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Synthesis of Gold Nanoparticles Capped with Quaterthiophene
for Transistor and Resistor Memory Devices
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Recently, the fabrication of nonvolatile memory devices based on gold nanoparticles has been intensively investigated. In this
work, we report on the design and synthesis of new semiconducting quaterthiophene incorporating hexyl thiol group (4TT). Gold
nanoparticles capped with 4TT (4TTG) were prepared in a two-phase liquid-liquid system. These nanoparticles have diameters
in the range 2–6 nm and are well dispersed in the poly(3-hexylthiophene) (P3HT) host matrix. The intermolecular interaction
between 4TT and P3HT could enhance the charge-transport between gold nanoparticles and P3HT. Transfer curve of transistor
memory device made of 4TTG/P3HT hybrid film exhibited significant current hysteresis, probably arising from the energy level
barrier at 4TTG/P3HT interface. Additionally, the polymer memory resistor structure with an active layer consisting of 4TTG and
P3HT displayed a remarkable electrical bistable behavior.

1. Introduction

The synthesis and characterization of gold nanoparticles have
been intensively investigated because of their numerous pos-
sible applications in physics, chemistry, biology, and mate-
rial science [1–3]. Recently, there have been many reports
regarding the fabrication of electronic and optoelectronic
devices using gold nanoparticles (AuNPs). A large number
of approaches have been developed to prepare AuNPs using
different ligands such as alkanethiols, phosphines, amines,
and polymers [4–6]. Unfortunately, these ligands often hin-
der the charge transport as a dielectric layer on the surface
of AuNPs. Therefore, the use of conjugated oligomers or
polymers to protect AuNPs is of particular interest for the
modulation of charge transfer and optical properties of these
nanoparticles [7–9]. However, these AuNPs generally showed
relatively poor dispersion in organic solvents that weakened
their potential application in solution processing.

AuNPs have been embedded into𝜋-conjugated host poly-
mers to produce nanocomposites that combine the unique
properties of AuNPs and 𝜋-conjugated polymers [10–15].
For solution processable fabrication, P3HT is one of the
most widely used polymers because of its excellent proper-
ties [16, 17]. In this work, we prepared gold nanoparticles
capped with quaterthiophene by a simple solution processing
technique. These nanoparticles have a good solubility in
organic solvents and are well dispersed in the host polymers.
The intermolecular interaction between 4TT and P3HT was
expected to improve the charge transport between AuNP and
the conjugated polymer. The presence of 4TTG in P3HT
host matrix dramatically influences the thin film transistor
(TFT) memory device characteristics. We also fabricated
a nonvolatile memory resistor based on P3HT and 4TTG
where P3HT serves both as matrix and active component of
the device.
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2. Experimental Procedure

2.1. Materials. All commercially available starting materials
and solvents were purchased from Aldrich, TCI, and Acros
Co. and usedwithout further purification. All of the reactions
and manipulations were carried out under N

2
with standard

inertatmosphere and Schlenk techniques unless otherwise
noted. Solvents used in inertatmosphere reactions were
dried using standard procedures. Flash column chromatog-
raphy was carried out with 230–400 mesh silica-gel from
Aldrich using wet-packing method. P3HT was purchased
from Sigma-Aldrich. The 2,2-bithiophene 1, 5-dodecyl-2,2-
bithiophene 4, and 2-(5-dodecyl-2,2-bithiophen-5-yl)-4,4,
5,5-tetramethyl-1,3,2-dioxaborolane 5 were prepared accord-
ing to the modified literature procedures [18].

2.2. Synthesis

5-(6-Bromohexyl)-2,2-bithiophene 2. A solution of bithio-
phene 1 (24.9 g, 0.15mol) in 300mL tetrahydrofuran (THF)
was cooled to −78∘C in an acetone/dry ice bath. N-
Butyllithium (0.16mol, 64mL, 2.5M in hexane) was added
through a syringe over 10min. The temperature of the reac-
tion mixture was slowly raised to −30∘C and was maintained
for 1 h. After that, the reaction mixture was cooled again
to −78∘C, and 1,6-dibromohexane (146.4 g) was added via
syringe. The mixture was stirred for 30min at −78∘C and
the bath was then removed, the solution was stirred for an
additional 3 h while the temperature was increased slowly
to room temperature. The reaction mixture was next poured
into 500mL of dichloromethane (DCM) and 200mL of 1M
NH
4
Cl solution. The organic phase was separated, washed

with water, dried over sodium sulfate, and concentrated.
The residue was crystallized with methanol to remove 1,6-
dibromohexane. The resultant precipitate was purified with
silica-gel column chromatography using chloroform/hexane
(1/50 v/v) and then crystallized in methanol to afford 25.6 g
of solid: yield 52%.

1H-NMR (300MHz, CDCl3). 𝛿(ppm) 7.16 (dd, 𝐽
1
= 5.2Hz, 𝐽

2

= 1.6Hz, 1H), 7.09 (dd, 𝐽
1
= 4.0Hz, 𝐽

2
= 1.6Hz, 1H), 6.98 (d, J

= 4.0Hz, 1H), 6.94 (d, J = 4.0Hz, 1H), 6.67 (d, J = 4.0Hz, 1H),
3.42 (t, 2H), 2.79 (t, 2H), 1.86 (m, 2H), 1.69 (m, 2H), 1.37–1.51
(m, 4H).

5-Bromo-5-(6-bromohexyl)-2,2-bithiophene 3. A solution
of 5-(6-bromohexyl)-2,2-bithiophene 2 (9.2 g, 28mmol) in
150mLDCMwas cooled to 0∘C.N-Bromosuccinimide (NBS,
5.3 g, 30mmol) was added. The mixture was stirred at room
temperature overnight.Then, 200mL water was added to the
reaction mixture. The organic phase was separated, washed
with water, dried over sodium sulfate, and concentrated. The
residue was purified with silica-gel column chromatography
using hexane to afford 9.43 g of colorless oil: yield 83%.

1H-NMR (300MHz, CDCl3). 𝛿(ppm) 6.94 (d, J = 4.0Hz, 1H),
6.91 (d, J = 4.0Hz, 1H), 6.83 (d, J = 4.0Hz, 1H), 6.67 (d, J =

4.0Hz, 1H), 3.41 (t, 2H), 2.79 (t, 2H), 1.87 (m, 2H), 1.69 (m,
2H), 1.37–1.51 (m, 4H).

5-Dodecyl-5-(6-bromohexyl)-2,2-quaterthiophene 6. 5-
Bromo-5-(6-bromohexyl)-2,2-bithiophene 3 (3.22 g,
7mmol), 2-(5-dodecyl-2,2-bithiophen-5-yl)-4,4,5,5-tetram-
ethyl-1,3,2-dioxaborolane 5 (2.84 g, 7mmol), and tetrakis
(triphenylphosphine) palladium (230mg, 0.2mmol) were
dissolved in 50mL of toluene under an argon atmosphere.
The resultant mixture was stirred at room temperature
for 5min before an aqueous K

2
CO
3
solution (15mL, 2M)

was added. The mixture was stirred for 24 h at 90∘C under
nitrogen. Then, the mixture was cooled down to room
temperature and neutralized with 1M HCl solution. The
organic layer was separated and the aqueous phase was
extracted with DCM. The combined organic layer was
condensed and the residue was purified with silica-gel
column chromatography using chloroform/hexane (1/5 v/v)
to afford 3.01 g of yellow solid: yield 65%.

1H-NMR (300MHz, CDCl3). 𝛿(ppm) 7.04 (d, J = 4.0Hz, 2H),
6.99 (d, J = 4.0Hz, 2H), 6.97 (d, J = 4.0Hz, 2H), 6.69 (m, 2H),
3.42 (t, 2H), 2.76–2.83 (m, 4H), 1.85–1.90 (m, 2H), 1.65–1.73
(m, 4H), 1.26–1.47 (m, 22H), 0.88 (t, 3H).

Anal. Calcd. for C34H45BrS4. C, 61.70; H, 6.85; Br, 12.07; S,
19.38 Found: C, 61.78; H, 6.75; Br, 12.09; S, 19.35.MS (MALDI-
TOF)𝑚/𝑧 [M]+: Calcd. for C

34
H
45
BrS
4
, 661.89; found 662.1

5-Dodecyl-5 -(6-ethanethioatehexyl)-2,2 -quaterthiophene
7. A solution of 5-dodecyl-5-(6-bromohexyl)-2,2-qua-
terthiophene 6 (1.99 g, 3mmol) and potassium thioacetate
(0.68 g, 6mmol) in 100mL N,N-dimethylformamide was
stirred at 90∘C overnight. Then, the mixture was cooled
down to room temperature and 100mL water was added to
the reaction mixture. The resultant precipitate was filtered
and washed with methanol and then purified with silica-gel
column chromatography using chloroform/hexane (1/1 v/v).
After that, it was crystallized in THF/methanol to afford 1.71 g
of yellow solid: yield 87%.

1H-NMR (300MHz, CDCl3). 𝛿(ppm) 7.03 (d, J = 4.0Hz, 2H),
6.99 (d, J = 4.0Hz, 2H), 6.97 (d, J = 4.0Hz, 2H), 6.68 (m,
2H), 2.87 (t, 2H), 2.79 (t, 4H), 2.33 (s, 3H), 1.66–1.70 (m, 6H),
1.26–1.42 (m, 22H), 0.88 (t, 3H).

Anal. Calcd. for C36H48OS5. C, 65.80; H, 7.36; O, 2.43; S, 24.40
Found: C, 65.77; H, 7.42; S, 24.32. MS (MALDI-TOF) 𝑚/𝑧
[M]+: Calcd. for C

36
H
48
OS
5
, 657.09; found 657.20.

5-Dodecyl-5-(6-thiolhexyl)-2,2-quaterthiophene 4TT. 5-
Dodecyl-5-(6-ethanethioatehexyl)-2,2-quaterthiophene 7
(1.51 g, 2.3mmol) was dissolved in 100mL THF. A solution
of potassium hydroxide (0.28 g, 5mmol) in 5mL ethanol
was added and the mixture was stirred at room temperature
overnight. Then, 200mL of water was added slowly to
precipitate out the product. The resultant precipitate was
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filtered and washed with methanol and then purified with
silica-gel column chromatography using chloroform. After
that, it was crystallized in DCM/methanol to afford 1.3 g of
yellow solid: yield 92%.

1H-NMR (300MHz, CDCl3). 𝛿(ppm) 7.03 (d, J = 4.0Hz, 2H),
6.99 (d, J = 4.0Hz, 2H), 6.97 (d, J = 4.0Hz, 2H), 6.68 (m,
2H), 2.77–2.81 (m, 4H), 2.50–2.56 (m, 2H), 1.61–1.71 (m, 6H),
1.26–1.44 (m, 22H), 0.88 (t, 3H).

13C-NMR (100MHz, CDCl3). 𝛿(ppm) 145.67, 145.25, 136.72,
136.59, 135.37, 135.27, 134.53, 134.40, 124.92, 124.83, 124.00,
123.59, 123.35, 33.88, 31.92, 31.59, 31.41, 30.19, 30.07, 29.64,
29.36, 29.07, 28.45, 28.05, 24.60, 22.70, 14.15.

Anal. Calcd. for C34H46S5. C, 66.39; H, 7.54; S, 26.07 Found: C,
66.35; H, 7.42; S, 26.18. MS (MALDI-TOF)𝑚/𝑧 [M]+: Calcd.
for C
34
H
46
S
5
, 615.05; found 615.20.

Synthesis of Gold Nanoparticles Capped with Quaterthiophene
4TTG. An aqueous solution of hydrogen tetrachloroaurate
(60mL, 0.015M) was mixed with a solution of tetraoctylam-
monium bromide in toluene (80mL, 0.05M).The two-phase
mixture was vigorously stirred until all the tetrachloroaurate
was transferred into the organic layer and the color changed
to orange. 4TT (0.18 g, 0.3mmol) in 60mL toluene was then
added to the organic phase. The mixture was stirred at 70∘C
for 1 h.Then, the mixture was cooled down to room tempera-
ture and an aqueous solution of sodium borohydride (50mL,
0.2M) was slowly added with vigorous stirring. After further
stirring for 6 h the organic phase was separated, washed with
water, dried over sodium sulfate, and concentrated. Finally,
4TTGwas precipitated in DCM/acetonitrile to afford 0.3 g of
dark brown solid.

1H-NMR (300MHz, CDCl3). 𝛿(ppm) 7.03 (d, J = 4.0Hz, 2H),
6.99 (d, J = 4.0Hz, 2H), 6.96 (d, J = 4.0Hz, 2H), 6.68 (m,
2H), 3.25–3.31 (m, 2H), 2.77–2.81 (m, 4H), 1.60–1.65 (m, 6H),
1.26–1.42 (m, 22H), 0.88 (t, 3H).

Elemental Analysis. Au, 64.02%;C, 23.78%;H, 2.61%; S, 9.59%.

2.3. Instrumentation. 1H NMR spectra were recorded on a
Varian AS400 (399.937MHz for 1H and 100.573MHz for
13C) spectrometer. 1H chemical shifts are referenced to the
proton resonance resulting from protic residue in deuterated
solvent and 13C chemical shift recorded downfield in ppm
relative to the carbon resonance of the deuterated solvents.
MALDI-TOF analysis was performed on a Voyager-DE STR
MALDI-TOF mass spectrometer. The elemental analyses for
measuring the composition of C, H, S, andNwere performed
on an EA1112 (Thermo Electron Corp., West Chester, PA,
USA) elemental analyzer. Thermal properties were studied
on a TGA50 (Heating rate of 5∘C/min). All transmission
electronmicroscopy (TEM) images were obtained at 200 keV
with LaB6 filament, using a Tecnai G2 F20 S-Twin and
recordedwith a 2K× 2K pixel resolutionVeleta TEM camera

(Olympus) on Cu TEM grids. Absorption and emission
spectra were obtained using an HP-8453 spectrophotometer
(photodiode array type) and Hitachi F-7000 fluorescence
spectrophotometer using quartz cells, respectively.The redox
properties of 4TT and P3HT molecules were examined
using cyclic voltammetry (CV, EA161 eDAQ). The electrolyte
solution employed was 0.10M tetrabutylammonium hexaflu-
orophosphate (Bu

4
NPF
6
) in a freshly driedMC.TheAg/AgCl

and Pt wire (0.5mm in diameter) electrodes were used as the
reference and counter electrode, respectively. The scan rate
was 50mV/s. Atomic Force Microscopy (AFM, Advanced
Scanning Probe Microscope, XE-100, PSIA) operating in the
tapping mode with a silicon cantilever (type A, resonant
frequency: 150 kHz) was used to characterize the surface
morphologies of the thin film samples.

2.4. TFT Memory Fabrication. To study charge transport
properties of the 4TTG/P3HT blend, bottom-gate/top-
contact (BGTC)TFTdevice structurewas employed.Thegate
electrode was n-type doped ⟨100⟩ silicon wafer and the SiO

2

gate insulator has a thickness of 300 nm. The substrate was
cleaned thoroughly by a series of ultrasonications in different
solvents such as acetone, cleaning agent, deionized water,
and isopropanol. The cleaned substrates were dried under
vacuum at 120∘C for 1 h and then treated with UV/ozone for
20min. Then, the wafers were immersed in a 8mmol/L solu-
tion of n-octyltrichlorosilane (OTS) in anhydrous toluene
for 30min to generate a hydrophobic insulator surface. The
active layer (4TTG/P3HT: 1/9) was deposited on the OTS-
treated substrates by spin-coating polymer solutions (1%) at
1500 rpm for 40 s. Finally, the source and drain electrodes
were prepared using thermal evaporation of gold (100 nm)
through a shadow mask with a channel width of 1500 𝜇m
and a channel length of 100 𝜇m. Transfer characteristics of
the devices were determined in air using a Keithley 4200 SCS
semiconductor parameter analyzer.

2.5. Resistor Memory Device Fabrication. The memory
devices were fabricated according to the modified literature
procedures [15, 17]. The first step involved preparation of
the substrate. Glass substrates were cleaned with detergent,
deionized water, acetone, and isopropyl alcohol in an ultra-
sonic bath.The substrates were dried for 2 h and subsequently
treated with UV ozone for 20min. After that, the bottom
aluminum (Al) electrode was deposited by using a thermal
evaporator with a shadow metal mask at a base pressure of
2 × 10−6 torr. The UV-ozone treatment was repeated again to
activate the Al surface. The active layer of 50 nm was formed
by spin coating a solution of 0.9 wt% P3HT and 0.1 wt%
4TTG. Finally, the top Al electrode was deposited. Both the
electrodes have a thickness of 70 nm. The device had an area
of 2 × 2mm2. The electrical characteristics of the device
were also measured using Keithley 4200-SCS semiconductor
characterization system under ambient conditions.

3. Results and Discussions

3.1. Synthesis. We report the easy, high-yield synthesis of new
semiconducting quaterthiophene 4TT incorporating hexyl
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Scheme 1: Synthetic route of 4TT.

thiol group. In comparison with reported quaterthiophene
analogues [19–22], this compound bears two long alkyl chains
that could improve its solubility. In Scheme 1, the Suzuki
coupling reaction of 5-bromo-5-(6-bromohexyl)-2,2-
bithiophene 3 and 2-(5-dodecyl-2,2-bithiophen-5-yl)-4,4,5,
5-tetramethyl-1,3,2-dioxaborolane 5 was conducted in
the presence of a catalytic amount of tetrakis(triphenyl-
phosphine) palladium to afford compound 6. This
compound was converted to compound 7. After removing
the ethanethioate group, 4TT was obtained in good yield.

We prepared gold nanoparticles 4TTG by keeping the
concentration of hydrogen tetrachloroaurate, tetraoctylam-
moniumbromide and varying the concentration of the ligand
4TT (Figure 1(a)). It was found that the mole ratio of 3/1
(Au/4TT) was optimum for the formation of AuNPs capped
with 4TT without the aggregation of nanoparticles.

TheNMRof 4TTG and 4TTwas similar, which indicated
that AuNPs were capped with 4TT. Elemental analysis gave
the following: Au, 64.02%; C, 23.78%; H, 2.61%; S, 9.59%.
The C :H : S ratios of 4TTG and 4TT were similar further

confirming the formation of 4TT layer on the AuNPs.
Thermogravimetric analysis (TGA) showed that the 4TTG
started losingmass at about 265∘C.Theweight loss from room
temperature to 800∘C was about 35% that well matched the
elemental analysis result.

3.2. Morphology of QTTG. TEM images of the 4TTG
(Figure 1(b)) showed that they were narrow polydispersed
nanoparticles with diameters in the range 2–6 nm. The nar-
row polydispersity of AuNPs could result from the formation
of a self-assembled 4TT layer on the growing nuclei. In com-
parison with dodecanethiol-protected AuNPs, the particles
size of 4TTG was bigger. It is because of the steric effect
that restricted the interaction between 4TT and the surface
of AuNPs.

3.3. Optical and Electrochemical Properties. The solution
samples were prepared in chloroform with a concentration
of 1 × 10−6M, and the thin film samples were fabricated
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Figure 1: Schematic illustration of self-assembled 4TT layer on the AuNPs (a) and TEM images of 4TTG (b).
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Figure 2: UV-vis absorption and PL emission spectra. (a) UV-vis absorption spectra of 4TT (i) and 4TTG (ii), PL emission spectra of 4TT
(iii) and 4TTG (iv) in solution state; (b) UV-vis absorption spectra of P3HT (i) and a composite of 10% 4TTG in P3HT (ii) in film state.

by spin-coating with 1 wt% solutions. The absorption spec-
tra of 4TT and 4TTG in solution state were shown in
Figure 2(a). 4TT showed an absorption maximum at 401 nm
while 4TTG exhibited an absorption maximum at 395 and
a shoulder at 500–550 nm; those were contributed by 4TT
and AuNPs, respectively. This spectrum suggested that the
average particle size of 4TTG was below 5 nm because larger
particles often exhibit a sharper and more intense plasmon
absorption band close to 525 nm [4]. 4TT exhibited PL
spectral behavior with emission maxima at 466 and 493 nm
in solution state. Interestingly, the PL spectrum of 4TTG
showed low efficiency due to their self-absorption.

The absorption spectra of P3HT and the composite of
10% 4TTG in P3HT in film state were shown in Figure 2(b).
Similar absorption maxima of these films were located at
520 nm. A slight float was observed in the film state of the

composite, which was attributed to the presence of 4TTG in
the matrix. The composite also showed a good film forming
that could be used for the device fabrication.

CVmeasurements were taken to determine the oxidation
potentials of 4TT and P3HT. We combined the oxidation
potential in CV with the optical energy band gap (𝐸

𝑔

opt)
as determined by the cut-off absorption wavelength in the
absorption spectrum to calculate the lowest unoccupied
molecular orbital (LUMO) levels. 4TT and P3HTwere found
to have the highest occupied molecular orbital (HOMO)
levels of−5.18 and−5.02 eV, respectively. Concomitantly, 4TT
and P3HT have LUMO energy levels of −2.52 and −3.12 eV,
respectively.

3.4. Atomic Force Microscopic Study. AFM images of P3HT
and the nanocomposite of 10% 4TTG in P3HTwere shown in
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Figure 3: AFM topographic images (5 × 5𝜇m) of the spin-coated films of P3HT (a) and 4TTG/P3HT (b).
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Figure 4: (a) TFT device structure using 4TTG/P3HT as active layer and (b) transfer characteristics of the Au/P3HT/Au (programed (curve
(1)) and erased (curve (2)) states) and Au/4TTG + P3HT/Au (programed (curve (3)) and erased (curve (4)) states) devices.

Figure 3. P3HT and the blend of 4TTG/P3HTwere dissolved
in chloroform and the resulting solutions were then spin-
coated on silicon wafers. The surface morphology of P3HT
and the blend of 4TTG/P3HT thin films exhibited root mean
squares (RMS) roughness values of 0.9 and 1.2 nm, respec-
tively. The topography of 4TTG/P3HT thin films showed
small surface roughness that indicated a high miscibility of
4TTG on the hybrid film.

3.5. TFT Memory Characteristics. Figure 4(b) exhibited the
transfer curves of TFT devices with and without 4TTG
upon double sweeping where the cyclic sweeping of the gate
voltage was operated from 40V to −60V and then back to
40V. These TFT devices showed the p-type characteristics.

Transfer curve of neat P3HT film displayed no hysteresis with
near-zero threshold voltage (𝑉th). By contrast, transfer curve
of 4TTG/P3HT hybrid film exhibited significant current
hysteresis, probably arising from the charge trapping effect of
the 4TTG in the P3HT matrix [10, 13]. The memory window
(Δ𝑉th), defined as the change in 𝑉th between programmed
and erased characteristics, was estimated to be around 20V.
Indeed, charge trapping/detrapping by AuNPs would modu-
late the conductivity of the P3HT transistor channel, resulting
in a change in the transfer curves.

3.6. Resistor Memory Behavior. Figure 5(a) shows the resis-
tive device structure with a polymer layer sandwiched
between two aluminum electrodes. The active layer consists
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of a P3HT film containing 10% 4TTG nanoparticles. 4TTG
were selected in this device because gold nanoparticles were
capped with quaterthiophene thiol. The quaterthiophene has
a similar structure with P3HT that might lead to an effec-
tive intermolecular interaction and charge transfer between
4TTG and P3HT.

Figure 5(b) shows the current-voltage (𝐼-𝑉) curve of the
device. Two distinct conducting states were observed. The
pristine device showed a low currentwhen the applied voltage
was from 0 to 2.5 V, which corresponds to the “0” state of
a bistable memory [15, 17]. When the applied voltage was
approaching 2.7 V, a remarkably abrupt current increase from
2 × 10−8 to 4 × 10−5 A was observed (curve (1)). The device
still remained in the high-conductivity state (on-state) in the
subsequent scan (curve (2)). The on/off current ratio at 1 V
was obtained to be more than four orders of magnitude.
After the large applied voltage was removed, the on-state still
remained, which corresponded to the “1” state of a mem-
ory. This phenomenon demonstrated a nonvolatile memory
behavior. When the applied voltage was reaching −5.7 V, a
high-conductivity state returned to the low-conductivity as
shown in curve (3). After the device was restored to its low-
conductivity state, once again, it could exhibit a similar 𝐼-𝑉
characteristic as in the first voltage sweep, which indicated
that the device has a rewritable nonvolatile property. On

the other hand, the device that used a pure P3HT without
4TTG in the active layer did not exhibit a significant current
hysteresis (curve (4)). In this device, the 𝐼-𝑉 curve still
showed a low-conductivity state even when the applied
voltage went as high as 7V. For comparison, the memory
device that used P3HT and dodecanethiol-protected AuNPs
showed an ambiguous current jump in off-state and unclear
erase behavior [17]. This phenomenon could be explained by
the role of quaterthiophene layer of 4TTG. Quaterthiophene
group can interact with P3HT and thereby enhances the
charge-transport between 4TTG and P3HT.

4. Conclusion

In conclusion, gold nanoparticles capped with quaterthio-
phene were successfully prepared in a two-phase liquid-
liquid system. These particles have diameters in the range
2–6 nm and are well dispersed in organic solvents. The
intermolecular interaction between 4TT and P3HT could
enhance the charge-transport between gold nanoparticles
and the host polymer. Transfer curve of TFT device made
of 4TTG/P3HT hybrid film exhibited significant current
hysteresis. A polymermemory device using P3HT and 4TTG
exhibited a repeatable bistable behavior and high stability
even after a large number of read-write-erase cycles. Four
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orders of magnitude difference between the on and off cur-
rents was achieved.This report contributes to the preparation
of gold nanoparticles for the nonvolatile electronic memory.
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