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ABSTRACT
This article presents ananalytical approach to investigate thenonlinear stability of thick, functionally graded
material (FGM) shallow spherical shells resting on elastic foundations, subjected to uniform external pres-
sure and exposed to thermal environments. Material properties are assumed to be temperature depen-
dent and graded in the thickness direction according to a Sigmoid power law distribution (S-FGM) in terms
of the volume fractions of constituents. Using the first-order shear deformation theory and the Galerkin
method, the effects of materials, geometry, elastic foundation parameters, and temperature on the nonlin-
ear response of the thick S-FGM shells are analyzed and discussed in detail.

1. Introduction

Functionally graded materials (FGMs) are novel composites
usually composed of ceramic and metal constituents. Due to
smooth and gradual variation of material constituents, FGMs
are capable of reducing or eliminating disadvantageous prob-
lems of conventional composites, such as de-bonding and huge
stress concentration. By virtue of high stiffness and performance
temperature resistance capacity, FGMs can withstand severe
thermal environments and are suitable for applications in tem-
perature shielding components, such as aircraft, missile, and
aerospace structures. Therefore, stability and vibration of FGM
plates and shells in general, and FGM shallow spherical (SS)
shells in particular have received much attention.

In addition, spherical shells are nowadays important com-
ponents widely used as major load-carrying portions in the
structures of aircraft, missile, and aerospace vehicles. They
also find many applications in various industries, such as ship-
building, underground structures, and building constructions.
Since these shell structures are frequently exposed to severe
mechanical and thermal loading conditions, their static and
dynamic response are important problems and have received
considerable attention.

Eslami and his co-workers [1, 2] made use of approximate
analytical solutions, the classical shell theory, and adjacent equi-
librium criterion. Brush and Almroth [3] studied the problem,
which is performed on the linear buckling of simply supported
thin FGM shallow spherical shells (FGM SS shells) and deep
spherical shells without elastic foundations and subjected to
external pressure and thermal loadings. Recently, Boroujerdy
and Eslami [4] studied thermal and thermo-mechanical stability
of simply supported thin piezo-FGM SS shells. Bich and Tung
[5] presented an investigation on the nonlinear axisymmetrical

CONTACT Nguyen Dinh Duc ducnd@vnu.edu.vn Department of Mechanical Engineering and Automation, Vietnam National University, -Xuan Thuy, Cau Giay,
Hanoi , Vietnam.

static response of clamped thin FGM SS shells subjected to
external pressure and thermal loads by making use of the
classical shell theory and analytical solutions. Also, nonlinear
unsymmetrical static and dynamic buckling behavior of thin
FGM SS shells have been analyzed by Bich et al. [6] based on an
analytical approach and approximate solutions.

In exceptional cases, when the rise of a shell is almost zero,
the SS shells are called circular plates. Based on the classical
plate theory and shooting method, Ma and Wang [7] and Li
et al. [8] dealt with the axisymmetric large deflection bend-
ing, thermal and thermo-mechanical post-buckling behavior of
thin FGM circular plates without and with initial imperfection.
Najafizadeh and Heydari [9] employed a variational method
and adjacent equilibrium criterion based on the higher-order
shear deformation theory to investigate the linear buckling of
clamped FGM circular plates under thermal loads and axisym-
metric deformation. Alternatively, thermal buckling of clamped
perfect FGM circular plates have been analyzed by Tran et al.
[10] utilizing an iso-geometric finite element formulation.

Recently, from the open literature, the nonlinear axisymmet-
ric response of thin FGM SS shells on elastic foundations under
uniform external pressure and temperature has been addressed
by Duc et al. [11] and the nonlinear thermo-mechanical
response of thick axisymmetric shear deformable P-FGM SS
shells has been addressed by Tung [12]. As can be seen, the prob-
lems of FGM SS shells were still open and should be of interest,
e.g., the static and dynamic problems of S-FGM SS shells.

This article presents an analytical investigation on the non-
linear response of shear deformable S-FGM thick SS shell with
ceramic-metal-ceramic layers resting on an elastic foundation
in a thermal environment. Material properties are assumed to
be temperature dependent and graded in the thickness direction
according to a Sigmoid power law distribution. Approximate

©  Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
D

uc
 N

gu
ye

n]
 a

t 0
0:

20
 1

9 
M

ar
ch

 2
01

6 



MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 927

Figure . Configuration and the coordinate system of an S-FGM shallow spherical
shell (S-FGM SS shell).

solutions are assumed to satisfy immovable clamped boundary
conditions and Galerkin method is applied to derive load-
deflection relations. The effects of materials, geometrical and
foundation stiffness parameters, and temperature dependence
of material properties on the nonlinear thermo-mechanical sta-
bility of S-FGM SS shells are analyzed and discussed in detail.

2. Governing equations

2.1. Material components

Consider a functionally graded shallow spherical shell with
radius of curvature R, base radius a, thickness h, and rise of shell
H . The shell structure is bounded by the outer of the ceramic-
rich surface and the middle of the metal-rich surface with Sig-
moid power law distribution (S-FGM) in terms of the volume
fractions of constituents. The shell is immovably clamped at the
boundary edge and is resting on a Pasternak elastic foundation
as shown in Figure 1.

The S-FGM shell is defined in a coordinate system (ϕ, θ, z)
whose origin is located, ϕ, θ , and z is perpendicular to the mid-
dle surface and points outward −h/2 ≤ z ≤ h/2.

Supposing that the material composition of the shell varies
smoothly along the thickness, applying a Sigmoid power law
distribution for the shell, the volume fractions of metal and
ceramic,Vm andVc, are assumed as [11, 13]:

Vm (z) =

⎧⎪⎪⎨
⎪⎪⎩

(
2z + h

h

)n

,−h/2 ≤ z ≤ 0(−2z + h
h

)n

, 0 ≤ z ≤ h/2
,

Vc (z) = 1 −Vm (z) , (1)

where the volume fraction indexn is a non-negative number that
defines the material distribution and can be chosen to optimize
the structural response.Vm andVc are volume fractions of metal
and ceramic constituents, respectively.

It is assumed that the effective properties Pe f f of the func-
tionally graded shell, such as the modulus of elasticity E and the
coefficient of thermal expansion α, vary in the thickness direc-
tion z and can be determined by the linear rule of mixture as:

Peff = PrmVm (z)+ PrcVc (z) , (2)

where Pr denotes the material properties and subscripts m and
c stand for metal and ceramic constituents, respectively. In this
study, material properties are assumed to be dependent on tem-
perature.

Specific expressions of material effective properties are
obtained by substituting Eq. (1) into Eq. (2) as follows:

(E (z,T ) , α (z,T )) = (Ec (T ) , αc (T ))+ (Emc (T ) , αmc (T ))

×

⎧⎪⎪⎨
⎪⎪⎩

(
2z + h

h

)n

,−h/2 ≤ z ≤ 0(−2z + h
h

)
, h/2 ≤ z ≤ 0,

(3)

where Emc(T ) = Em(T )− Ec(T ), αmc(T ) = αm(T )− αc(T ),
and Poisson ratio is assumed to be constant. As can be seen from
Eq. (3), at z = h/2 and−h/2, the surfaces are fully ceramic and,
at z = 0, the surface is purelymetallic.Material properties corre-
sponding to the isotropic shell with n = 0 and ceramic compo-
nent will be increased as n increases as well. Amaterial property
Pr, such as elasticity modulus E and thermal expansion coeffi-
cient α, can be expressed as a nonlinear function of temperature
[14]:

Pr(z,T ) = P0
(
P−1T−1 + 1 + P1T 1 + P2T 2 + P3T 3) , (4)

in which T = T0 +�T (z),�T is temperature rise from stress-
free initial state, and more generally, �T = �T (z) and T0 =
300K (room temperature); P0, P−1, P1, P2, and P3 are coefficients
characterizing of the constituent materials.

2.2. Model of the Pasternak elastic foundation

The S-FGM SS shell is resting on the elastic foundations. For the
elastic foundation, one assumes the two-parameter elastic foun-
dationmodel proposed byPasternak. The foundationmedium is
assumed to be linear, homogeneous, and isotropic. The bonding
between the shallow spherical shell and the foundation is perfect
and frictionless. If the effects of damping and inertia force in the
foundation are neglected, the foundation interface pressure may
be expressed as [11, 12]:

q f = k1w − k2�w, �w = ∂2w

∂r2
+ 1

r
∂w

∂r
(5)

where w is the deflection of the shell, k1 is Winkler foundation
modulus, and k2 is the shear layer foundation stiffness of the
Pasternak model.

2.3. Theoretical formulation

The present study uses the first-order shear deformation theory
and Galerkin method to obtain governing equations, determine
buckling load expression, and post-buckling path of the S-FGM
shell exposed to thermal environment and under uniformly dis-
tributed external load.

The shell is assumed to be under axisymmetric deforma-
tion and the displacement components

__
u ,

__
v ,

__
w at a distance

z from the middle surface are expressed as [11]:
_
u (r, z) = u (r)+ zψ (r) ,

_
v (r, z) = 0,

_
w (r, z) = w (r)

(6)
For a S-FGM SS shell it is convenient to introduce a variable

r, referred to as the radius of parallel circle with the base of shell
and defined by r = R sinϕ and ψ is the rotation of a normal
to the middle surface. Due to shallowness of the spherical shell,
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928 V. T. T. ANH AND N. DINH DUC

it is approximately assumed that cosϕ = 1,Rdϕ = dr, and R =
a2/(2H).

The strain components at a distance z from the middle sur-
face are defined as [11]:

εr = εr0 + zχr, εθ = εθ0 + zχθ , εrz = ψ + ∂w

∂r
, (7)

where

εr0= ∂u
∂r

− w

R
+ 1
2
∂2w

∂r2
, εθ0= u

r
− w

R
, χr = ∂ψ

∂r
, χθ = ψ

r
.

Here, εr0, εθ0 are strains components at the middle surface
in the meridional and circumferential directions, respectively;
χr, χθ are curvature components.

Applying Hooke law for S-FGM SS shell, the following is
obtained:

σr = E (z,T )
1 − ν2

[εr + νεθ − (1 + ν) α (z,T )�T ] ,

σθ = E (z,T )
1 − ν2

[εθ + νεr − (1 + v ) α (z,T )�T] ,

σrz = E (z,T )
2 (1 + v )

εrz, (8)

Where �T denotes temperature difference between initial
and final states.

The force andmoment resultants of the shell are expressed in
terms of the stress components through the thickness as:

(Nr,Nθ ) =
∫ h/2

−h/2
(σr, σθ ) dz,

(Mr,Mθ ) =
∫ h/2

−h/2
(σr, σθ ) zdz, Qr = Ks

∫ h/2

−h/2
σrzdz. (9)

where Ks is correction coefficient and chosen to be 5/6.
Substituting Eqs. (7) and (8) into Eq. (9) and performing the

integrations, we obtain:

Nr = E1
1 − ν2

(εr0 + νεθ0)+ E2
1 − ν2

(χr + νχθ )− �0

1 − ν
,

Nθ = E1
1 − ν2

(εθ0 + νεr0)+ E2
1 − ν2

(χθ + νχr)− �0

1 − ν
,

Qr = KsE1
2 (1 + ν)

(
ψ + ∂w

∂r

)
,

Mr = E2
1 − ν2

(εr0 + νεθ0)+ E3
1 − ν2

(χr + νχθ )− �1

1 − ν
,

Mθ = E2
1 − ν2

(εθ0 + νεr0)+ E3
1 − ν2

(χθ + νχr)

− �1

1 − ν
., (10A)

where

E1 =
(
Ec (T )+ Emc (T )

n + 1

)
h,E2 = 0,

E3 = Ec
12

h3 + Emc

2 (n + 1) (n + 2) (n + 3)
h3.,

�0,�1 =
∫ 0

−h/2

[
Ec (T )+ Emc (T )

(
2z + h

h

)n]

×
[
αc (T )+ αmc (T )

(
2z + h

h

)n]
�T (1, z) dz

+
∫ h/2

0

[
Ec (T )+ Emc (T )

(−2z + h
h

)n]

×
[
αc (T )+ αmc (T )

(−2z + h
h

)n]
×�T (1, z) dz. (10b)

The nonlinear equilibrium equations of thick S-FGM SS shell
resting on elastic foundations based on the first-order shear
deformation theory are [12]:

∂ (rNr)

∂r
− Nθ = 0, (11a)

∂ (rMr)

∂r
− Mθ − rQr = 0, (11b)

∂ (rQr)

∂r
+ r

R
(Nr + Nθ )+ ∂

(
rNr

∂w
∂r

)
∂r

+r
(
q − q f

) = 0 (11c)

Setting Eq. (7) into Eq. (10) and then substituting the
obtained expressions and Eq. (5) into Eqs. (11a)–(11c) lead to
systems of equilibrium equations of the shell as follows:

L1 ≡ E1

1 − ν2

[
ru,rr + u,r − u

r
− (1 + v ) r

w.r

R
+ 1

2
(1 − ν)w2

,r

+ r
(
w,rw,rr

)] = 0, (12a)

L2 ≡ E3

1 − ν2

(
rψ,rr + ψ,r − ψ

r

)
− KsE1

2 (1 + ν)

(
rψ + rw,r

) = 0,

L3 ≡ KsE1

2 (1 + v )

[
ψ + rψ,r + w,r + rw,rr

]
+ E1

R (1 − v )

(
ru,r + u − 2

R
rw + r

2
w2
,r

)
(12b)

+ E1

1 − ν2

⎡
⎣ (1 + v ) u,rw,r − 1+v

R

(
w + rw,r

)
w,r − (1 + v ) r

Rw(
w,rr

) + ru,rrw,r + (
ru,r + νu

)
w,rr + 1

2w
3
,r

+ 3
2 rw

2
,rw,rr

⎤
⎦

+rq − k1rw + k2
(
rw,rr + w,r

) − 2r�0

R (1 − v )

− �0

1 − v

[
w,r + rw,rr

] = 0 (12c)

3. Solution of the problems

The shell is assumed to be clamped and immovable in themerid-
ional direction at the boundary edges and under axisymmetric
deformation. Boundary conditions are expressed as [15, 16]:

ψ = 0 at r = 0 (13a)
w = 0, ψ = 0, u = 0 at r = a. (13b)

To satisfy the above proposed boundary conditions, the fol-
lowing approximate solutions for displacement components and
rotation are assumed [17]:

u = U
r (a − r)

a2
, ψ = 


r
(
a2 − r2

)
a3

, w = W
(
a2 − r2

)2
a4

.

(14)

Here,U, 
 are coefficients which should be determined and
W is the amplitude of deflection.
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Setting these solutions into the modified equilibrium equa-
tions and applying Galerkin procedure, i.e.:

∫ a

0
L′
1r (a − r) dr = 0,

∫ a

0
L′
2r

(
a2 − r2

)
dr = 0,∫ a

0
L′
3
(
a2 − r2

)2dr = 0. (15)

Performing the integrations, the following is obtained:

__
U − 88

105
(1 + v ) λ2

__
W − 4

315λ1
(23 − 41ν)

__
W 2 = 0, (16a)[

2
3λ21

__
E3 − (1 − ν)

Ks
__
E1

48

]

+ (1 − v )

Ks
__
E1

__
W

12λ1
= 0, (16b)

q = −132
105

__
E1 λ2

(1 − v ) λ21

__
U −Ks

__
E1

2 (1 + v ) λ1



− 12
315

__
E1 (23 − 41v )
λ31 (1 − v2)

__
U

__
W +

+
[
2

Ks
__
E1

(1 + v ) λ21
+ 504

105

__
E1 λ

2
2

(1 − v ) λ21
− 4

__
� 0

(1 − v ) λ21

+ 1
20

K1
__
E1

(1 − v2) λ41
+ K2

__
E1

3 (1 − v2) λ41

]
__
W −

−24
5

__
E1 λ2

(1 − v ) λ31

__
W 2+384

105

__
E1

(1−v2) λ41

__
W 3+ 4λ2

__
� 0

(1−v ) λ1
,(16c)

where
__
E1 = E1/h,

__
E3 = E3/h3,

__
U = U/h,

__
W = W/h,

__
�
0

= �0/h, λ1 = a/h, λ2 = H/a,

K1 = 12
(
1 − ν2

)
a4

E1h2
k1,K2 = 12

(
1 − ν2

)
a2

E1h2
k2.

From Eqs. (16a) and (16b), the two equations of
__
U and 
in

terms of
__
W can be obtained as:

__
U = 88

105
(1 + ν) λ2

__
W + 4

315
(23 − 41ν)

λ1

__
W 2,


 = − 4 (1 − ν)Ks
__
E1 λ1

32
__
E3 −Ks

__
E1 λ21 + Ks

__
E1 λ21ν

__
W . (17)

In the study, temperature is assumed to be raised uniformly,
i.e., temperature increases from initial state T0 to final state Tf
and the change of temperature�T = Tf − Ti is independent on
thickness variable z of the shell.

From Eq. (10b), thermal parameter�0 can be expressed as:

�0 = Ph�T, (18)

where

P = Ecαc + Ecαmc + Emcαc

n + 1
+ Emcαmc

2n + 1
.

Setting Eqs. (17) and (18) into Eq. (16c) leads to:

q = 4λ2P�T
(1 − v ) λ1

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3872
3675

__
E1λ22(1+v )

(1−ν)λ21
+ 2K2

s

__
E2
1 (1−ν)(

32
__
E3 −Ks

__
E1λ21+Ks

__
E1 λ21ν

)
(1+ν)

+ 2Ks
__
E1

(1+v )λ21

+ 24
5

__
E1 λ22

(1−ν)λ21 − 4 P�T
(1−ν)λ21 + 1

20
K1
__
E1

λ41(1−ν2)
+ 1

3
K2
__
E1

(1−ν2)λ41

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
__
W

+
[
− 176
11025

__
E1 λ2 (23 − 41ν)
(1 − v ) λ31

− 352
11025

__
E1 λ2 (23 − 41ν)
(1 − ν) λ31

− 24
5

__
E1 λ2

(1 − v ) λ31

] __
W 2

+
[
128
35

__
E1

(1 − ν2) λ41
− 16

33075

__
E1 (23 − 41ν)2

(1 − ν2) λ41

] __
W 3 . (19)

Respectively to:

q = e1 + e2
__
W +e3

__
W 2 +e4

__
W 3, (20)

where

e1 = 4λ2P�T
(1 − v ) λ1

e4

=
[
128
35

__
E1

(1 − ν2) λ41
− 16

33075

__
E1 (23 − 41ν)2

(1 − ν2) λ41

]
;

e2 =

⎡
⎢⎢⎢⎢⎣

−3872
3675

__
E1λ22(1+v )

(1−ν)λ21 + 2K2
s

__
E2
1 (1−ν)(

32
__
E3 −Ks

__
E1λ21+Ks

__
E1 λ21ν

)
(1+ν)

+ 2Ks
__
E1

(1+v )λ21
+ 24

5

__
E1 λ22

(1−ν)λ21
− 4 P�T

(1−ν)λ21 + 1
20

K1
__
E1

λ41(1−ν2)
+ 1

3
K2
__
E1

(1−ν2)λ41

⎤
⎥⎥⎥⎥⎦

e3 =
[
− 176
11025

__
E1 λ2 (23 − 41ν)
(1 − v ) λ31

− 352
11025

__
E1 λ2 (23 − 41ν)
(1 − ν) λ31

− 24
5

__
E1 λ2

(1 − v ) λ31

]
.

Equation (20) is an explicit expression of load–deflection curves
for the clamped immovable shells resting on Pasternak elastic
foundations and is subjected to combined pressure and thermal
loadings.

As the temperature is maintained at initial value T = T0, i.e.,
�T = 0, pressure-loaded shells may exhibit an extremum type
buckling behavior and extremum points of pressure-deflection
curves can be determined from the condition:

dq
d
__
W

= e2 + 2e3
__
W +3e4

__
W 2 = 0 (21)

which gives,

__
W
1,2

= −e3 ∓ √
e23 − 3e2e4
3e4

, (22)

and critical buckling pressures of the shells are obtained as:

qcr = q
(__
W1

)
= e1 + e2

__
W1 +e3

__
W1

2 +e4
__
W1

3, (23)
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930 V. T. T. ANH AND N. DINH DUC

providing material and shell geometry parameters to satisfy the
condition:

e23 − 3e2e4 ≥ 0. (24)

Conversely, in the case of �T �= 0 and due to temperature
dependence of material properties, the effects of elevated tem-
perature are included in all terms at the right-hand side of
Eq. (20), and thermo-mechanically loading of the shells may
experience a bifurcation-type buckling behavior and corre-
sponding critical buckling pressures are predicted as:

q�T
cr = e1.

Subsequently, specialization of Eq. (20) for the case of clamped
immovable FGM circular plates resting on elastic foundations
and exposed to thermal environments, i.e., q = 0 and [λ2 =
H/a = 0, ] gives the following relation:

�T = (1 − ν) λ21
4P

(
e′2 + e′3

__
W +e′4

__
W 2

)
, (25)

where e′2, e′3, e′4 are received by specialization of e2, e3, e4, respec-
tively, in which λ2 is eliminated and

__
�0 is eliminated in e2.

Then, �Tcr for the circular plates can be obtained by setting__
W → 0 from (25):

�Tcr = (1 − ν) λ21
4P

⎡
⎢⎢⎢⎣

2(1−ν)K2
s

__
E1(

32
__
E3 −Ks

__
E1 λ21+Ks

__
E1 λ21ν

)
(1+ν)

+2 Ks
__
E1

(1+ν)λ21
+ 1

20
K1
__
E1

(1−ν2)λ41
+ 1

3

__
E1 K2

(1−ν2)λ41

⎤
⎥⎥⎥⎦ . (26)

In the case of temperature independent material properties,
Eqs. (25) and (26) are closed-form expressions of thermal buck-
ling loads and post-buckling curves of the FGM circular plates,
respectively. In contrast, as properties of constituentmaterials in
FGM are temperature dependent, Eqs. (25) and (26) are implicit
expressions of temperature-deflection relation and critical buck-
ling temperature change, respectively, and an iterative process is
adopted to obtain critical buckling temperature and the post-
buckling equilibrium curves of thermally loaded FGM circular
plates.

4. Numerical results

4.1. Comparison study

To validate the proposed approach, thermal buckling of a
clamped FGM circular plate under uniform temperature rise
and without elastic foundations is considered. The critical buck-
ling temperature changes are calculated by closed-form relation
(26) and compared in Figure 2with results obtained [10] by Tran
et al. based on an iso-geometric finite element approach within
the framework of the higher-order shear deformation plate the-
ory. Further, n∗ is the volume fraction index in case of Vm and
Vc are interchanged in Eq. (1), i.e., Vc(z) = ((2z + h)/(2h))n∗ .
The combination of materials consist of aluminum (Al) and
alumina (Al2O3). Temperature independent elasticity modu-
lus and thermal expansion coefficient are Em = 70 GPa, αm =
23 × 10−6 0C−1 for aluminum and Ec = 380 GPa, αc = 7.4 ×
10−6 0C−1 for alumina, whereas Poisson’s ratio is a constant

Figure . Comparison of the critical buckling temperature change for clamped
isotropic FGM circular plate under uniform temperature rise.

ν = 0.3 for both materials. It is evident that an excellent agree-
ment is obtained in this comparison.

As a second example for verification, the nonlinear response
of the S-FGM SS shells under uniform external pressure with
and without elastic foundations is considered and compared in
Figure 3, with results obtained by Tung [12] for the P-FGM SS
shells.

The FGM SS shells are composed of silicon nitride (Si3N4)
and stainless steel (SUS304). Specific values of these coefficients
of silicon nitride and stainless steel quoted inTable 1 are given by
Reddy and Chin [17] and are calculated as a nonlinear function
of temperature by using Eq. (4); the Poisson’s ratio is assumed to

Figure . Comparison of the nonlinear response change for S-FGM SS shell and P-
FGM SS shell.
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Table . Material properties of the constituent materials of the considered SS-FGM
shell.

Material Property P0 P−1 P1 P2 P3

SiN (ceramic) E(Pa) .e  −.e- .e- −.e-
ρ(kg/m3)     
α(K−1) .e-  .e-  
k(W/mK) .    

ν .    
SUS (metal) E(Pa) .e  .e- −.e- 

ρ(kg/m3)     
α(K−1) .e-  .e-  

k(W/mK) .    
ν .    

be a constant ν = 0.3. The shells are assumed to be clamped and
immovable along the boundary edge.

As can be seen, Figure 3 shows that, initially at the buckling
period, the loading capability of FGM SS shell is better than the
S-FGM SS shell, but at the post-buckling period this is the com-
plete opposite, when they have the same shell thickness. This
means that the loading capability of S-FGM SS shell at the post-
buckling period is better than the loading capability of P-FGM
SS shell.

4.2. The nonlinear response of axisymmetrically
deformed S-FGM SS shells

The remainder of this section presents numerical results for S-
FGM SS shells composed of silicon nitride (Si3N4) and stainless
steel (SUS304), such as above. The temperature-independent
material properties will be calculated at room temperature
T0 = 300K.

In what follows, the nonlinear response of axisymmetrically
deformed S-FGM SS shells will be analyzed. Unless otherwise
specified, the thermal environment is maintained at reference
value T0, i.e., �T = 0, and the shell is free from elastic founda-
tion interaction, i.e., K1 = K2 = 0. In characterizing the behav-
ior of the shells, deformations in which the central region of a
shell moves toward the plane that contains the periphery of the
shell are referred to as inward deflections (positive deflections).
Deformations in the opposite direction are referred to as out-
ward deflections (negative deflections).

The effects of foundation stiffness on the critical buckling
loads and post-buckling load-deflection curves for S-FGM SS
shells subjected to uniform external pressure are graphically
illustrated in Figure 4. It indicates that the critical buckling pres-
sures are enhanced due to an increase of stiffness parameters of
elastic foundations, especially nondimensional stiffness of the
shear layer of the Pasternak foundation model.

Figure 5 shows the effects of the volume fraction index
n and elastic foundation on the nonlinear response of S-
FGMSS shells under uniform external pressure. As can be seen,
ceramic-rich shells have both higher critical loads and more
severe snap-through instability. The pressure-deflection curves
become higher and more stable, i.e., very benign snap-through
phenomenon, as the FGM SS shell is supported by an elastic
foundation.

The effects of the shell rise to base radius ratio H/a on the
nonlinear stability of S-FGM SS shells are analyzed in Figure 6.

Figure . Effects of stiffness parameters of elastic foundations on the critical buck-
ling pressure of the S-FGM SS shell.

It is clear that the nonlinear response of shells is very sensitive to
variation ofH/a ratio. Specifically, an increase inH/a ratio gives
higher buckling loads followed by a more intense snap-through
phenomenon.

Figure 7 plotted as counter parts of Figure 6 for the case
of K1 = 50,K2 = 20, and Figure 8 depicted with various val-
ues of nondimensional stiffness parameters K1,K2 show pro-
nounced effects of the support of elastic foundations on the non-
linear response of pressure-loaded S-FGM SS shells. As can be
observed, pressure-deflection curves are higher andmore stable
in the presence of elastic foundations. In addition, parameterK2
of the Pasternak foundationmodel has twomore sensitive effects
on the loading carrying capacity of FGM SS shells.

Figure . The effects of the volume fraction index n and elastic foundation on the
nonlinear response of S-FGM SS shells under uniform external pressure.
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Figure . The effects of radius ratioH/aon the nonlinear stability of S-FGMSS shells
under uniform external pressure without an elastic foundation.

The effects of thermal environments and temperature
dependence of material properties on the nonlinear thermo-
mechanical response of S-FGM SS shells are illustrated in
Figures 9 and 10. Due to the presence of a thermal environ-
ment, pressure-loaded shells exhibit a bifurcation-type buckling
behavior where bifurcation point pressure is increased as tem-
perature change becomes higher. It can be explained that pre-
existent thermal loading makes the shell surface deflect out-
wards (negative deflection) and curvature of the shell devel-
oped prior to application of external pressure. As temperature
dependence of material properties is incorporated, the shells
have higher buckling pressures and lower loading capacity in
the deep region of post-buckling behavior. Figure 10, plotted as
counterparts of Figure 9 for the case ofK1 = 100,K2 = 10, again
indicates very useful effects of elastic foundations on the stability
of S-FGM SS shells subjected to combined thermo-mechanical
loads.

Figure . The effects of radius ratioH/a on the nonlinear stability of S-FGMSS shells
resting on an elastic foundation under uniform external pressure.

Figure . Effects of nondimensional stiffness parameters K1, K2 on the nonlinear
response of S-FGM SS shells.

4.3. FGM circular plates

In exceptional cases, when the rise of a shell is almost zero,
λ2 = 0, Figure 11, plotted by using Eq. (23) for the case of
�T = 0 and [H/a = 0], shows pressure deflection curves ver-
sus various values of n index and foundation stiffness (K1,K2)

for S-FGM circular plates under uniform external pressure. It is
obvious that equilibrium paths are stable with no snap-through
phenomenon, and loading capacity of S-FGM circular plates is
remarkably improved due to the support of elastic foundations.

Finally, the effects of elastic foundations on the thermal post-
buckling of geometrically S-FGM circular plates are considered
in Figure 12. As expected, the figure indicates that deteriora-
tive influences of temperature-dependentmaterial properties on

Figure . Effects of thermal environments on the nonlinear thermo-mechanical
response of S-FGM SS shells.
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Figure . Counterparts of Figure  for the case of K1 = 100, K2 = 10.

reduction of thermal loading carrying capability of S-FGM cir-
cular plates becomemore pronounced as S-FGM plates are sup-
ported by foundationswith higher values of stiffness parameters.

4.4. S-FGM spherical shells with ceramic-metal-ceramic
(c − m − c) layers andmetal-ceramic-metal
(m − c − m) layers

The study can completely expand for the case of inner and outer
surface metallic and mid-surface ceramic. Figures 13 and 14
show the effects of nondimensional stiffness parameters K1,K2
and the volume fraction index n on the critical bucking pres-
sures of the shells in the same shape, dimensions, impact force,
and thermal environment. As can be seen, Figure 13 shows the
influence of the K1,K2 on the critical buckling pressures for the
distribution of grades in the spherical shell with no consider-
able difference. From Figure 14, we can conclude that when the

Figure . Effects of material distribution and foundation stiffness on the nonlinear
response of S-FGM circular plates under uniform external pressure.

Figure . Effects of elastic foundations and temperature dependent properties on
the thermal post-buckling of the S-FGM circular plates.

higher increasing of the volume fraction index n (n > 1), corre-
sponding to the higher load capacity of the shells, concurrently
the buckling load capacities of the shell with c − m − c layers
are better than the one with m − c − m layers, especially in the
period of post-buckling. This occurs due to the elasticity mod-
ulus E of ceramic higher than metal.

4.4. S-FGM SSwith two different boundary conditions

We consider an additional case if the shell is assumed to
be clamped and freely movable in the meridional direction
at the boundary edges and under axisymmetric deformation.
Figure 15 shows the effects of in-plane restraint conditions on
the nonlinear response of S-FGM SS shell with two different
boundary conditions. In comparisonwith the FMcase, the shells
with immovable clamped edge (IM) on elastic foundations have
a comparatively higher capability of carrying external pressure

Figure . The effects of nondimensional stiffness parameters K1, K2 on the critical
bucking pressures of the shells.
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934 V. T. T. ANH AND N. DINH DUC

Figure . The effects of the volume fraction index n on the critical bucking pres-
sures of the shells.

Figure . The effects of in-plane restraint conditions on the nonlinear response of
the shell.

loads in a post-buckling period. However, the snap-through
behavior of the shells with IM is very unstable.

5. Concluding remarks

The present article aims to propose an analytical approach
to study the problem of nonlinear post-buckling of shear
deformable S-FGM axisymmetric spherical shell with
temperature-dependent material properties on elastic foun-
dations subjected to mechanical and thermal loads. Based on
the first shear deformable theory, the equilibrium and com-
patibility equations are derived in terms of the shell deflection
and the stress function. From these explicit expressions, the
nonlinear axisymmetric response of the shell is analyzed and
the results are illustrated in graphic form. The results show
that the nonlinear response of the S-FGM spherical shell is
complex and greatly influenced by the material and geometric

parameters and in-plane restraint. The study also reveals the
important role of pre-existent temperature conditions on the
nonlinear response of S-FGM shallow spherical shell under
uniform external pressure.
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