1 ≤ i ≤ n, is called the Cartesian product of
A1, . . . ,An, and is denoted by A1 × · · · × An.

Proposition 1 A set of well-defined imprecise requirements can be specified by classical
sets.

Proof Suppose that, imprecise requirements of a system are specified by FR = {FRi} ,
FRi = {xi,mi, δi, γi,Yi,Pi}, 1 ≤ i ≤ n. Clearly that, xi,mi are considered as elements of
variables sets, Yi and Pi belong to fuzzy sets. We consider if δiYi can be specified by a
classical set in which δi is a hedge and Yi is a value in fuzzy set Y. As mentioned in “Fuzzy
sets and fuzzy If–Then rules” section, δi transforms fuzzy set Y to another fuzzy set.
Moreover, according to the Definition 3, δiYi is a membership of the Cartesian product
of two sets δ × Y . Similarly with the case of specifying γiPi. Consequently, every element
in FR can be specified by classical sets. �

Modeling imprecise requirements

We will explain how imprecise requirements described by Fuzzy If–Then rules are mod-
eled based on their new representation. Suppose that, a system is specified by a set of
requirements FRi :

According to the Proposition 1, the above requirements can be represented by classi-
cal sets. Next, we take into account the semantic of Fuzzy If–Then rules. In fact, these
rules can be interpreted in various ways. In this paper, we define the semantic of a rule
as follows:

where xi and mi are linguistic variables, γi and δi are hedges, and Yi and Pi are fuzzy sets.
It is informally interpreted as if xi is equal to pair 〈δi,Yi〉, then yi is equal to pair 〈γi,Pi〉.

Since Event-B is a language based on the classical set theory, we propose an approach
to modeling the system with Event-B method. A system consisting a collection of
requirements FRi, 1 ≤ i ≤ n, is modeled by an Event-B model FRB = �FR_C , FR_M� ,
where FR_C and FR_M are Event-B context and machine respectively. We propose below
translation rules to map imprecise requirements to Event-B’s elements. The important
principle of the translation process is that we can preserve the structure and represent

if xi is δiYi thenmi is γiPi end

∀xi, yi ◦ (xi = δi �→ Yi) =⇒ (yi = γi �→ Pi)

Page 7 of 16Le et al. SpringerPlus (2016) 5:1000

all imprecise requirements using the Event-B notation. Moreover, safety properties must
be preserved by actions of the system.

Translation rules

 • Rule 1: All hedges δi and γi, fuzzy values Yi and Pi in the set of requirements are trans-
lated to three sets H, Y, and P respectively. They are stated in the SETS clause of
FR_C.

 • Rule 2: Linguistic variables xi and mi in each FRi are mapped to variables xi and mi of
the Event-B machine FR_M.

 • Rule 3: Each variable xi is described as a member of a Cartesian product of two sets
H × Y ; mi is described as a member of a Cartesian product of two sets H × P (Prop-
osition 1).

 • Rule 4: Each requirement FRi is modeled by an event evi in Event-B machine FR_M .
If-part of the requirement becomes guard of the event, then-part is translated to
event’s action.

 • Rule 5: Safety properties of the system are modeled as invariants I of the machine
FR_M.

Translation correctness
Let FRi = {xi,mi, δi, γi,Yi,Pi} be a Fuzzy If–Then rule. According to Rule 1, 2,

3 and 4, it is translated to an event when xi = δi �→ Yi then mi := γi �→ Pi, i.e.,
xi = δi �→ Yi =⇒ mi := γi �→ Pi. As a consequence, the translation rules preserve the
semantic of a Fuzzy If–Then rule.

Note that, these are only partial transformation rules, we need to give more additional
parts to obtain the completed Event-B specification (Fig. 2).

Proposition 2 With the modeling proposed in translation rules, the safety properties
are preserved by all actions of imprecise system requirements.

CONTEXT FR C
SETS

H
P
Y

END

MACHINE FR M
SEES FR C
VARIABLES

xi
mi

INVARIANTS
inv1 : xi ∈ H ×Y
inv2 : mi ∈ H × P
inv3 : I

EVENTS
Event FRi =̂
when
grd1 : xi = δi �→ Yi

then
act1 : mi := γi �→ Pi

act2 : xi := δj �→ Yj

end
END

Fig. 2 A part of Event-B specification for imprecise requirements modeling

Page 8 of 16Le et al. SpringerPlus (2016) 5:1000

Proof Suppose that, a collection of imprecise requirements FR = {FRi}, 1 ≤ i ≤ n, are
translated to n corresponding events evti. Safety properties of the system are specified
in the invariant I . We have to prove that safety constraints are preserved through all
requirements by showing that it remains true before and after firing (executing) each
event. This is obviously achieved through proof obligations of the Event-B machines
which is used to preserve their invariants.

Without loss of generality, we assume that the imprecise requirements and constraints
contain one variable v, hence we need to prove:

This predicate allows us to ensure the safety properties after executing the events in
model, which is exactly the form of INV proof obligation generated from Event-B
machine. Therefore, the safety properties stated in requirements are shown preserved if
the corresponding INV proof obligation is proved. �

Modeling eventuality properties with refinement

Hoang and Abrial (2011) introduced reasoning techniques to prove classes of liveness
properties such as existence, progress, persistence. They claims that with a state formula
R which is a first-order logic formula and an Event-B machine M that is convergent and
deadlock-free in R then ¬R will always eventually (�♦¬R) hold.

In order to reason about eventuality properties on a set of fuzzy If–Then rules, we
initially presented the method (Le et al. 2015) following the techniques introduced in
Hoang and Abrial (2011). We first map fuzzy values to Natural numbers. Since fuzzy sets
can be represented by classical sets consisting of discrete values (“Presentation of impre-
cise requirements in classical sets” section), the mapping on Natural numbers instead of
a continuous range [0..1] is acceptable. Therefore, we give a new definition of fuzzy sets
as follows

Definition 4 (Fuzzy set) A fuzzy set is a pair 〈U ,µ〉, where U is a set and µ is the mem-
bership degree function, can be represented as a pair 〈P,µs〉, where P is a crisp set, µs is a
total function such that µs : P → N

Similarly, we also use a total function µH : H → N as mapping values of fuzzy hedges.
Recall that, a system is specified by a collection of requirements FRi:

We propose a refinement-based approach to modeling with an introduction of addi-
tional translation rules to extend the context and to refine the machine of the abstract
model as follows

 • Rule 6: Fuzzy values of each element in P, Y and hedges δ are translated to total func-
tions degP : P → N, degY : Y → N, and degH : H → N respectively.

 • Rule 7: Adds a variant mapping to linguistic variable xi that appears in eventuality
property expression Q(xi).

I(v) ∧ evti(v, v
′) ⊢ I(v′)

if xi is δiYi then mi is δjPi

Page 9 of 16Le et al. SpringerPlus (2016) 5:1000

 • Rule 8: Refines each event representing one Fuzzy If–Then rule by two events: a con-
vergent and an ordinary one.

 • Rule 9: Adds a clause ¬Q(xi) to the guards of each convergent event, and a clause
Q(xi) to the ordinary one.

A partial Event-B specification for these rules is depicted in Fig. 3.
Before showing that if a collection of requirements satisfy a eventuality property Q(x),

we introduce definitions relating to some properties of fuzzy rules.

Definition 5 (Convergence) A set of fuzzy rules are convergent from a state C(x) if each
rule decreases value of variable x. It is formally defined as: FRi,C(x) ⊢ x′ < x, where x′ is
value after executing rule FRi.

Definition 6 (Deadlock-freeness) A set of fuzzy rules are deadlock-free in a state R(x) if IF
clause of at least one rule is satisfied. It is formally defined as R(x) =⇒

∨n
i=1(∃xi.xi = δYi).

Proposition 3 If a collection of Fuzzy If–Then rules {FR} are convergent and deadlock-
free from a first-order logic state formula R(x), where x is a linguistic variable, then the
state property ¬R(x) will always eventually holds. Formally, we have {FR} ⊢ �♦¬R(x).

CONTEXT FR C1
EXTENDS FR C0
CONSTANTS

degP
degY
degδ

AXIOMS
degP ∈ P →
degY ∈ Y →
degH ∈ δ →

END

MACHINE FR M 1
SEES FR C1
REFINES FR M
VARIABLES

vx
INVARIANTS

inv4 : y ∈
VARIANT

vx
EVENTS
Event evi CE =̂
Status convergent
extends evti

When
grd1 : xi = δi �→ Yi

grd2 : ¬ Q(xi)
grd3 : vx := degY (Yi)
then
act1 : mi := δi �→ Pi

act2 : xi := δj �→ Yj

act3 : vx := degY (Yj)
end

Event evi OE =̂
Status ordinary
extends evti

When
grd1 : xi = δi �→ Yi

grd2 : Q(xi)
grd3 : vx := degY (Yi)
then
act1 : mi := δi �→ Pi

act2 : xi := δj �→ Yj

act3 : vx := degY (Yj)
end

END

Fig. 3 A part of Event-B specification for eventuality property modeling

Page 10 of 16Le et al. SpringerPlus (2016) 5:1000

Proof Suppose that, a set of fuzzy If–Then rules FR = {FRi}, 1 ≤ i ≤ n, is first formal-
ized by an abstract machine M_0, then is refined by another machine M_1 containing a
set of convergent events evti.

Applying Rule 8, each fuzzy rule is represented by a convergent event evti with guard
G(x). Following Rule 9, a new clause ¬R(x) is added to the guard condition of each con-
vergent event.

According to the translation Rule 6 and 7, approximation of a linguistic variable
x is a natural number and is mapped to an variant V(x). Furthermore, each fuzzy rule
decreases the fuzzy variable x (Definition 5), i.e V (x′) < V (x). Hence, we have

This predicate is the form of VAR proof obligation generated from Event-B machine to
prove that all events of the machine M_1 are convergent (*).

We already state that fuzzy rules are deadlock free in R(x), according to Rule 8, Rule 9

and Definition 6 we have: R(x) =⇒
n∨

i=1

(∃i · G(evi)). This predicate is the form of DLF

proof obligation generated from Event-B machine to prove machine M_1 is deadlock-
free in R(x)(**).

From (*) and (**), based on the reasoning technique in Hoang and Abrial (2011), we
have a conclusion: {FR} ⊢ �♦¬R(x). �

An example: Container Crane Control
In this section, first we introduce an example of Container Crane Control (Fuzzytech
2012), then follow the proposed method in “Imprecise requirements analysis with Event-
B” section to model and verify the safety and eventualities properties.

Example description

Container cranes are used to load and unload containers on a ship in most harbors. They
pick up single containers with cables that are mounted on the crane head (Fig. 4).

The crane head moves on a horizontal track from a starting position. The speed of the
crane head is controlled by a motor power with a speed level. We start the motor with
a fast speed. If the crane head is still far away from the container, we adjust the motor
power to a medium speed. If the crane head is in a distance nearer to the target, we
reduce the speed to slow. When the container is close to the target position, the speed

I ,G(x),¬R(x) ⊢ V (x′) < V (x).

Fig. 4 Container Crane Control system

Page 11 of 16Le et al. SpringerPlus (2016) 5:1000

should be very slow. When the container is above the container, we stop the motor. The
crane head loads containers and goes back to the start position. The system has a safety
property such that the speed of motor can not be high if the target is not far (property
I). The system needs to satisfy that the crane head eventually is above the container
(property Q).

From this description of the system, a collection of imprecise requirements FR is
extracted as follows:

FR1: If the crane is at starting position, then power is fast level.
FR2: If the distance to the container is far, then power is medium level.
FR3: If the distance to container is medium, then power is adjusted to slow level.
FR4: If the distance is close, then power is very slow level.
FR5: If the crane is above the container, then power is stopped.

Then we have to check if {FR} ⊢ I and {FR} ⊢ �♦Q.

Modeling Container Crane Control system

Modeling the system with safety property

Applying the translation rules presented in “Modeling imprecise requirements” section,
we first translate the set of requirements to the Event-B context as follows:

• Apply Rule 1: Fuzzy hedges and fuzzy values in the requirements are translated into
the sets HEDGES, DISTANCE, and POWER of the Event-B context Crane_C0.

Context Crane_C0 is presented partially as follows

CONTEXT Crane C0
SETS
HEDGES, DISTANCE, POWER
CONSTANTS

fast, slow ,zero, very,quite, precise, start,
far, medium,close, above

AXIOMS
axm1 : partition(HEDGES , {very}, {quite},

{precise})
axm2 : partition(DISTANCE , {start}, {far},

{medium}, {close}, {above})
axm3 : partition(POWER, {fast}, {slow}, {zero})

END

We continue to formalize the dynamic part of the model with the following
translations.

 • Apply Rule 2: Linguistic variables in the requirements are translated into Event-B
constructs such as distance and power. According to Rule 3, types of these two vari-
ables are represented by invariants inv1 and inv2.

Page 12 of 16Le et al. SpringerPlus (2016) 5:1000

 • Apply Rule 4: Each imprecise requirement FRi of the system is translated to an
EVENT evti, 1 ≤ i ≤ 5. More specifically, the imprecise requirement r4 is translated
to evt4 illustrated in the machine Crane_M0. The other requirements are trans-
lated similarly. Moreover, in the initial states, distance is equal to start and power is
stopped (modeled in Initialisation event).

 • Safety property is stated as invariant inv3 (Rule 5).

The machine Crane_M0 is described partially as follows:

MACHINE Crane M0
SEES Crane C0
VARIABLES

power
distance

INVARIANTS
inv1 : power ∈ HEDGES × POWER
inv2 : distance ∈ HEDGES ×DISTANCE
inv3 : prj2(distance) = close ⇒ ¬prj2(power) = fast

EVENTS
Initialisation

begin
act1 : distance := precise �→ start
act2 : power := precise �→ zero
end

Event evt4 =̂
Status anticipated

When
grd1 : distance = precise �→ close
then
act1 : power := very �→ slow
act2 : distance := precise �→ above
end
end

END

Refinement: modeling eventuality property

We refine the abstract model by following the method described in “Modeling eventual-
ity properties with refinement” section to model the desired eventuality property. First,
we apply Rule 6 to extend the abstract context Crane_C0 to define Crane_C1 by intro-
ducing three total functions for numerical values of fuzzy sets. The specification of this
context is partially described as follows:

Page 13 of 16Le et al. SpringerPlus (2016) 5:1000

CONTEXT Crane C1
EXTENDS Crane C0
CONSTANTS

deg HED, deg POWER ,d DIS
AXIOMS
axm4 : deg HED : HEDGES → N
axm5 : deg HED(very) = 3 ∧ deg HED(quite) = 2

∧ deg HED(precise) = 1
END
We refine the abstract machine Crane M0 to have Crane M1 with five convergent
events (following Rule 7). The snippets below show evt4 only.
MACHINE Crane M1
REFINES Crane M0
SEES Crane C1
VARIABLES

d
VARIANT

d
INVARIANTS

inv1 : d ∈ N
DELF : d = deg DIS(above) ⇒ d = deg DIS(start) ∨ d = deg DIS(far)

∨ d = deg DIS(medium) ∨ d = deg DIS(close) ∨ d = deg DIS(above)
EVENTS
Event evt4 CE =̂
Status convergent
extends evt4
when
g1 : distance =

precise �→ close
g2 : d = deg DIS(close)
g3 : ¬d = deg DIS(above)
then
a1 : power := {very �→ slow}
a2 : distance :=

precise �→ above
a3 : d := deg DIS(above)
end

Event evt4 OE =̂
Status ordinary
extends evt4
when
g1 : distance =

precise �→ close
g2 : d = deg DIS(close)
g3 : d = deg DIS(above)
then
a1 : power := very �→ slow
a2 : distance :=

precise �→ above
a3 : d := deg DIS(above)
end

Checking properties

The system has a safety property which is formalized as an invariant clause
inv3 : prj2(distance) = close =⇒ ¬prj2(power) = fast. Its proof obligations
are generated and discharged automatically using the Rodin tool under the label
evti/inv3/INV , 1 ≤ i ≤ 5. It ensures that invariant is preserved through events, i.e., the
requirements of this system conform to the safety property.

While safety property is maintained in every refinement, eventuality can only be veri-
fied in the machine Crane_M1. Hence, we have to prove that
Crane_M1 ⊢ �♦(d = deg_DIS(above)). The deadlock-free property of this machine is
encoded as the theorem DELF in Crane_M1. Its proof obligation is generated as
DELF / THM. In order to check the convergent property, proof obligations are generated
for each convergent events of machine Crane_M1 (evti/NAT and evti/VAR). The
abstract machine Crane_M0 generates six INV proof obligations. The refined machine
Crane_M1 generates two proof obligations for dead-lock freeness and ten proof

Page 14 of 16Le et al. SpringerPlus (2016) 5:1000

obligations for convergence property. All proof obligations are discharged automatically
in the Rodin tool.1

Related work
In this section, we classify the related papers into several categories. The first one con-
sists of the research work making use of fuzzy set and fuzzy logic to analyze imprecise
requirements. The second one consists of the results that use formal methods to model
fuzzy sets and Fuzzy If–Then rules. The papers in third group handle with self-adaptive
systems modeling.

In early of 90s, Liu and Yen (1996) proposed to use fuzzy sets and fuzzy logics as the
foundation for analyzing imprecise requirements. They use fuzzy logic to resolve the
conflicts between imprecise requirements. They treated imprecise requirements as a
collection of fuzzy sets, i.e., the requirement has the form of “A is B” where A and B are
fuzzy sets. Applying this result, a tool named STAR was developed for analyzing impre-
cise requirements (Yen et al. 1998).

In another research direction, formal methods have been used for specifying fuzzy
terms. Matthews introduced a fuzzy logic toolkit for the formal specification language
Z (Matthews and Swatman 2000). This toolkit defines the operators, measure and modi-
fiers necessary for the manipulation of fuzzy sets and relations. A series of laws are pro-
vided that establish an isomorphism between conventional Z and the extended notation
when applied to boolean sets and relation. It can be modeled as a partial rather than
total function. The focus is on the specifications of the rule base and the operations nec-
essary for fuzzy inferences. However, they do not incorporate the notion of refinements.
It just provides definition and manipulation of fuzzy sets and relations by using Z.

Pavliska et al. (2006) introduced modified Petri Nets as a tool for fuzzy modeling. Basic
concepts and relations between Fuzzy Petri Nets and Fuzzy If–Then rules are described
and an algorithm for decomposition of fuzzy Petri net into set of linguistic descriptions
are presented and its implementation mentioned. Their work just showed how to model
the system and does not mention how to verify the system properties.

Intrigila et al. (2005) have introduced a verification method of fuzzy control systems
using model-checking technique with Murphi verifier. The authors eased the modeling
phase by using finite precision real numbers and external C functions.

Yang et al. (2003) proposed to use high-level Petri Net in order to verify fuzzy rule-
based systems. This method can detect the system’s errors such as redundancy, incon-
sistency, incompleteness, and circularity but it has to take extra step to normalize the
rules into Horn clauses before transforming these rules to and use incidence matrix as
fixed-value matrix for degree membership.

When modeling uncertain behavior of the self-adaptive software systems, the vague,
uncertain, and imprecise requirements also raise issues.

Whittle et al. (2009) proposed a new specification language, named RELAX, for self-
adaptive systems. It is expressive language based on fuzzy branching temporal logic

1 Rodin project archive: http://uet.vnu.edu.vn/~thuantn/CraneController.zip.

http://uet.vnu.edu.vn/%7ethuantn/CraneController.zip

Page 15 of 16Le et al. SpringerPlus (2016) 5:1000

to specify the uncertain dynamic behavior of the system. The paper, however, neither
shows the verification phase nor provide support tool.

Han et al. (2014) introduced an approach (FAME profile) to modeling fuzzy self-adap-
tive software systems by extending UML profile. The authors incorporate four kinds of
new constructs into UML meta models. With the provided tool, the approach supports
for modeling such systems well. In comparison with this paper, our approach aims at not
only modeling the Fuzzy If–Then rules but also detecting conflicts. After the modeling
process, safety and eventuality properties of the system can be verified. These points are
not mentioned in Han et al. (2014).

Conclusions
Although imprecise requirements are often found in software development processes,
few work have been addressing the problem of modeling and verifying such descriptions
so far. This paper presented a new specification and verification framework, in which
the requirements were modeled in the Fuzzy If–Then rules. The rules were translated
into a set of Event-B descriptions so that the refinement-based modeling method could
be applied for the verification. With the proposed method, we can verify the safety and
eventuality properties of the system described by imprecise requirements. We proposed
to use classical set to represent Fuzzy If–Then rules and this representation is sufficient
to analyze such properties in Event-B. We showed that the verification was mostly con-
ducted automatically using the current RODIN tool. However, due to some limitation of
the reasoning technique, we can only check the eventuality properties at the last refine-
ment. One of the future work is to study a method for verifying eventuality properties
at every refinement stage. Analyzing time dependent properties following the approach
presented in Abrial et al. (2012) is also one of our future research direction.

Authors’ contributions
SN revised critically the part of modeling and verifying eventuality properties, while NTT involved in the first draft of
the paper and contributed the basic translation rules for imprecise requirement. HAL is the main author involving in
all sections of the paper including doing the motivating example in RODIN. All authors read and approved the final
manuscript.

Author details
1 Hanoi University of Mining and Geology, Bac Tu Liem, Hanoi, Vietnam. 2 National Institutue of Informatics, 2-1-2 Hitot-
subashi, Chiyoda-ku, Tokyo, Japan. 3 VNU, University of Engineering and Technology, Cau Giay, Hanoi, Vietnam.

Acknowledgements
This work is supported by the Project No. QG.14.07 Granted by Vietnam National University, Ha Noi.

Competing interests
The authors also get supports from their employers.

Received: 11 September 2015 Accepted: 23 June 2016

References
Abrial J-R (2010) Modeling in Event-B: system and software engineering, 1st edn. Cambridge University Press, New York
Abrial J-R, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin L (2010) Rodin: an open toolset for modelling and reasoning

in Event-B. Int J Softw Tools Technol Transfer 12(6):447–466
Abrial J-R, Su W, Zhu H (2012) Formalizing hybrid systems with Event-B. In: Proceedings of ABZ 2012, LNCS, vol 7316. pp

178–193
Chris M, Swatman PA (2003) Fuzzy concepts and formal methods. In: Lee J (ed) Software engineering with computational

intelligence. Studies in fuzziness and soft computing, vol 121. Springer, Berlin, pp 9–49
Fuzzytech home page 2012. http://www.fuzzytech.com

http://www.fuzzytech.com

Page 16 of 16Le et al. SpringerPlus (2016) 5:1000

Han D, Yang Q, Xing J (2014) Extending uml for the modeling of fuzzy self-adaptive software systems. In: Control and
decision conference (2014 CCDC), The 26th Chinese, pp 2400–2406, May 2014

Hoang TS, Abrial J-R (2011) Reasoning about liveness properties in Event-B. In: Formal methods and software engineer-
ing, volume 6991 of LNCS, pp 456–471

Intrigila B, Magazzeni D, Tofani A, Melatti I, Tronci E (2005) A model checking technique for the verification of fuzzy
control systems. In: International conference on intelligent agents, web technologies and internet commerce,
international conference on computational intelligence for modelling, control and automation, vol 1, pp 536–542,
Nov 2005

Le HA, Thi LD, Truong NT (2014) Modeling and verifying imprecise requirements of systems using Event-B. Proc KSE
2013:313–325

Le HA, Truong NT, Nakajima S (2015) Verifying eventuality properties of imprecise system requirements using Event-B.
In: Proceedings of the 30th ACM/SIGAPP symposium on applied computing, pp 1651–1653, Slamanca, Spain, April
2015

Liu XF, Yen J (1996) An analytic framework for specifying and analyzing imprecise requirements. In: Proceedings of the
18th international conference on software engineering, ICSE’96, IEEE Computer Society, Washington, DC, pp 60–69

Matthews C, Swatman PA (2000) Fuzzy concepts and formal methods: some illustrative examples. In: Proceedings of
APSEC 2000, APSEC’00, IEEE Computer Society, Washington, DC, pp 230–238

Pavliska V (2006) Petri nets as fuzzy modeling tool. Technical report, University of Ostrava—Institute for research and
applications of fuzzy modeling

Whittle J, Sawyer P, Bencomo N, Cheng BHC, Bruel J (2009) Relax: incorporating uncertainty into the specification of self-
adaptive systems. In: 17th IEEE international requirements engineering conference, RE’09, pp 79–88, Aug 2009

Yang SJH, Tsai JJP, Chen C-C (2003) Fuzzy rule base systems verification using high-level petri nets. IEEE Trans Knowl Data
Eng 15(2):457–473

Yen J, Yin J, Tiao WA (1998) Star: a case tool for requirement engineering. In: 19998 IEEE workshop on application-specific
software engineering technology, ASSET-98. In: Proceedings, pp 28–33, Mar 1998

Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

	Formal analysis of imprecise system requirements with Event-B
	Abstract
	Introduction
	Backgrounds
	Fuzzy sets and fuzzy If–Then rules
	Event-B and Rodin
	Event-B
	Rodin

	Imprecise requirements analysis with Event-B
	Presentation of imprecise requirements in classical sets
	Modeling imprecise requirements
	Modeling eventuality properties with refinement

	An example: Container Crane Control
	Example description
	Modeling Container Crane Control system
	Modeling the system with safety property
	Refinement: modeling eventuality property

	Checking properties

	Related work
	Conclusions
	Authors’ contributions
	References

