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a b s t r a c t 

This paper describes an adaptive numerical framework for modeling arbitrary inclusions and holes in 

three-dimensional (3-D) solids based on a rigorous combination of local enriched partition-of-unity 

method, a posterior error estimation scheme, and the variable-node hexahedron elements. In this new 

setting, a posteriori error estimation scheme driven by a recovery strain procedure in terms of extended 

finite element method (XFEM) is taken for adaptive purpose (local mesh refinement). Refinement is only 

performed where it is needed, e.g., the vicinity of the internal boundaries, through an error indicator. To 

treat the mismatch of different meshes-scale in 3-D, the variable-node hexahedron elements based on 

the generic point interpolation are thus integrated into the present formulation. The merits of the pro- 

posed approach such as its accuracy, effectiveness and performance are demonstrated through a series 

of representative numerical examples involving single and multiple inclusions/holes in 3-D with different 

configurations. The obtained numerical results are compared with reference solutions based on analytical 

and standard non-adaptive XFEM methods. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The so-called weak discontinuities such as voids and inclusions

reatly affect the integrity and performance of structures or com-

onents. Accurate modeling of such discontinuities is of interest to

he researchers and scientists. In order to evaluate the mechanical

ehavior, major discontinuities in the components must be fully

onsidered. High gradients are often encountered at the vicinity of

iscontinuities, in which fine-scale meshes around the discontinu-

ties are often required to improve the final outputs of the solu-

ions. However, the amount of computational time required may

e very huge if fine-scale meshes are applied to the whole struc-

ure or the body (in some particular cases, the computations may

ven be failed). To reduce the computational effort, the fine-scale

eshes around the discontinuities are often preferred, while the
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oarse-scale meshes are utilized for the regions far from the dis-

ontinuities. Consequently, two major issues arisen from that ap-

roach must be taken into account: (1) how to define the domain

iscretized with fine-scale meshes; and (2) how to link/couple the

ismatching problem between different scales of the meshes. 

About the fine-scale mesh domain, there are two ways that are

ften used to determine the region discretized by the fine-scale

esh. The first is that the domain is defined in advance, the easy

mplementation is the advantage of this way, but the domain de-

ermined is based upon the experience of the analysts. This way is

n general not suited to practical problems. The other is that the

egion discretized by the fine-scale mesh is performed with the

id of adaptive strategies, i.e., the elements that have a relative er-

or greater than a specified tolerance value are refined. The region

s automatically determined by the error analysis, so the second

pproach is more reasonable and highly suitable for practices. As

inking the mismatch of different mesh-scales, some special tech-

iques have been developed and available in literature such as the

agrange multipliers [1] , the projection method [2] , the penalty

unction parameters [3] , the mortar method [4] , and the Arlequin
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method [5] . From the implementation point of view, these meth-

ods however often require some modifications on the system ma-

trix, leading to a complicated implementation. 

The extended finite element method (XFEM) is becoming popu-

lar for modeling arbitrary discontinuities because the geometry of

discontinuities is independent of the finite element mesh, see for

instance [6,7] . The basic idea behind the XFEM is that the stan-

dard finite element approximation is enriched with some special

functions around the discontinuities in the framework of partition

of unity. In the past over decades, a large number of studies have

been conducted to improve or apply the original XFEM for various

configurations and problems, e.g., see [7–21] . Kang et al. [15] pro-

posed an enhanced XFEM based on consecutive-interpolation pro-

cedure for accurately extracting crack-tip fields in two-dimensional

solids. Pathak et al. [22] proposed a simple and efficient XFEM ap-

proach for 3-D cracks. A crack front is divided into a number of

piecewise curve segments to avoid an iterative solution. In crack

front elements, the level set functions are approximated by higher

order shape functions which assure the accurate modeling of the

crack front. Later, the method is further applied to model fatigue

crack growth simulations of 3-D problems [ 23 , 24 ]. Pathak et al.

[25,26] simulated fatigue crack growth simulations of bi-material

interfacial cracks using XFEM under elastic loading and thermo-

elastic loading. The material interface is modeled by a signed

distance function whereas a crack is modeled by Heaviside and

asymptotic crack tip enrichment functions. Singh et al. [27] evalu-

ated the fatigue life of homogeneous plate containing multiple dis-

continuities (holes, minor cracks and inclusions) by XFEM under

cyclic loading condition, and investigated the effect of the minor

cracks, voids and inclusions on the fatigue life of the material in

detail. 

Nevertheless, one must be noted that adaptive XFEM or local

mesh refinement XFEM developed for solving discontinuous prob-

lems like cracks or curved interface in two-dimensional (2-D) can

be found in literature, see for instance [28–33] . In Ref. [29] , the er-

ror estimator is based on a stress smoothing technique. The advan-

tage of stress recovery is that it can be easily extended to generally

inelastic material behavior. The incorporation of microstructural

features is obtained by using the multiscale projection method. In

Ref. [30] , the existing singlescale crack propagation and crack coa-

lescence methods are coupled to the multiscale projection method.

In Ref. [32] , the different scales are linked by using a local multi-

grid approach, whereas the refined domain is defined by the user

at the beginning of the simulation. However, preceding works in

terms of adaptive XFEM devoted to inclusions and voids modeling

are rather rare, especially three-dimensional (3-D) cases. In fact,

accurate modeling of 3-D inclusions and voids structures, for in-

stance, in composite reinforced materials, remains a challenging

task in the computational mechanics. 

The novelty, also the main objective, of this contribution is that

a novel adaptive extended finite element method, which is later

termed as A-XFEM for the sake of brevity, is developed, particularly

devoting to the accurate modeling of weak discontinuous prob-

lems such as inclusions and voids in 3-D solids. We aim at offering

higher accuracy of the solutions using our A-XFEM as compared

with that of the standard XFEM but with a significant less num-

ber of degrees of freedom of the system. In other words, the com-

putational time in modeling 3-D inclusions and voids problems is

reduced significantly by using the developed A-XFEM, illustrating

the effectiveness of the present approach over the standard non-

adaptive one. To this end, the present formulation is an adaptive

method based on a posteriori error estimation scheme driven by a

recovery strain procedure. In order to treat both the discontinuity

in the field variables and the mismatch of different mesh-scales,

the local enriched partition-of-unity method and the variable-node

hexahedron elements based on the generic point interpolation are

hence rigorously integrated into the formulation. 
The elements, which have been detected by a posteriori error

stimation algorithm, are refined in the adaptive procedure. In this

ork, the adaptive procedure using a posteriori error estimation

n terms of the XFEM is adopted [34,28–30] . The Zienkiewicz and

hu error estimator [35] is used and that is based on a strain

moothing technique. The enhanced or smoothed strains incorpo-

ating with the discontinuities induced by interfaces are recovered,

y which the error estimation for arbitrary distributed interfaces

an be made. An error indicator that is applied to subsequently

efined meshes is gained with a relative error, and every element

ith a relative error exceeds a given specified value of tolerance

rror is then refined with a set of subdivision elements. 

The variable-node elements recently reported in [36,37] are in-

roduced in this work. The variable-node elements have an arbi-

rary number of nodes on the element side and face, the mis-

atching interfaces are converted into matching interfaces in a

traightforward manner, provided that the system matrix does not

eed to be modified. 

One of the main advantages of the proposed A-XFEM is that it

nables one to utilize a refinement mesh only in the vicinity of the

iscontinuity where it is required by means of an automatic mesh

efinement algorithm, and the matching interfaces between differ-

nt mesh-scale are directly obtained. It is worth noting that the

raditional fixed-node element is one special case for the variable-

ode elements, hence the variable-node hexahedron elements can

e implemented within existing XFEM computer codes with little

odification and effort. The A-XFEM associated with an adaptive

rocess allows the users to achieve desired accuracies with some

rials. 

In this paper, we restrict our interest by studying the problems

nder static situation only, focusing on the demonstration of the

pplicability and performance of the developed A-XFEM in simula-

ion of 3-D inclusions and voids. 

The paper is structured as follows. The novel 3-D A-XFEM for-

ulation is presented in Section 2 , in which we detail the variable-

ode hexahedron elements to link different scale elements, a pos-

eriori recovery-based error estimator for the adaptive purpose,

umerical integration, enriched displacement approximations, etc.

our representative numerical examples of single and multiple in-

lusions are considered and presented in Section 3 , while Section

 shows the numerical results of single and multiple voids/holes.

ome conclusions drawn from the study are given in Section 5 . 

. Three-dimensional adaptive XFEM formulation for weak 

iscontinuities 

.1. XFEM approximation of field variables 

The enriched displacement field can be expressed in the follow-

ng form [34,38,39] : 

 

h ( x ) = 

∑ 

i ∈ I 
u i N i ( x ) + 

∑ 

j ∈ J 
a j N j ( x ) �( x ) (1)

here N i ( x ) and N j ( x ) are the standard shape functions; u i and

 j are the displacement and enrichment nodal variables, respec-

ively; �( x ) represents the enrichment function which depends on

he type of problem; I is the set of all nodes in the discretization,

hile J is the set of nodes whose support is intersected by the dis-

ontinuity. In Eq. (1) , the first term denotes the classical finite el-

ment approximation whereas the second term represents the en-

ichment function considered in the XFEM. 

For inclusions modeling, the enrichment function is chosen as

38] 

 ( x ) = 

∑ 

I 

| ϕ I | N I ( x ) −
∣∣∣∣∣∑ 

I 

ϕ I N I ( x ) 

∣∣∣∣∣ (2)



Z. Wang et al. / Advances in Engineering Software 102 (2016) 105–122 107 

Fig. 1. Schematic of hexahedral meshes discretization of a laminate containing two 

different scale hexahedron elements. One layer of variable-node hexahedron ele- 

ments (marked in yellow) is defined to link two different meshes. The blue solid 

line represents the interface. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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ith ϕ I indicates the nodal value of the level set function. 

For voids or holes modeling, the displacement field is alterna-

ively approximated by [39] : 

 

h ( x ) = 

∑ 

i ∈ I 
N i ( x ) H ( x ) u i (3) 

here 

 ( x ) = 

{
1 x ∈ �
0 x / ∈ �

(4) 

.2. Coupling meshes: variable-node hexahedron element based on 

he point interpolation 

We adopt the variable-node hexahedron elements based on the

oint interpolation to couple different mesh-scales [36,37] . Fig. 1

chematically depicts one layer of variable-node hexahedron ele-

ents marked in yellow. Note that this class of elements are also

nown as transition elements, which link elements involving dif-

erent scales. Major advantages must be stressed out here that, un-

ike the classical existing transition elements, the number of nodes

n the element faces of the adopted variable-node hexahedron el-

ments can be arbitrary, provided that special bases are employed

hat have slope discontinuities in 3-D domains. More importantly,

he elements defined in such a way retain the linear interpolation

etween any two neighboring nodes. In [36,37] , the variable-node

lements have proven to be capable of offering a flexible way to

esolve the non-mismatching mesh problems (i.e., the mesh con-

ection and adaptive mesh refinement). 

The displacements u 

h ( ξ) approximated for u ( ξ) by the point in-

erpolation, with N p based-polynomials, are given by 

 

h ( ξ) = 

N p ∑ 

i =1 

N i 

(
ξ
)
u i = a 

T p 

(
ξ
)

(5) 

n which N p defines the number of sampling points in the point

nterpolation. The shape function N i that is associated with node i

s defined by 

 i = 

[ 

N i 0 0 

0 N i 0 

0 0 N i 

] 

(6) 
here u i = [ u i v i w i ] 
T is the nodal variable vector; p ( ξ) is the

 p × 1 column vector of the polynomial basis, while a T is the

 × N p matrix of the unknown coefficients. 

In this work, the polynomial basis used for the eight-node hex-

hedron element is 

p 

(
ξ
)

= [ 1 ξ η ζ ξη ηζ ξζ ξηζ ] 
T 

(7) 

ith ξ , η and ζ being the local coordinates in the isoparametric

lement. 

The point interpolation can then be expressed as 

 

h ( ξ) = a 

T p 

(
ξ
)

= U 

T q 

−1 p 

(
ξ
)

(8) 

ith 

 = 

[
p 1 ... p 8 

]
(9) 

 

T = 

[
u 1 ... u 8 

]
(10) 

Based on the descriptions of Eqs. (5) –( 10 ), we can derive the

hape functions of the eight-node hexahedron element, which are

ritten in general form as follows: 

 i 

(
ξ
)

= 

1 

8 

( 1 + ξξi ) ( 1 + ηηi ) ( 1+ ζ ζi ) (11) 

The variable-node hexahedron elements are then generated by

dding some extra special basis to meet the point interpolation

haracteristics. It must be noted that the choice for the extra spe-

ial basis generally depends upon the interpolation type required

n the element-surfaces. All nodes of a linear variable-node hex-

hedron element (named as a (8 + j + k + l + p + q + r )-node ele-

ent) can be divided into 7 types, which are schematically de-

icted in Fig. 2: 

• Type #1: 8 corner nodes of the hexahedron element; 
• Type #2: j nodes on the edges of ξ= ± 1, η= ± 1, and ζ � = ±1;
• Type #3: k additional nodes on the edges of η= ± 1, ζ= ± 1,

and ξ � = ±1; 
• Type #4: l additional nodes on the edges of ξ= ± 1, ζ= ± 1,

and η � = ±1; 
• Type #5: p additional nodes on the surfaces of ξ= ± 1; 
• Type #6: q additional nodes on the surfaces of η= ± 1; and 

• Type #7: r additional nodes on the surfaces of ζ= ± 1. 

Finally, the polynomial basis can be given by 

p(ξ) = [ 1 , ξ , η, ζ , ξη, ηζ , ξζ , ξηζ , 

(ξ + sign ( ξ9 ))(η + sign ( η9 )) | ζ − ζ9 | , · · · , 

(ξ + sign ( ξ8+ j ))(η + sign ( η8+ j )) 
∣∣ζ − ζ8+ j 

∣∣, ∣∣ξ − ξ8+ j+1 

∣∣(η + sign ( η8+ j+1 ))(ζ + sign ( ζ8+ j+1 )) , · · · , ∣∣ξ − ξ8+ j+ k 
∣∣(η + sign ( η8+ j+ k ))(ζ + sign ( ζ8+ j+ k )) , 

(ξ + sign ( ξ8+ j+ k +1 )) 
∣∣η − η8+ j+ k +1 

∣∣
(ζ + sign ( ζ8+ j+ k +1 )) , · · · , (ξ + sign ( ξ8+ j+ k + l )) ∣∣η − η8+ j+ k + l 

∣∣(ζ + sign ( ζ8+ j+ k + l )) , 

(ξ + sign ( ξ8+ j+ k + l+1 )) 
∣∣η − η8+ j+ k + l+1 

∣∣∣∣ζ − ζ8+ j+ k + l+1 

∣∣, · · · , (ξ + sign ( ξ8+ j+ k + l+ p )) ∣∣η − η8+ j+ k + l+ p 
∣∣∣∣ζ − ζ8+ j+ k + l+ p 

∣∣, ∣∣ξ − ξ8+ j+ k + l+ p+1 

∣∣(η + sign ( η8+ j+ k + l+ p+1 )) ∣∣ζ − ζ8+ j+ k + l+ p+1 

∣∣, · · · , 
∣∣ξ − ξ8+ j+ k + l+ p+ q 

∣∣
(η + sign ( η8+ j+ k + l+ p+ q )) 

∣∣ζ − ζ8+ j+ k + l+ p+ q 
∣∣, ∣∣ξ − ξ8+ j+ k + l+ p+ q +1 

∣∣∣∣η − η8+ j+ k + l+ p+ q +1 

∣∣
(ζ + sign ( ζ8+ j+ k + l+ p+ q +1 )) , · · · , 

∣∣ξ − ξ8+ j+ k + l+ p+ q + r 
∣∣
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Fig. 2. Schematic representation of a (8 + j + k + l + p + q + r )-node element forming seven types of different grouped nodes. 
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∣∣η − η8+ j+ k + l+ p+ q + r 
∣∣(ζ + sign ( ζ8+ j+ k + l+ p+ q + r )) 

]T 
(12)

The corresponding q = p ( ξi ) and U 

T are 

 

T = 

[
u 1 ... u i ... u 8+ j+ k + l+ p+ q + r 

]
(13)

Based on Eq. (8) , the shape functions of a

(8 + j + k + l + p + q + r )-node element can be obtained as [
N 1 , · · · , N 8+ j+ k + l+ p+ q + r 

]T = q 

−1 p 

(
ξ
)

(14)

For more clearly, the shape functions of a typical 3-D variable

13-node hexahedron element are schematically shown in Fig. 3 .

One must be noted that the shape functions at each node possess

the Kronecker’s delta function property. In addition, variable-node

element meets the following properties [37] : (1) partition of unity,

(2) linear completeness at the element domain, and (3) at least

piecewise linear interpolation between two neighboring nodes at

all element boundaries. 

2.3. Adaptive mesh refinement procedure: recovery based error 

estimator 

An error estimator in the framework of an adaptive mesh re-

finement procedure must be defined to detect elements, which are

then refined in the subsequent steps of refinements. It is accom-

plished based on an error indicator whose determinable relative

errors exceed a specific tolerance. 

�

.3.1. Recovery of the strain fields 

The recovery-based error estimator can be revised according

o the Zienkiewicz–Zhu error estimator [35] . The smoothed strains

re recovered in a way by projecting the element strains onto the

odes, and by interpolating the nodal strains with the same ansatz

unctions that are employed for the calculation of the displacement

elds. 

Basically, the strains across the interface between two materials

re discontinuous, so the enhanced or smoothed strain field for 3-

 inclusions may be expressed as 

 

s ( x ) = 

∑ 

i ∈ N s 
N i ( x ) d i + 

∑ 

j∈ N cut 

N j ( x ) 
[
H 

( x ) − H 

( x j ) 
]
e j (15)

here d 
i 

and e 
j 

reflect the nodal degree of freedoms of the en-

anced strains; H ( x ) is a modified Heaviside step function which

akes on the value + 1 at one side of the interface and −1 at an-

ther side of the interface. 

The coefficients d 
i 

and e 
j 

can be evaluated by minimizing the

quare of the L 2 norm of the difference between the XFEM based

omputed strain field and the smoothed strain field over the whole

omain, i.e., 

 

‖ 

ε 

s − ε ‖ 

2 
d� → min (16)



Z. Wang et al. / Advances in Engineering Software 102 (2016) 105–122 109 

Fig. 3. The shape functions of a typical 3-D variable 13-node hexahedron element: The element (a) and its representative shape functions possessing the Kronecker’s delta 

function property at each node (b). 
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here ε = [ ε x ε y ε z γxy γxz γyz ] 
T is the strain vector ob-

ained through the XFEM. 

From Eq. (16) , one can obtain the following linear equation sys-

em 

 ε 

∗ = C (17) 

here ε ∗ = [ d e ] T is the vector of the nodal unknowns in the

moothed strain field, while A and C respectively are the coeffi-

ient matrix and nodal coefficient vector. 

The element contribution to matrix A is 

 i j = 

[
a 

dd 
i j 

a 

de 
i j 

a 

ed 
i j 

a 

ee 
i j 

]
(18) 
here 

 

rs 
i j = 

∫ 
�e 

(
B 

r 
i 

)T 
B 

s 
j d�; ( r, s = d, e ) (19) 

ith 

 

d 
i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

N i 0 0 0 0 0 

0 N i 0 0 0 0 

0 0 N i 0 0 0 

0 0 0 N i 0 0 

0 0 0 0 N i 0 

0 0 0 0 0 N i 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(20) 
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Fig. 4. Generation of sub-tetrahedrons for the quadrature: interface element (a) 

which is divided into a tetrahedron and a heptahedron by the interface; interface 

element (b) which is divided into a pentahedron and a heptahedron by the inter- 

face; and interface element (c) which is divided into two hexahedrons. 

 

q  

t  

r  

a  

i  

H  

f  

i  

a  

w  

t

 

i  
B 

e 
i = [ H ( x ) − H ( x i ) ] 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

N i 0 0 0 0 0 

0 N i 0 0 0 0 

0 0 N i 0 0 0 

0 0 0 N i 0 0 

0 0 0 0 N i 0 

0 0 0 0 0 N i 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(21)

Additionally, the element contribution to C is 

c i = 

[
c d i c e i 

]
(22)

with 

c d i = 

∫ 
�e 

B 

d 
i ε d� (23)

c e i = 

∫ 
�e 

B 

e 
i ε d� (24)

The enhanced or smoothed strain field for void or hole problem

can be expressed as 

ε 

s ( x ) = 

∑ 

i ∈ N s 
N i ( x ) H ( x ) d i (25)

where d 
i 

reflects the nodal degree of freedoms of the enhanced

strains. 

2.3.2. Error estimator 

The L 2 norm error of the strains for element i is calculated by

err ( i ) = 

√ 

1 

�e 

∫ 
�e 

( ε − ε 

s ) 
T 

( ε − ε 

s ) d�, (26)

with �e is the area of the element. 

The maximum L 2 norm strain of the elements is err max , then

the relative error for element i is estimated as follows: 

η( i ) = 

err ( i ) 

er r max 
× 100% . (27)

The L 2 norm error of the strains for the whole domain is finally

calculated by 

er r Total = 

√ ∫ 
�

( ε − ε 

s ) 
T 

( ε − ε 

s ) d�. (28)

The L 2 norm error of the displacements for the whole domain

is calculated by 

er r Total = 

√ ∫ 
�

( u − u 

s ) 
T 

( u − u 

s ) d�. (29)

where u and u 

s are the numerical and exact displacement solu-

tions, respectively. 

2.4. Numerical integration of the A-XFEM 

The present approach naturally owns different types of ele-

ments, which are mainly caused by interface geometry of inclu-

sions and voids in the composites. The numerical integration to

different elements is essential and that plays an important role to

the success of the method. In words, the accuracy of the developed

A-XFEM partially depends on the treatment procedure of the nu-

merical integration. In fact, the issues pertaining to the accuracy

and effectiveness of numerical integration in terms of XFEM/GFEM

have been studied and addressed in several previous works, e.g.,

see [40–42] . The following integration schemes are fulfilled in the

proposed method in order to make sure the strain field to be suf-

ficiently integrated. 
(1) Eight-node hexahedron elements : The second-order Gaussian

uadrature scheme is taken to treat the numerical integration of

he eight-node hexahedron elements that do not contain any en-

iched nodes. For the elements that involve enriched nodes (but

re not interface elements), high-order Gaussian quadrature rule

s applied to improve the accuracy of the output results instead.

owever, a special treatment of numerical integration for inter-

ace elements is needed. The treatment is carried out by partition-

ng the interface hexahedron element into sub-tetrahedrons, which

re hence schematically depicted in Fig. 4 , whose boundaries align

ith the interface geometry. Traditional Gauss quadrature rules are

aken in sub-tetrahedrons. 

Our own numerical experiments, which will be presented later

n the numerical examples, are indicated that accuracy results can
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Fig. 5. Schematically generating quadrature sub-domains for a regular variable- 

node hexahedron element which do not contain any discontinuities. The solid 

points represent the nodal points, while the hollow points represent the supple- 

mentary points. 
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Fig. 6. Schematically generating quadrature sub-domains for a variable-node inter- 

face element: variable-node interface element (a), variable-node interface element 

(b), variable-node interface element (c). The solid points represent the nodal points, 

while the hollow points represent the supplementary points. The inter-surface is 

marked and filled in red. 
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e obtained by using the subdivision numerical integration, while

he procedure of partitioning elements is complicated. Alterna-

ively, a method to evaluate regular domain integrals without do-

ain discretization in terms of meshfree method is presented [43] .

he underlying principle of this integration technique is its sim-

licity and accuracy as a domain integral is transformed into a

oundary integral and a 1D integral. The integration technique in

43] is interesting, and generally it could be integrated into the

resent formulation to further enhance its efficiency, avoiding the

artitioning elements. 

(2) Variable-node hexahedron elements: Treating the numerical

ntegration for the variable-node hexahedron elements that con-

ain no interface is briefly presented. Through Eq. (14) , the nodal

hape functions of the variable-node hexahedron elements are cal-

ulated, and their slope discontinuity may give rise to the prob-

ems of inter-subdomain boundaries. The sub- hexahedrons are

hus generated to overcome the slope discontinuity in the numeri-

al integration, where the shape functions still show the linear in-

erpolation within a sub-hexahedron, see Fig. 5 . The conventional

econd-order Gauss quadrature rule is then applied for those sub-

exahedrons. 

(3) Variable-node interface hexahedron elements : In some partic-

lar cases and once the mesh is refined subsequently by more than

ne step of refinement, it could be happened that the variable-

ode transition hexahedron elements may become interface ele-

ents. In such circumstance, a special treatment of the numerical

ntegration of variable-node interface elements is necessary to be

ade. Sub-division of the interface variable-node hexahedron el-

ment is utilized as schematically represented in Fig. 6 , and sub-

exahedrons are then obtained. These sub-hexahedrons can then

e divided into 4 types: 

• Type #1: elements that are like interface (a), denoted by the

term “(a)”; 
• Type #2: elements that are like interface (b), denoted by the

term “(b)”; 
• Type #3: elements that are like interface (c), denoted by the

term “(c)”; 
• Type #4: regular elements that do not contain any discontinu-

ities. 

Then, the Gauss quadrature scheme is used for the numerical

ntegrations of those types of sub-elements. 
Once again, the special treatment of the numerical integration

n the present codes as described above is necessary since it is to

nsure the convergence of the solutions or avoid some undesirable

ituations. 

.5. Numerical implementation 

The main steps of solution procedure for the whole problem by

sing the proposed method are briefly presented here. 

1) The problem domain is discretized with coarse-scale meshes,

without considering the inclusion/void shape and location. 

2) Loop over the number of refinement. 

a. Enriched nodes are selected using the level set method. 

b. Assemble the global stiffness matrix and load array. 

c. Solve the governing equations considering the constraint

conditions. 

d. Calculate the smoothed strain field through Eq. (15) or

Eq.(25) . 

e. Calculate the L2 norm error of the strains for each element

through Eq. (26) . 

f. Calculate the relative error for each element through Eq.

(27) . 

g. The elements in which the relative error exceeds the toler-

ance are refined. 

3) Post-processing for the output of the computed results. 

. Numerical examples of single and multiple inclusions 

In this section, numerical experiments of modeling single and

ultiple inclusions using the proposed A-XFEM are analyzed and

iscussed. Four representative numerical examples of 3-D single

nd multiple inclusions embedded in a matrix are hence consid-

red and analyzed. All the numerical results are discussed and

ompared with analytical solutions and the conventional XFEM re-

ults using fine meshes to show the accuracy and effectiveness of

he developed A-XFEM. 

In all examples of inclusions, the material parameters set for

he matrix � : the Young’s modulus E = 10 0 0 GPa and the Pois-
1 
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Fig. 7. Bimaterial boundary-value problem (a), geometric representation of a cube with a cylindrical inclusion and its configuration parameters (b). 
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son ratio ν =0.3, and for the inclusion �2 : the Young’s modulus

E = 1 GPa and the Poisson ratio ν =0.25. 

3.1. A cylindrical inclusion 

We start by considering an infinitely long cylinder composed of

two different materials as shown in Fig. 7 a. There is a discontinuity

in the material constants across the interface �1 ( r = a ). We impose

the displacement field: u r = r, u θ = 0 on the boundary �2 ( r = b ). The

exact displacement solution are given by [39] 

u r (r) = 

{ [(
1 − b 2 

a 2 

)
α + 

b 2 

a 2 

]
r, 0 ≤ r ≤ a (

r − b 2 

r 

)
α + 

b 2 

r 
, a ≤ r ≤ b 

(30a)

u θ = 0 (30b)

where, α = 

( λ2 + μ1 + μ2 ) b 
2 

( λ1 + μ1 ) a 
2 +( λ2 + μ2 )( b 

2 −a 2 )+ μ1 b 
2 ; λ1 and μ1 are Lamé pa-

rameters in �1 ; λ2 and μ2 are Lamé parameters in �2 . 

In the numerical model, we consider a cube of 2m ×2m ×2m

with a cylindrical inclusion ( �2 ) of a radius a = 0.4 m, depicted in

Fig. 7 b. Regarding the boundary conditions, on the top and bottom

and left and right faces of the cube, the exact displacements using

Eq. (30) are imposed ( a = 0.4 mand b = 2.0 m), and on the front and

back faces of the cube, the normal displacements vertical to the

face are set equal to zero. The origin of coordinate system locates

at the center of the cube, as shown in Fig. 7 b. 

The displacement L 2 norm is then estimated for each step of

refinement using the A-XFEM and is compared with the results de-

rived from the conventional XFEM. The study is to show the accu-

racy of the developed A-XFEM in 3-D inclusions. 

In this example, a tolerance error of 5% is taken. Through

the proposed adaptive mesh refinement procedure, the elements

which have a relative error greater than the specified tolerance

error are refined with more sub-elements. This task means that

an eight-node hexahedron element ( parent element ) has been de-

tected and is then sub-divided into some sub-elements ( children el-

ements ). Notice that the number of children elements can be arbi-

trary in the present formulation. Our numerical experiments have

found that a refinement with a set of 3 ×3 ×3 children elements

can offer good results, and this set is used throughout the study

unless stated otherwise. 
s  
Fig. 8 a shows an initial mesh of 6 × 6 × 6 elements of a cube

enerated by the A-XFEM as its initial step of refinement. We apply

he adaptive algorithm based on error estimator, and thus all the

iscretized elements of the domain of interest are detected, and

hen a set of elements around the interface are selected and la-

eled. To this end, the elements detected are those that will be re-

ned in the next refinement. The initial mesh in Fig. 8 a is now re-

ned, by using 2 × 2 × 2 sub-elements and 3 × 3 × 3 sub-elements,

he corresponding two refined meshes are obtained and depicted

n Fig. 8 b and c, respectively. 

For comparison, results conducted by using the conventional

FEM are added. To this end, Figs. 8 d and 8 e thus show the entire

omputational domain using small-scale elements of 12 × 12 × 12

lements and 18 × 18 × 18 elements. All the meshes in Fig. 8 are in-

eresting since the main feature and the advantages of the present

-XFEM over the non-adaptive XFEM is illustrated. It clearly re-

eals that the refined mesh is only to be dealt with for the re-

ion that covers the interface, and more importantly the regions

ar from the discontinuous region, the interface, are not taken into

ccount. It must be mentioned here that the number of elements

r nodes gained by the non-adaptive XFEM are much larger than

hat discretized by the A-XFEM. This issue is discussed in the fol-

owing numerical results. 

For convenience in the representation of the numerical re-

ults, we pick points in y = 0 , z = 0 , x = 0 . 3 m ∼ 0 . 7 m to calcu-

ate their x -direction displacement. Fig. 9 represents the calculated

 -direction displacement results in y = 0 , z = 0 , x = 0 . 3 m ∼ 0 . 7 m

sing the A-XFEM and the non-adaptive XFEM with a fine mesh.

t can be observed in Fig. 9 that the two refined numerical results

f the displacement gained by the A-XFEM are in good agreement

ith those derived from the standard non-adaptive XFEM with the

ne mesh, and are closer to the exact displacements than those

rom the initial mesh. The initial mesh, not surprisingly, yields

oor results. This exactly reflects the desirable characteristics of

he present A-XFEM. However, the finer mesh is taken the more

xpensive the higher computational time of the conventional XFEM

s required, which is not suited for practices. Definitely, the effi-

iency of a method is an important factor that ones must take into

ccount in their realistic works. The adaptive refinement methods,

n this way, and like the one being studied, are preferable. Fig. 10

hows the von Mises stress contours computed by using the
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Fig. 8. A cube with a cylindrical inclusion: initial mesh (a); the refined A-XFEM mesh (using 2 × 2 × 2 sub-elements) (b); the refined A-XFEM mesh (using 3 × 3 × 3 sub- 

elements) (c); the conventional XFEM using 12 × 12 × 12 elements (d) and the conventional XFEM using 18 × 18 × 18 elements (e). 

Fig. 9. Comparison of the x-direction displacement in y = 0 , z = 0 , x = 0 . 3 m ∼
0 . 7 m for a cube with a cylindrical inclusion among the A-XFEM, the conventional 

XFEM and the exact solution. 
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-XFEM with different refinements and the conventional XFEM

ith fine mesh. The stress distribution obtained from both meth-

ds is reasonable and they agree between each other. We here typ-
cally show the stresses for the initial and the first step of refine-

ent, and of course stresses by further refinements can also be

ained in such a way. 

The number of discretized elements through the A-XFEM re-

orted in Table 1 is much less than that by the non-adaptive coun-

erpart, reflecting the advantages of the A-XFEM. Also, this feature

akes the method to be an ideal candidate for practical applica-

ions. Table 1 presents the strain L 2 norm error, Eq. (28) , calculated

y the A-XFEM and the common XFEM. The number of DOFs and

he strain L 2 norm error reported clearly illustrate a better per-

ormance of the developed A-XFEM over the non-adaptive XFEM.

ompared with the conventional XFEM, the proposed A-XFEM not

nly offers higher accuracy on the results, but also performs less

umber of DOFs (i.e., the computational time can also be reduced).

Remark #1: A given tolerance error has been used in all the

omputations so far. From the theoretical point of view, the smaller

he tolerance is employed the better the results could be obtained.

rom the numerical implementation point of view, the smaller

he tolerance is taken the higher the computational cost could be

eached. Therefore, the cost must be a critical factor for the se-

ection of this tolerance error in practice. The tolerance error for

 given problem in general can be straightforwardly determined.

t can be attempted to, for instance, through numerical experi-

ents using the A-XFEM. In fact, the accuracy of the output is

ontrollable, due to the adaptive algorithm. Nevertheless, we have

ound from this study that the value of the tolerance error may be

roblem-dependent, but its determination is trivial. 
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Fig. 10. Distribution of the von Mises stress contours for a cube with a cylindrical inclusion: (a) initial mesh; (b) the refined A-XFEM mesh using 2 × 2 × 2 sub-elements; (c) 

the refined A-XFEM mesh using 3 × 3 × 3 sub-elements; (d) conventional XFEM using 18 × 18 × 18 elements. 

Table 1 

The displacement and strain L 2 norm obtained by the A-XFEM for different refinement meth- 

ods. The conventional XFEM results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (12 × 12 × 12 (18 × 18 × 18 

refinement) refinement) elements) elements) 

DOFs 343 1413 4003 2197 6859 

Displacement 
0.38157 0.10254 0.04187 0.10222 0.04181 

L 2 norm error 

Strain L 2 norm 

2.72996 0.81855 0.22359 0.80888 0.17059 
error ( ×10 −6 ) 

Computational 
51 291 741 381 978 

time (second) 
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3.2. A spherical inclusion 

The same cube as the previous example, which has a size of

2 m ×2 m × 2 m containing a spherical inclusion as schematically

depicted in Fig. 11 , is considered. The loading σ =1 kPa is applied

to the six surfaces of the cube. A spherical inclusion radius of 0.4 m

as shown in the figure, and a sphere center coordinate ( x, y, z ) = (0,

0, 0) are taken. 
Due to the geometrical symmetry, only 1/8 of the cube is hence

onsidered. To this end, Fig. 12 a shows an initial mesh of 6 × 6 × 6

lements of 1/8 of the cube. Similarly, the tolerance error of this

xample of 5% is taken. The refined meshes discretized using the

-XFEM with either 2 × 2 × 2 or 3 × 3 × 3 sub-elements are shown

n Figs. 12 b and 12 c, respectively. The figures representing the re-

ned meshes indicate clearly that only interface region is refined,
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Fig. 11. Geometry of a cube containing a spherical inclusion and its configuration 

parameters showing the boundary and loading conditions. 

Fig. 12. 1/8 of a cube with a spherical inclusion: initial mesh (a); the refined A- 

XFEM mesh using 2 × 2 × 2 sub-elements (b) and 3 × 3 × 3 sub-elements (c); the 

conventional XFEM using 18 × 18 × 18 elements (d). 
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Fig. 13. Schematic configuration of a cube containing three cylindrical inclusions 

showing the boundary and loading conditions. 
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nd this illustrates the main advantage of the proposed method in

-D modeling. 

Table 2 reports the strain L 2 norm error estimated using the

-XFEM and conventional XFEM. The common XFEM results are

erformed using fine meshes of 12 × 12 × 12 and 18 × 18 × 18 el-

ments. Only the mesh of 18 × 18 × 18 elements is shown in Fig.

2 d. We note that the accuracy of the A-XFEM results are accept-

ble and in good agreement with that of the common XFEM, but
ewer DOFs for the A-XFEM (e.g., 675 and 1433) have been used,

hile the common XFEM takes a large number of DOFs (e.g., 2197

nd 6859). 

.3. Three cylindrical inclusions 

For multiple inclusions, we consider a 2m ×2m × 2 m cube con-

aining three cylindrical inclusions as schematically depicted in

ig. 13 . Each radius of the cylindrical inclusions is set to be

.2 m and their ( x, z ) coordinates of the center of the cylin-

ers are (1/2 m, −1/3 m), ( −1/2 m, −1/3 m), (0 m, 1/3 m), respec-

ively. These cylindrical inclusions are fabricated through all the

 -direction of the cube. The body is also subjected to a uniform

raction of σ =1 kPa and the bottom surface is also constrained in

ll the directions. 

Different from the above two examples, a tolerance error of

0% is taken for this multiple inclusions example. An initial mesh

f 10 × 10 × 10 elements of this multiple inclusions cube is shown

n Fig. 14 a. The refined meshes using 2 × 2 × 2 and 3 × 3 × 3 sub-

lements are also depicted in Figs. 14 b and 14 c. Two additional re-

ults used for comparison purpose obtained by the non-adaptive

FEM using fine meshes of 20 × 20 × 20 and 30 × 30 × 30 elements

re provided, see Figs. 14 d and 14 e. As expected, it is found very

imilar to the single inclusion example, the refined meshes gained

or multiple inclusions exhibit a very good performance of the pro-

osed method as the refinement is only fulfilled at the interface

etween the inclusions and the matrix, which does not exist in the

on-adaptive approach. 

The strain L 2 norm error are also estimated for the A-XFEM and

he common XFEM. The obtained results of the strain L 2 norm er-

or are thus reported in Table 3 . Not surprisingly, the same situa-

ion of the accuracy and the number of DOFs used for the A-XFEM

s found. Compared to the common XFEM, the A-XFEM is the win-

er as it offers acceptable results with a significant less number of

he DOFs. 

.4. Three spherical inclusions 

We next perform multiple spherical inclusions by considering

 2 m ×2 m ×2 m cube containing three spherical inclusions as de-
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Table 2 

The strain L 2 norm error obtained by the A-XFEM for different refinement methods. The conventional XFEM 

results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (12 × 12 × 12 (18 × 18 × 18 

refinement) refinement) elements) elements) 

DOFs 343 675 1433 2197 6859 

Strain L 2 norm error ( ×10 −6 ) 0 .62346 0 .07090 0 .03778 0 .06747 0 .02756 

Fig. 14. A cube with three cylindrical inclusions: initial mesh (a); the refined A-XFEM mesh (using 2 × 2 × 2 sub-elements) (b); the refined A-XFEM mesh (using 3 × 3 × 3 

sub-elements) (c); the conventional XFEM using 20 × 20 × 20 elements (d) and the conventional XFEM using 30 × 30 × 30 elements (e). 

Table 3 

The strain L 2 norm error obtained by the A-XFEM for different refinement methods. The conventional XFEM 

results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (20 × 20 × 20 (30 × 30 × 30 

refinement) refinement) elements) elements) 

DOFs 1331 3620 9177 9261 29 ,791 

Strain L 2 norm error ( ×10 −6 ) 2 .2297 0 .5917 0 .3780 0 .4764 0 .1692 
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picted in Fig. 15 . The coordinate system is as follows: the origin lo-

cates at the center of the cube, the horizontal right direction is the

X coordinate, the vertical inward direction is the Y coordinate, and

the vertical upward direction is the Z coordinate. Each radius of the

spherical inclusions is set to be 0.2 m and their sphere center coor-

dinates are (1/2 m, 0, −1/3 m), ( −1/2 m, 0, −1/3 m), (0, 0, 1/3 m),
espectively. The body is also subjected to a uniform traction of

=1 kPa and the bottom surface is also constrained in all the di-

ection. 

Due to the geometrical symmetry with respect to the x-z plane,

alf of the cube is taken. We also take a tolerance error of 10% for

his example. The A-XFEM is applied to solve this three sphere in-
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Table 4 

The strain L 2 norm error obtained by the A-XFEM for different refinement methods. The conventional XFEM 

results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (20 × 10 × 20 (30 × 15 × 30 

refinement) refinement) elements) elements) 

DOFs 736 1035 1714 4851 15 ,376 

Strain L 2 norm error ( ×10 −6 ) 0 .3961 0 .1338 0 .0996 0 .0969 0 .0356 

Fig. 15. Schematic configuration of a cube containing three spherical inclusions 

showing the boundary and loading conditions. 

Fig. 16. Half of a cube with three spherical inclusions: initial mesh (a); the refined 

A-XFEM mesh using 2 × 2 × 2 sub-elements (b); the refined A-XFEM mesh using 

3 × 3 × 3 sub-elements (c). 
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Fig. 17. Schematic configuration of a finite thickness plate with a cylindrical hole 

showing the boundary and loading conditions. 
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lusions problem, and an initial mesh of 10 × 5 × 10 elements of

alf of the cube is discretized as the first step of refinement, see

ig. 16 a. Figs. 16 b and 16 c show the computed mesh refinements

hat are utilized using 2 × 2 × 2 and 3 × 3 × 3 sub-elements. A good

erformance of the proposed A-XFEM is found as region around

he connection between two materials is refined only. Table 4 also

eports the computed strain L 2 norm error using the A-XFEM and

onventional XFEM. The most important issue by means of the ef-

ectiveness (less DOFs) of the refinement approach is found. 
. Numerical examples of single and multiple voids (or holes) 

Similar to the previous section, four examples are studied

n this section, but dealing with single and multiple voids or

oles instead. If not stated otherwise the following material con-

tants are taken for all numerical examples: the Young’s modulus

 = 10 0 0 GPa and the Poisson ratio ν =0.3. 

.1. A cylindrical hole 

This example is mainly devoted to study 3-D void or hole using

he present method. A finite thickness large plate containing a hole

ubjected to uniaxial tension σ =1 kPa acting on the top and the

ottom of the plate as shown in Fig. 17 . The width, thickness and

eight are 20 m ×2 m ×20 m, the hole’s center coordinate ( x, z ) is

0, 0), and the cylindrical hole radius is 1 m. We only take 1/8 plate

or the analysis because of geometrical symmetry. In this example,

wo different sets of subdivisions elements or children elements

. g., 2 × 2 × 2 and 3 × 3 × 3, are considered. We again speicify the

olerance error of 5%. An initial mesh of 10 × 1 × 10 elements as

ketched in Fig. 18 a is taken, and the refined meshes derived from

he A-XFEM for the two subdivisions of 2 × 2 × 2 and 3 × 3 × 3 chil-

ren elements of first step are shown in Figs. 18 b and 18 c, and two

ne meshes of 20 × 2 × 20 and 30 × 3 × 30 elements for the con-

entional XFEM are shown in Figs. 18 d and 18 e, respectively. 

The exact solution to this problem is given in [44] . The dis-

lacement components in y = 0 are: 
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Fig. 18. 1/8 of a plate with a cylindrical hole: initial mesh (a); the refined A-XFEM mesh (using 2 × 2 × 2 sub-elements) (b); the refined A-XFEM mesh (using 3 × 3 × 3 

sub-elements) (c); the conventional XFEM using 20 × 2 × 20 elements (d) and the conventional XFEM using 30 × 3 × 30 elements (e). 
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u z (a, θ ) = 

r 

8 μ

[ 
a 

r 
(κ + 1) cosθ

+ 2 

r 

a 
( (1 + κ) cosθ + cos 3 θ) − 2 

r 3 

a 3 
cos 3 θ

]

u x (a, θ ) = 

r 

8 μ

[ 
a 

r 
(κ − 3) sin θ

+ 2 

r 

a 
( (1 − κ) sin θ + sin 3 θ ) − 2 

r 3 

a 3 
sin 3 θ

]
(31)

where ( a , θ ) means the distance and the angle to the cylindrical

center ( x, z ) = (0, 0)and μ is the shear modulus and κ (Kolosov

constant) is defined as 

κ = 

{ 

3 − 4 ν ( plane strain ) 

3 − ν

1 + ν
( plane stress ) 

(32)

As shown in Fig. 19 , the accuracy of u z computed by the A-

XFEM increases with the aid of the refinement as compared with

the analytical solutions. The accuracy is found the same as the
ommon XFEM using a fine mesh. So the computational efficiency

f the A-XFEM is better than that of the conventional XFEM. Table

 presents the strain L 2 norm error result for refinements and the

ommon XFEM. The advantage and effectiveness of A-XFEM over

he conventional XFEM by means of the accuracy and the number

f DOFs is found. 

.2. A spherical hole 

Next, we study a 2 m ×2 m × 2 m cube containing a spherical

ole as depicted in Fig. 20 . The loading σ =1 kPa is applied to

he six surfaces of the cube. The spherical hole radius of 0.4m as

hown in the figure is taken and the sphere center coordinate ( x,

, z ) = (0, 0, 0). Only 1/8 of the cube is taken for the analysis. The

efinement is applied to solve the problem of 1/8 of the cube us-

ng an initial mesh of 6 × 6 × 6 elements, see Fig. 21 a. A tolerance

rror used for this example is 10%. The refined meshes results are

hown in Fig. 21 b and c, and their computed strain L 2 norm errors

re tabulated in Table 6 . The same behaviors of the results and
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Table 5 

The strain L 2 norm error obtained by the A-XFEM for different refinement methods. The conventional 

XFEM results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (20 × 2 × 20 (30 × 3 × 30 

refinement) refinement) elements) elements) 

DOFs 242 327 508 1323 3844 

Strain L 2 norm error ( ×10 −6 ) 2 .1339 1 .2707 0 .8147 1 .2700 0 .7769 

Table 6 

The strain L 2 norm error obtained by the A-XFEM for different refinement methods. The conventional XFEM 

results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (12 × 12 × 12 (18 × 18 × 18 

refinement) refinement) elements) elements) 

DOFs 343 731 1641 2197 6859 

Strain L 2 norm error ( ×10 −6 ) 0 .46977 0 .09340 0 .07691 0 .09322 0 .05237 

Fig. 19. Comparison of the u z in x = 0 , y = 0 , z = 1 m ∼ 5 m for a cube with a cylin- 

drical hole among the A-XFEM, the conventional XFEM and the exact solution. 

Fig. 20. Schematic configuration of a cube with a spherical hole showing the 

boundary and loading conditions. 

Fig. 21. 1/8 of a cube with a spherical hole: initial mesh (a); the refined A-XFEM 

mesh (using 2 × 2 × 2 sub-elements) (b); the refined A-XFEM mesh (using 3 × 3 × 3 

sub-elements) (c). 

Fig. 22. Schematic configuration of a cube with three cylindrical holes showing the 

boundary and loading conditions. 

t  

s

4

 

p  

c  

d  
he accuracy and good performance are again found in this single

pherical hole example. 

.3. Three cylindrical holes 

Next, we wanted to test the performance of the refinement

rocedure applied to a 2 m ×2 m × 2 m cube containing three

ylindrical holes as shown in Fig. 22 . Each radius of the cylin-

rical holes is 0.2 m and their central axis ( x, z ) coordinates
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Table 7 

The strain L 2 norm error obtained by the A-XFEM for different refinement methods. The conventional XFEM 

results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (20 × 20 × 20 (30 × 30 × 30 

refinement) refinement) elements) elements) 

DOFs 1331 4819 13 ,331 9261 29 ,791 

Strain L 2 norm error ( ×10 −6 ) 1 .8830 0 .5212 0 .2979 0 .4928 0 .2486 

Table 8 

The strain L 2 norm error obtained by the A-XFEM for different refinement methods. The conventional XFEM 

results are also added for the comparison purpose. 

Initial A-XFEM A-XFEM XFEM XFEM 

mesh (2 × 2 × 2 (3 × 3 × 3 (20 × 10 × 20 (30 × 15 × 30 

refinement) refinement) elements) elements) 

DOFs 726 1359 2812 4851 15 ,376 

Strain L 2 norm error ( ×10 −6 ) 0 .9295 0 .3031 0 .1611 0 .2828 0 .1220 

Fig. 23. A cube with three cylindrical holes: initial mesh (a); the refined A-XFEM 

mesh using 2 × 2 × 2 sub-elements (b); the refined A-XFEM mesh using 3 × 3 × 3 

sub-elements (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. Schematic configuration of a cube with three spherical holes showing the 

boundary and loading conditions. 

Fig. 25. Half of a cube with three spherical holes: initial mesh (a); the refined 

A-XFEM mesh using 2 × 2 × 2 sub-elements (b); the refined A-XFEM mesh using 

3 × 3 × 3 sub-elements (c). 
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r  

b  

e  

v  

i  
are (1/2 m, −1/3 m), ( −1/2 m, −1/3 m), (0 m, 1/3 m), respectively.

These cylindrical holes are fabricated through all the y direction

of the cube. The body is also subjected to a uniform traction of

σ =1 kPa and the bottom surface is also constrained in all the di-

rection. Fig. 23 reveals a good performance of the developed A-

XFEM since the refinement is only fulfilled at the interface among

the holes and the matrix. The estimated strain L 2 norms obtained

are tabulated in Table 7 . We have examined the accuracy of the

method and the same results as observed in the above examples

are found. 

4.4. Three spherical holes 

The last example deals with a 2 m ×2 m × 2 m cube containing

three spherical holes as depicted in Fig. 24 . The coordinate system

is detailed as follows: the origin locates at the center of the cube;

the horizontal right direction: X coordinate; the vertical inward di-

rection: Y coordinate; and the vertical upward direction: Z coordi-

nate. Each radius of the hole is 0.2 m and their sphere center coor-

dinates are (1/2 m, 0, −1/3 m), ( −1/2 m, 0, −1/3 m), (0, 0, 1/3 m),

respectively. The top surface is also subjected to a uniform trac-

tion of σ =1 kPa and the bottom surface is also constrained in all

the direction. Due to the geometrical symmetry with respect to the

X-Z plane, we also pick half of the cube for this example. A toler-

ance error of 10% is taken for this analysis. Fig. 25 a shows an initial

mesh of 10 × 5 × 10 elements. Refined meshes are also depicted in

Figs. 25 b and 25 c exhibiting, once again, a good performance of the

adaptive algorithm. We additionally report the strain L 2 norm error

estimated using A-XFEM and the conventional XFEM as in Table 8 ,

by which the effectiveness of the method is confirmed. 
. Conclusions and outlook 

We have developed an effective 3-D adaptive XFEM for accu-

ately modeling holes and inclusions. This 3-D approach is driven

y a posteriori recovery-based error estimation to detect all el-

ments that will be refined in the next refinement step. The

ariable-node elements are taken in order to treat the mismatch-

ng problems of different scale-meshes. The local mesh refinement
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trategy proposed here reflects the robustness of effective numer-

cal methods as the fine-scale mesh is only tackled to where it is

equired. We have examined a series of representative numerical

xamples including single and multiple inclusions and holes in 3-

, and the obtained numerical results, which are compared with

nalytical and common XFEM solutions, reveal good performance,

ffectiveness and accuracy of the developed method. 

We have found through the numerical investigation that by us-

ng the adaptive algorithm, which makes the proposed A-XFEM

ossible to improve the accuracy of the interface region. More-

ver, the A-XFEM carries with less DOFs than those through the

FEM. Consequently, the approach is found highly suitable for

ractices, and its further applications to more complicated prob-

ems such as the aggregated composites are possible. Some of the

ain challenges of the proposed method in modeling these com-

licated problems can be briefly given as follows: (1) Each inter-

ace is described with one level set function, so the level set func-

ion for complex geometry would be one major challenge; (2) If a

arge proportion of inclusions are included in the model of inter-

st, fine mesh should be used for the whole domain, requiring a

arge amount of computational effort, as a consequence the advan-

age of the A-XFEM for this particular case may not be obvious; (3)

odeling multiple matrix cracking and delamination may also be

nother challenge. 

Like the conventional XFEM, the proposed A-XFEM in general

an also be used to model the periodic structures/boundary condi-

ion. The challenges in modeling the periodic structures/boundary

ondition would be the same as those in modeling the aggregated

omposites, which are already addressed above. 

Nonetheless, the present work only concerns with the inclu-

ions with perfect interfaces. For imperfect interfaces problems,

he enrichment function �( x ) may have to be chosen as the Heav-

side step function and the crack-tip branch enrichment functions.

he adaptive numerical framework for other interface jump condi-

ions is the same as that proposed in this paper, it is noted that

he smoothed field for the posterior error estimation must be re-

onstructed. 
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