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a b s t r a c t

Finite element method (FEM) is well used for modeling plate structures. Meshfree methods, on the other
hand, applied to the analysis of plate structures lag a little behind, but their great advantages and po-
tential benefits of no meshing prompt continued studies into practical developments and applications. In
this work, we present new numerical results of high frequency modes for plates using a meshfree shear-
locking-free method. The present formulation is based on ReissnereMindlin plate theory and the
recently developed moving Kriging interpolation (MK). High frequencies of plates are numerically
explored through numerical examples for both thick and thin plates with different boundaries. We first
present formulations and then provide verification of the approach. High frequency modes are compared
with existing reference solutions and showing that the developed method can be used at very high
frequencies, e.g. 500th mode, without any numerical instability.
© 2016 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi.
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1. Introduction

Eigenvalue analysis of plate structures is an important research
area to designers and researchers because of theirwide applications
in engineering such as aerospace, marine, ship building, and civil.
Many different theories accounting for such plate structures have
been developed, see e.g., [1e5]. One of the most successful theories
is based on the Kirchhoff hypothesis for thin plates neglecting the
transverse shear strains [1,5], but this strong assumption causes the
main reason for the inaccuracy of the solutions, especially at high
modes. In order to accommodate the transverse shear strain effect, a
theory, which is based on the ReissnereMindlin's assumption, has
been introduced as a remarkable candidate and commonly used for
thick plate analysis [2e5].

Analytical solutions to free vibration of thick plates are certainly
available and extended to analyze the vibration of functionally
graded material plates [46e48] but unfortunately they are limited
to structures which consist of simple geometries and boundary

conditions and often, the exact solutions are very difficult to obtain.
Thus, approximate solutions of eigenfrequency plates problems at
high modes derived from numerical approaches are often chosen.
The development of numerical approaches, in particular, for plates
has led the invention of some important computational methods
such as Ritz method [6], isogeometric analysis [7], finite strip
method [8], spline finite strip method [9e11], finite element
method (FEM) [12e16], discrete singular convolution (DSC)method
[17,18], and DSC-Ritz method [19,20]. The FEM is well-advanced
and is one of the most popular techniques for practice, but till
has some inherent disadvantages, e.g., mesh distortion. In order to
avoid such disadvantages, meshfree or meshless methods have
been developed, and some superior advantages over the classical
numerical ones have illustrated, see e.g., [21e25]. Unlike the con-
ventional approaches, the entire domain of interest is discretized
by a set of scattered nodes in meshfree methods irrespective of any
connectivity.

Plate structures with high frequency modes have been analyzed
using numerical methods, for instance, by FEM [26]; DSC method
[17,19]; DSC-Ritz method [20]. The hierarchical FEM by Beslin et al.
[27] was to reduce the well-known numerical instability of the
conventional p-version FEM [28], due to computer's round-off er-
rors. For more information related to this issue, readers can refer to
an elegant review done by Langley et al. [26].
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This work is devoted to the numerical investigation of high
frequency modes of plates. A meshfree method is thus adopted.
We numerically demonstrate the applicability and performance
of our meshfree moving Kriging interpolation method (MK) [29]
to high frequency mode analysis of ReissnereMindlin plates
without numerical instability. The meshfree MK [29] has recently
been extended to other problems such as two-dimensional plane
problems [30,31], shell structures [32], static deflections of thin
plates [33], piezoelectric structures [34] and dynamic analysis of
structures [35]. Another important shear-locking issue, which
occurs when using thick plate theories to analyze for thin plates,
is taken into account in the present formulation. To this end, a
special technique proposed in [36], using the approximation
functions for the rotational degrees of freedom (DOF) as the de-
rivatives of the approximation function for the translational DOF,
is incorporated into the present formulation to eliminate the
shear-locking effect.

Most recent meshfree methods still have the same problem in
dealing with the essential boundary conditions, although many
efforts have been devoted to overcoming that subject and some
particular techniques have been proposed to eliminate this diffi-
culty in several ways, such as the Lagrangemultipliers [22], penalty
methods [21,37], coupling with the traditional FEM [38e42], and
transformation method [43,44]. In other words, the MK is a well-
known geostatistical technique for spatial interpolation in geol-
ogy and mining. The basic idea of the MK interpolation is that any
unknown nodes can be interpolated from known scatter nodes in a
sub-domain and move over any sub-domain [29]. The procedure is
similar to the moving least-square (MLS) method [22,45], but the
formulation employs the stochastic process instead of least-square
process. The MK is smooth and continuous over the global domain
and one of the superior advantages of the present method over the
traditional ones. The Kronecker delta property is satisfied auto-
matically. Hence, the essential boundary conditions are exactly
imposed without any requirement of special treatment techniques
as the conventional FEM.

Because the MSL approximation is not the interpolation func-
tion, this is a major drawback of the standard EFG method. Hence,
the present work describes a means using the MK interpolation
technique to high vibration modes analysis of plates. As far as the
present authors' knowledge goes, no such task has been studied
when this work is being reported. The paper is structured as fol-
lows. A meshless formulation for free vibration of Reiss-
nereMindlin plates is presented in the next section, showing a brief
description of governing equations and their weak form. Approxi-
mation of displacements is then presented in Section 3 and the
corresponding discrete equation systems are given in Section 4.
Numerical examples are presented and discussed in Section 5
dealing with natural frequencies of the square and circular plates
at high modes. We shall end with a conclusion.

2. Formulation of ReissnereMindlin plates for high frequency
variation analysis

In this section, formulation of ReissnereMindlin plates for the
analysis high frequency modes is briefly presented [29]. A FSDT
plate as depicted in Fig. 1 with two-dimensional mid-surface
U3<2, boundary G ¼ vU, the thickness t and the transverse coor-
dinate z is considered. The displacements u and v can be expressed
as [43] u ¼ zbx(x) and v ¼ zby(x), with x ¼ {x,y}Τ and independent
angles bΤ ¼ ðbx; byÞ2ðH1

0ðUÞÞ
2, where bx(x) and by(x) are defined

by section rotations of the plate about the y$ and x$ axes,
respectively. The vertical deflection of plate is represented by the
deflection at neutral plane of plate denoted by wðxÞ2H1

0ðUÞ. The
displacements are expressed as [29]
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The assumption for displacement of three independent field
variables u2H1

0ðUÞ % ðH1
0ðUÞÞ

2 for ReissnereMindlin plates is
uΤ ¼

!
w bx by

"
.

The linear elastic material is assumed with Young's modulus E
and Poisson's ratio n, strong form for free vibration of plates is given
by [12,13]

V$DbkðbÞ þ ltgþ
t3

12
ru2b ¼ 0 in U3<2 (2)

ltV$gþ rtu2w ¼ 0 in U and (3)

w ¼ w0;b ¼ b0 on G ¼ vU (4)

where V ¼ (v/vx,v/vy)Τ is the gradient vector; r the mass density;
and u the natural frequency. In Eq. (3), l ¼ mE/2(1 þ n) with m
representing the shear correction factor (SCF) and m ¼ 5/6 is taken
in this work. The bending modulus Db is

Db ¼ Dt

2
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where Dt ¼ Et3/12(1 $ n2) is the flexural rigidity. The bending k and
transverse shear g strains are expressed as

k ¼ 1
2

h
Vbþ ðVbÞΤ

i
¼ Lbb (6)

g ¼ Vwþ b ¼ Lsu (7)

where Lb and Ls are differential operator matrices and are explicitly
given by
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2
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; Ls ¼

2

664

v

vx
1 0

v

vy
0 1

3

775 (8)

The bending k and transverse shear g strains in Eqs. (6) and (7)
can be rewritten as

Fig. 1. Geometric notation of a FSDT plate [29].
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High frequency modes of ReissnereMindlin plate are derived
from the principle of virtual work under the assumptions of the
FSDT plate theory [12,13,43]: find the natural frequencies u2<þ

and 0s(w,b)2S such that

aðb;hÞ þ ltðVwþ b;Vvþ hÞ ¼ u2
%
rtðw; vÞ

þ
1
12

rt3ðb;hÞ
&
; cðv;hÞ2S0

(10)

in which S and S0 are defined, respectively, as

S ¼
%
ðw;bÞ : w2H1

0ðUÞ;b2
'
H1
0ðUÞ

(2&∩Q (11)

S0 ¼
%
ðv;hÞ : v2H1

0ðUÞ;h2
'
H1
0ðUÞ

(2
: v ¼ 0;h ¼ 0 on G ¼ vU

&

(12)

where Q is a set of the essential boundary conditions and the L2

inner-products is [29]

aðb;hÞ ¼
Z

U

kðbÞ : Db : kðhÞdU; ðw; vÞ ¼
Z
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wvdU;

ðb;hÞ ¼
Z

U
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(13)

Inmeshfreemethods implementation, the bounded domainU is
discretized into a set of scattered n nodes, and each node is covered
by a sub-domain Ux associated with an appropriate influence
domain such that Ux4U. The meshfree solution of high modes for
ReissnereMindlin plate is to find natural frequencies uh2<þ and
0sðwh;bhÞ2Sh such that

cðv;hÞ2Sh0; a
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where themeshfree approximation spaces, Sh and Sh0, are expressed
as

Sh ¼
%'

wh;bh
(
2H1
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&

(16)

with P1(Ux) being the set of polynomials for each variable within
the sub-domain Ux4U.

Dynamic equation by a minimization form of energy principle
of virtual displacements incorporating the FSDT plate theory is
[43]

Z

U

dkΤDbkdUþ
Z

U

dgΤDsgdUþ
Z

U

duΤBm€udU ¼ 0 (17)

where du is the variation of displacement field u, €u is the second-
order derivatives of displacement over time or acceleration, Bm is
the matrix consisting of the mass density r and the thickness t

Bm ¼ r

2
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while Ds is the tensor of shear modulus as

Ds ¼ lt
#
1 0
0 1

$
(19)

3. Meshfree approximation of field variables and treatment
of shear-locking

In this section, the MK meshfree approximation for field vari-
ables (i.e., deflection and rotations) for ReissnereMindlin plates
and a technique for treatment of shear-locking effect are briefly
presented [29]. Field variables of plates are the deflection w(x) and
the two rotation components bx(x) and by(x) at all nodes. The
approximation is utilized through parameters of nodal values
expressed in a group of nodes within a compact domain of support.
This means that these values can be interpolated based on all nodal
values xi (i2[1,n]), where n is the total number of the nodes inUx so
that Ux4U. Thus, the meshfree approximation uh ¼ ðwh; bhx ; b

h
yÞ

Τ ,
cx2Ux of displacement is expressed as [29e35]

uhðxÞ ¼
h
pTðxÞA þ rTðxÞB

i
uðxÞ (20)

or
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The superscript h in Eq. (21) is omitted without loss of gener-
ality, i.e.,

u ¼

2

4
w
bx
by

3
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I¼1
FIuI with FI ¼

2

4
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3

5

(22)

where uI ¼ (wI,bxI,byI)Τ is the vector of nodal variables at node I
whereas fI,fxI and fyI are the MK shape functions defined by

fIðxÞ ¼
Xm

j

pjðxÞAjI þ
Xn

k

rkðxÞBkI (23)

In this work formulations using the first-order derivatives of
shape functions presented in [36] to eliminate the shear-locking is
taken

fxIðxÞ ¼
vfIðxÞ
vx

; fyIðxÞ ¼
vfIðxÞ
vy

(24)

The matrices A and B are determined via
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A ¼
'
PTR$1P

($1
PTR$1 (25)

B ¼ R$1ðI$ PAÞ (26)

where I is an unit matrix and p(x) in Eq. (20) is the polynomial with
m basis functions

pΤ ðxÞ ¼ ½p1ðxÞ; p2ðxÞ;/; pmðxÞ( (27)

For n coupling nodes, the n % m matrix P is expressed as

P ¼

2

664

p1ðx1Þ p2ðx1Þ / pmðx1Þ
p1ðx2Þ p2ðx2Þ / pmðx2Þ
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3

775 (28)

the term r(x) in Eq. (20) is also given by

rðxÞ ¼ fRðx1; xÞ Rðx2; xÞ / Rðxn; xÞ gT (29)

where R(xi,xj) is the correlation function between any pair of the
n nodes xi and xj. The correlation matrix R½Rðxi; xjÞ(n%n is given
by

R
!
R
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3

775 (30)

A Gaussian function with a correlation parameter q is employed

R
*
xi;xj

+
¼ e$qr2ij (31)

where rij ¼
,,xi $ xj

,, and q > 0 is a correlation parameter.
The quadratic basic function pTðxÞ ¼

!
1 x y x2 y2 xy

"
is

taken throughout the study.
The first- and second-order derivatives of the shape function

can be computed as

fI;iðxÞ ¼
Xm

j

pj;iðxÞAjI þ
Xn

k

rk;iðxÞBkI (32a)

fI;iiðxÞ
Xm

j

pj;iiðxÞAjI þ
Xn

k

rk;iiðxÞBkI (32b)

The influence domain radius is determined by

dm ¼ adc (33)

with dc being a characteristic length relative to the nodal spacing
close to the interest point while a standing for a scaling factor. The
MK shape functions fI(xj) at node xI for interpolation node xj
possess the Kronecker delta function property

fI
*
xj
+
¼ dIj ¼

%
1 for I ¼ j
0 for Isj (34)

The order continuity of the MK interpolation is mostly depen-
dent on the continuity of semivariogram. Since the Gaussian
function Eq. (31) used in interpolation has high continuity, leading
to that the MK interpolation also has high continuity. Other prop-
erties of the MK shape functions such as consistency can also be
found in Refs. [29e31].

4. Meshfree discrete equations for high frequency analysis

Based on the preceding section on the variational form in Eq.
(17), the bending strain and transverse shear strain for plates are

k ¼
Xn

I¼1
BbIuI; g ¼

Xn

I¼1
BsIuI (35)

where

BbI ¼ LbFI ¼

2

64
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3

75;

BsI ¼ LsFI ¼

"
fI;x fxI 0
fI;y 0 fyI

# (36)

By inserting Eqs. (22) and (35) into Eq. (17), discrete system of
equations for vibration problems is obtained as

M€uþ Ku ¼ 0 (37)

where the global stiffness matrix K, which consists bending Kb and
transverse shear Ks forms

K ¼ Kb þ Ks (38)

Table 1
Comparison of dimensionless frequencies 6 of the square plate (t/a ¼ 0.1) between
exact solution and the present meshfree formulation for the CCCC [29] and SSSS
boundary conditions.

Boundary Mode Exact [45] This work

7 % 7 9 % 9 11 % 11 13 % 13 15 % 15

CCCC [29] 1 5.71 5.854 5.619 5.666 5.689 5.708
2 7.88 8.726 7.867 7.843 7.870 7.883
3 7.88 8.726 7.867 7.843 7.870 7.883
4 9.33 10.937 9.500 9.241 9.272 9.368
5 10.13 12.493 10.500 10.188 10.158 10.284
6 10.18 12.507 10.557 10.235 10.199 10.289

SSSS 1 4.37 5.133 4.564 4.351 4.375 4.374
2 6.74 7.849 7.277 6.870 6.781 6.718
3 6.74 7.849 7.277 6.870 6.781 6.718
4 8.35 10.377 9.376 8.541 8.394 8.228
5 9.22 10.801 10.052 9.536 9.321 9.299
6 9.22 10.928 10.102 9.571 9.321 9.333

Fig. 2. Convergence of dimensionless frequencies unum/uexact of the square plates (t/
a ¼ 0.1).
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KbIJ ¼
Z

U

BΤ
bIDbBbJdU (39)

KsIJ ¼
Z

U

BΤ
sIDsBsJdU (40)

and the global mass matrix M

MIJ ¼
Z

U

FΤ
I BmFJdU (41)

A general solution of such a homogeneous equation is

u ¼ uexp
*
iubt

+
(42)

where i is the imaginary unit, bt indicates time and u is the eigen-
vector. Substituting Eq. (42) into Eq. (37), natural frequencies u is
obtained solving the following eigenvalue equation
'
K$ u2M

(
u ¼ 0 (43)

For numerical integration, a background cell with 16 Gaussian
points is used [29e31].

5. Numerical results of high frequency modes and discussion

High frequency modes results of FSDT plates with various
boundary conditions derived from the proposed meshless are
analyzed here. The boundaries of the plates, for convenience, are
denoted as (F) completely free, (S) simply supported and (C) fully
clamped edges. Throughout the paper, if not specified otherwise,

Fig. 3. The rate convergence study with the SSSS square plates (t/a ¼ 0.1) for the first
six modes using the proposed meshfree method.

Table 2
Non-dimensional frequencies 6 of the SSSS and CCCC square plates (t/a ¼ 0.005).

Mode SSSS CCCC

Exact [45] Shear-MK MK Exact [45] Shear-MK MK

1 4.443 4.446 4.686 5.999 5.942 6.687
2 7.025 7.102 7.748 8.568 8.699 10.009
3 7.025 7.102 7.748 8.568 8.699 10.009
4 8.886 8.897 10.187 10.407 10.396 11.979
5 9.935 9.977 11.136 11.472 11.597 14.152
6 9.935 9.977 11.371 11.498 11.597 14.170

1 2 3 4 5 6
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Fig. 4. Percentage error of non-dimensional frequencies of the CCCC and SSSS plates (t/
a ¼ 0.005).

Fig. 5. Influence of the correlation parameter q on the natural dimensionless fre-
quencies of the square plate (t/a ¼ 0.1) at low modes. This result is similar to that
presented in [29].

Fig. 6. Influence of the correlation parameter q on the natural dimensionless fre-
quencies of the square plate (t/a ¼ 0.1) at high modes.
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the following parameters are used: the Young's modulus
E¼ 200% 109N/m2, the Poisson's ratio n¼ 0.3 and the mass density
r ¼ 8000kg/m3, the shear correction factor m ¼ 5/6 and the
dimensionless frequency coefficient 6 ¼ ðu2a4rt=DtÞ1=4.

5.1. Rectangular plates

5.1.1. Convergence study
A square plate with a ¼ b ¼ 10m is considered. Since analytical

solutions of this plate are available at low frequency modes, a
convergence study of the method at low frequencies is explored.
The dimensionless frequencies of a square plate accounting for
CCCC [29] and SSSS boundaries are computed for different sets of
regular distributed nodes, e.g., 7 % 7, 9 % 9, 11 % 11, 13 % 13 and
15 % 15. The first six modes results of non-dimensional frequencies
compared with exact solutions [45] are reported in Table 1. The
frequency convergence unum/uexact (unum: meshfree solutions,
uexact: analytical solutions) of square plates for the first six modes is
also depicted in Fig. 2. Here Dh is the average spacing of scattered
nodes in the domain. Compared with theoretical solutions, the
frequencies obtained by the present method are in good agree-
ment. Sufficient accuracy can be found for both the considered
boundaries with a regular density of 13 % 13 nodes, especially even
for a course set of 9 % 9 nodes the solution of the CCCC plate
matches well with the exact one. Thus, we decide to use a pattern of
13 % 13 nodes for all implementations unless specified.

Further convergence study is made to again verify the conver-
gence rate of this meshfree method. The SSSS boundary associated
with three regularly distributed nodes 7 % 7(49), 9 % 9(81) and
13 % 13(169) is used. The first six modes are considered and their
relative error plotted in a logelog plot is depicted in Fig. 3, showing
a good convergence.

5.1.2. Shear-locking examination
Square plates under SSSS and CCCC boundaries are considered.

The same parameters as above are used, except the thickness-span
aspect ratio t/a ¼ 0.005 (thin plate). Table 2 presents the results of
the first six modes calculated by the proposed method in com-
parison with the analytical solutions [45]. In Table 2, results ob-
tained by using the elimination technique of the shear-locking are

Fig. 8. Influence of the scaling factor a on the natural dimensionless frequencies of the
square plate (t/a ¼ 0.1) at high modes.

Table 3
Comparison of dimensionless frequencies 61 ¼ ua2

ffiffiffiffiffiffiffiffiffiffiffiffi
rt=Dt

p
=p2 for a SSSS square plate (t/a ¼ 0.1). Values in parenthesis indicate the mode sequence number corresponding to

KirchhoffeMindlin relationship [20].

Mode sequence number KirchhoffeMindlin relationship DSC-Ritz with Shannon kernel [20] DSC-Ritz with de la Vallee Poussin kernel [20] Present

1 1.9317 1.9362 1.9360 1.92708
10 13.539 13.541 13.541 13.50471
20 22.351 22.354 22.353 21.84353
30 28.766 28.768 28.768 28.46349
40 35.655 35.656 35.656 35.49630
50 40.293 40.294 40.294 40.21237
60 44.583 44.584 44.584 44.26108
70 49.868 49.869 49.869 49.29989
80 54.458 54.458 54.458 53.70877
90 57.918 57.919 57.919 57.33429
100 62.548 62.549 62.549 62.89605
112 65.652 65.653 65.652 65.40835
152 71.509 (130) 71.510 71.510 71.29451
192 76.975 (150) 76.976 76.976 75.89842
233 82.944 (170) 82.946 82.946 82.51194
277 88.548 (190) 88.549 88.549 88.53252
325 94.027 (210) 94.028 94.028 94.89587
365 98.347 (230) 98.349 98.349 98.36157
408 102.84 (250) 102.84 102.84 102.98880
513 113.32 (300) 113.32 113.32 113.80277
727 132.30 (400) 132.31 132.31 132.63597
948 149.18 (500) 149.19 149.19 150.15219
1500 e 185.24 185.25 185.70155

Fig. 7. Influence of the scaling factor a on the natural dimensionless frequencies of the
square plate (t/a ¼ 0.1) at low modes. This result is similar to that presented in [29].
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named as “Shear-MK”. The percentage errors in normalized fre-
quencies estimated over the exact solutions are visualized in Fig. 4.
As expected, the free of shear-locking is achieved when the Shear-
MK is employed and large errors are found for the standard MK.

5.1.3. Effects of the correlation and scaling parameters
The correlation parameter q has some effects on the solutions,

but there are no exact rules to determine it appropriately. So we
estimate it numerically. A scaling factor of a ¼ 3 is fixed, and other
related parameters of the problem are also unchanged, while the q
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Fig. 10. Influence of the length-to-width ratios on the dimensional frequencies 61 for (a) CCCC, (b) CSFS, (c) CFFF and (d) SCSC plates.
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parameter varies from0.1 to 50 for low frequencies and this range is
wider for high frequencies. We examine low frequencies because of
exact solutions, and thus it is easy to validate the results. The SSSS
boundary is used here.

Fig. 5 represents the percentage errors in non-dimensional
natural frequencies at low modes estimated over the exact solu-
tions [45], it can be seen that acceptable solution are gained if
1) q) 10 is taken. Fig. 6 depicts dimensionless natural frequencies
at high modes for each value of the correlation parameter. We
found that 1 ) q < 10 can be selected for free vibration analysis of
plates at high modes. We now decide to use q ¼ 5 for all imple-
mentations if not specified, otherwise.

Similarly, the scaling factor altering the high modes is analyzed,
a correlation parameter of q ¼ 5 is used, and several scaling factors
from 2.5 to 6 are considered for lowmodes and other higher values
are for high modes. The results calculated for low and high modes
are represented in Figs. 7 and 8, respectively. According to our own
numerical experiments, we found that a range of 2.8 ) a) 4 would
be possible to be used for analyzing both low and high modes, and
we thus decided to use a ¼ 3 for all implementations if not speci-
fied, otherwise.

5.1.4. Comparison study
A comparison of high frequencies of a square plate (a/b ¼ 1)

among the presentmethod and other existing reference solutions is
explored. The dimensionless natural frequencies
61 ¼ ua2

ffiffiffiffiffiffiffiffiffiffiffiffi
rt=Dt

p
=p2, the SSSS boundary and the thickness-span

ratio t/a ¼ 0.1 are used. Table 3 and Fig. 9 show the frequency re-
sults at high modes up to 1500th obtained from the present MK
meshfreemethod, the DSC-Ritz methodwith both the Shannon and
the de la Vallee Poussin kernels [20] and the KirchhoffeMindlin
relationship [20]. It can be seen that the frequencies calculated by
the proposed method match well with the DSC-Ritz method for
both given kernels. However, the results obtained from the Kirch-
hoffeMindlin relationship also match very well with the DSC-Ritz
and the present approach only at the modes below 112th and
beyond that mode 112th the solutions of the KirchhoffeMindlin
failed. The absence of shear deformation modes may cause such
inaccuracy. As shown in Fig. 9 at the same modes after 112th, the
KirchhoffeMindlin relationship offers higher frequencies than
other methods, implying that less accuracy can be found for the
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Fig. 12. Influence of the different boundaries on the dimensional frequencies 61 for
the thick square plate at high modes.
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Fig. 13. Influence of the different boundaries on the dimensional frequencies 61 for
the thick square plate at low modes.
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Fig. 14. Six vibration modes 1st to 6th of a thick square plate.
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KirchhoffeMindlin relationship when high frequency modes of
thick plates are considered.

5.1.5. Effect of the length-to-width and the thickness-span ratios
The influence of length-to-width ratio for thick plates (t/a¼ 0.2)

on high frequencies is analyzed. This is because the natural fre-
quencies may have significant variation when varying this aspect
ratio. The non-dimensional frequency coefficient
61 ¼ ua2

ffiffiffiffiffiffiffiffiffiffiffiffi
rt=Dt

p
=p2 is used. Several values of the length-to-width

ratio such as a/b ¼ 0.5, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5 and 3.0 are consid-
ered. Four different boundaries CCCC, CFSF, CFFF and SCSC are
examined, and the high modes up to 450th are estimated. The
computed results are then shown in Fig. 10(aed), respectively. The
high frequencies behave the same situation for all the considered
boundaries, i.e., the frequencies increase with increasing the aspect
ratios a/b.

Fig. 11 additionally shows an effect of the thickness-span aspect
ratio t/a on the high frequencies. A SSSS square plate (a/b ¼ 1) is
used. The non-dimensional natural frequency coefficient is calcu-
lated by 61 ¼ ua2

ffiffiffiffiffiffiffiffiffiffiffiffi
rt=Dt

p
=p2. High modes up to 450th for different

thickness-span ratios t/a ¼ 0.01, 0.03, 0.06, 0.09, 0.1, 0.15 and 0.2,
respectively, are shown in the figure. Unlike the length-to-width
ratios, it can be observed that when the thickness-span ratio in-
creases, the corresponding frequencies decrease.

5.1.6. Effect of the boundary
The influence of the different boundaries on the high modes is

studied. A thick square plate (t/a ¼ 0.1) with different boundaries
CCCC, SSSS, SCSC, CCCF, SFSF, CFFF and CFCF is studied. The non-
dimensional natural frequency coefficient is estimated by
61 ¼ ua2

ffiffiffiffiffiffiffiffiffiffiffiffi
rt=Dt

p
=p2. Fig. 12 represents the dimensionless fre-

quencies calculated by the present method up to 450th modes and
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Fig. 15. Six vibration modes 90th to 95th of a thick square plate.
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Fig. 20. Influence of the radius of the plates on the dimensionless frequencies at low
modes.
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Fig. 13 shows the calculated results for the lower modes. Highest
frequency modes are found for the CCCC plate, whereas the modes
for other SCSC, SSSS, CCCF, CFCF, SFSF and CFFF plates gradually
decrease.

5.1.7. Mode shape analysis
In free vibration analysis of plates, mode shapes are often

considered to view how vibratory structures look like especially at
high modes. In this section, a thick square plate associated with
SSSS boundary is taken with the thickness-span aspect ratio t/
a ¼ 0.1. Four different sets of six mode shapes are picked up typi-
cally from the low to the high frequencies that are plotted in a series
of Fig. 14 (for modes 1st to 6th), Fig. 15 (for modes 90th to 95th),
Fig. 16 (for modes 200th to 205th) and Fig. 17 (for modes 495th to

500th), respectively. It is easy to see that the wavelengths are
decreased from the low to the high modes.

5.2. Circular plate

A circular plate shown in Fig. 18 is also considered to illustrate
the applicability of the proposed method to arbitrary geometries at
high modes. The SSSS and CCCC boundaries are taken into account.
The problem parameters are taken the same as used in the rect-
angular above. The radius of the circular plate is indicated by R
parameter. A non-dimensional frequency coefficient
6 ¼ uR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rt=Dt

p
is also employed. Figs. 19 and 20 present the in-

fluence of the radius of the plates on the dimensionless frequencies
at high (up to 450th) and low (20th) modes undergone by both

Fig. 22. Six vibration modes 1st to 6th of a SSSS thick circular plate.

Fig. 23. Six vibration modes from 125th to 130th for a SSSS thick circular plate.
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CCCC and SSSS boundaries. In these results, the thickness-span
ratio t/(2R) ¼ 0.1 is employed and the radius R is varied i.e. R ¼ 3,
5, 7 and 9, respectively, while other problem parameters are un-
changed. It is found for both boundaries at high and lowmodes that
the frequencies are increased when increasing the radius. Addi-
tionally, the influence of the thickness-span aspect ratio on the
frequencies at high modes is considered and its results undergone
by the CCCC boundary are given in Fig. 21. Various thickness-span
ratios are taken the same as above such as t/a ¼ 0.01, 0.03, 0.06,
0.09, 0.1, 0.15 and 0.2. Likewise the results accounted for the rect-
angular plate above, it again confirms that the frequencies are
decreased once the thickness-span ratio increases. Furthermore,
several mode shapes shown in Figs. 22e25, from low to high fre-
quencies are also provided in order to get a better observation. The
wavelengths are decreased from the low to the high modes as
expected.

6. Conclusions

In this paper, we present new numerical results of high fre-
quency modes of ReissnereMindlin plates using an effective
meshless method eliminating the shear-locking. The accuracy of
the proposed formulation is demonstrated through numerical ex-
amples and the obtained results are analyzed and discussed in
detail. The achieved results are compared with existing reference
solutions and very good agreements are obtained. The influences of
various aspect ratios and different boundaries dealt with both
relatively thick and thin plates are considered. The developed
method is efficient, robust, stable, accurate and free from the shear-
locking effect. It has a good convergence and allows predicting at
high frequency modes of the FSDT plates without numerical in-
stabilities or numerical round-off errors. The details for the
computational time (CPU-time) of the proposed formulation

Fig. 24. Six vibration modes 245th to 250th of a SSSS thick circular plate.

Fig. 25. Six vibration modes 445th to 450th of a SSSS thick circular plate.
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compared over the conventional methods, e.g., the MLS-based EFG
method, can be found in our previous work [33]. The application of
the method to other complex problems is also possible.
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