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Abstract 
Aim of this study is to propose a numerical model and to calculate ultrashort pulse 
laser light propagation by using Finite-Difference Time Domain (FDTD). “Ultra-
short” pulse here is defined so that the Slowly Varying Envelope Approximation 
(SVEA) breaks in Beam Propagation Method (BPM) and corresponds to the pulse 
width of typically several tens of femtoseconds or shorter. In this case, FDTD must 
be used instead of BPM. In our FDTD-based model, nonlinear absorption and the 
effect of laser-induced plasma are newly considered unlike previously reported 
FDTD models. In this paper, we examine the results of FDTD-based calculation by 
comparing with the results of BPM-based calculation in short pulse cases where the 
SVEA approximation is valid. Furthermore, we calculate ultrashort pulse laser 
propagation and the results can describe the essential features in ultrahigh power 
regime.  

Key words: Nonlinear Optical Effect, Ultrashort Pulse Laser, Finite Difference 
Time Domain, Simulation of Laser Nanomachining 

 

1. Introduction 

   Development of the technologies enabled to shorten the pulse width of laser light down 
to sub-100-fs pulse (Stix and Ippen, 1983(1); DeSilvestri et al., 1983(2)) and sub-10-fs pulse 
(Karasawa et al., 2001(3); Yamane et al, 2003(4)). These pulse lasers have characteristics of 
ultrashort pulse width and the resulting ultrahigh laser light intensity in general.  
   When such ultrahigh intensity laser light interacts with the propagation medium, nonli-
near optical effects (NLO effects) become significant. Typical NLO effects include NL 
refraction and NL absorption, and these effects are crucial phenomena to realize na-
nomachining or many other applications(5-7). Nonlinear refraction leads to “Kerr effect” in 
which the refractive index strongly depends on the laser intensity and results in “self focus-
ing” of the laser light. The nonlinear absorption, in which the absorption coefficient of the 
medium depends on laser intensity, results in “multiphoton ionization” or “tunnel ionization” 
to induce “laser-induced plasma” in ultrahigh intensity cases(8). The laser-induced plasma 
causes “plasma defocusing” of laser light and “plasma absorption”. 
   One of the most remarkable applications of NLO effects is 3D nanomachining in trans-
parent media. By irradiating ultrashort pulse laser light to transparent medium, NL absorp-
tion takes place only at high intensity region and can fabricate microfluidics channels or 
micro waveguides in transparent media(6) (9). These applications are very promising because 
they can be applied to integrated optics, telecommunications, sensors, lab-on-a-chip, 
MEMS and many more advanced devices to be fabricated in transparent media like glasses, 
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crystals and polymers. Theoretical approach, as well as experimental investigations, is very 
important to fully understand the complicated mechanisms in order to develop and com-
mercialize such techniques. 
   In order to calculate the propagation of laser pulse, there are two major computational 
approaches: Beam Propagation Method (BPM) and Finite-Difference Time Domain 
(FDTD) method. BPM is more widely used because of its smaller calculation cost, and 
BPM-based short pulse laser propagation analysis can handle both nonlinear refraction and 
absorption(10-11). However, only a few existing FDTD-based models consider nonlinear ab-
sorption(12-13) as far as the authors’ knowledge, and these models do not consider the tunnel 
ionization effect and cylindrical coordinate is not dealt. It should be noted that BPM cannot 
be applied due to its “Slowly Varying Envelope Approximation” (SVEA) breakdown(14) 
under ultrashort pulse width (typically several tens of femtoseconds or shorter) and the re-
sulting small number of the wave numbers in the pulse envelope. In SVEA, backward wave 
and, in general, the third or higher order dispersions are neglected. Calculations by using 
BPM-based model therefore do not correctly describe the propagation of the pulse width of 
several tens of femtoseconds or shorter. It is also noted that the phase shift at the focal re-
gion(15) of laser beam in general suggests the importance of solving the wave nature of the 
pulse propagation. The FDTD-based model, thus, must be developed and employed in order 
to fully describe the essential features of the phenomena. 
   In short pulse width cases in which the pulse width is much longer than that of the ul-
trashort pulse cases so that the SVEA does apply, BPM-based theoretical model is 
well-developed by comparing experimental evidences and it considers nonlinear refraction, 
absorption and laser-induced plasma(11). Therefore the knowledge associated with the NLO 
model is useful to develop FDTD-based model with NLO effects. 
   In this paper we develop a numerical model and to calculate short pulse laser propagation 
by using FDTD method. In this calculation the well-developed model in BPM is applied to 
develop FDTD-based model. In the model, NL absorption and the effect of the laser-induced 
plasma are considered. The results are examined by comparing with experiments and 
BPM-based calculations. It is also applied in ultrashort pulse case to investigate its propaga-
tion characteristics. 

2. Nomenclature 

B : magnetic flux density, T 
H :  magnetic field, A/m 
D :  electric flux density, C/m2 

E : electric field, V/m 

  I :  intensity of laser light, W/m2 

ε0 :  electric permeability in vacuum, F/m 
μ0 :  magnetic permeability in vacuum, H/m 
c0 :  speed of light in vacuum, m/sec 
e :  elementary charge, C 
n0 :  refractive index of medium 
σ :  electric conductivity, S/m 
Ui :  ionization energy of medium, J 
λ :  wavelength of laser light, m 
ω :  frequency of laser light, Hz 
k :  wavenumber of laser light, m-1 

χ(1) : linear susceptibility 
χ(3) : third-order nonlinear susceptibility, m2/V2 

w :  laser beam radius, m 
tp :  pulse width, sec 
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f :  focal length of lens, m 

3. Numerical simulations of short laser pulse 

 
3.1 Theory 
   In this paper, a Body of revolution (BOR) FDTD method(16) is developed with the added 
ability the nonlinear effect as Kerr effect, multiphoton absorption and plasma defocusing(11). 
The BOR FDTD technique is derived starting from Maxwell’s curl equations, following Eqs. 
(1a)〜(1d): 
 

divB = 0        (1a) 

divD = 0       (1b) 

rotE + ∂B
∂t

= 0       (1c) 

rotH − ∂D
∂t

=σE       (1d) 

Schematic diagram of BOR FDTD is shown in Fig. 1. The axis of rotational symmetry is 
the z axis. Electric field E(Er, Eφ, Ez) and magnetic field H(Hr, Hφ, Hz) propagating in the z 
direction shown in Fig. 1 where r and φ are beam radial and azimuthal direction, respec-
tively. 

 

(a) spatial domain 

                    

(b) time domain 

Fig. 1  2D FDTD mesh used to represent the 3D field components in the axially sym-
metric formulation  
 
   The first step of this scheme is to calculate magnetic field H from Eq. (1c). In cylindric-
al coordinate, Eq. (1c) is rewritten as 



 

 
 

Journal of  Thermal 
Science and Technology  

Vol. 8, No. 1, 2013 

228 

μ0
∂Hr

∂t
r̂ +

∂Hφ

∂t
φ̂ + ∂Hz

∂t
ẑ
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E and H are represented in terms of Fourier series expansion: 

   

Eζ r,φ, z, t( ) = Eζk1 r, z, t( )cos kφ( ) +Eζk 2 r, z, t( )sin kφ( )( )
k=0

∞

∑

Hζ r,φ, z, t( ) = Hζk1 r, z, t( )cos kφ( ) +Hζk 2 r, z, t( )sin kφ( )( )
k=0

∞

∑
           (3) 

where subscript ζ denotes r, φ and z. Eζk1, Eζk2, Hζk1 and Hζk2 are Fourier coefficients(16). In 
this case, linearly polarized laser light is considered, and for a normally incident wave of 
only k = 1 mode is needed that is valid for our case. Considering both odd and even func-
tions with regard to φ, Eq. (3) is written as 
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               (4) 

where, subscripts of Fourier coefficients denoted by 1 and 2 are implied e.g. Er1 de
notes Er11. By substituting Eq. (4) into Eq. (2), we obtain 
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ẑ

⎛

⎝
⎜

⎞

⎠
⎟ =

1
r

Ez1 +
∂Eφ1

∂z
⎛

⎝
⎜

⎞

⎠
⎟ r̂ + −

∂Er1

∂z
+
∂Ez1

∂r
⎛
⎝
⎜

⎞
⎠
⎟φ̂ + −

1
r
∂ rEφ1( )
∂r

−
1
r

Er1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ẑ

        (5) 

Discretization of Eq. (5) is written as 

H n
r1 i, j + 0.5( ) = Hr1

n−1 i, j + 0.5( ) + Δt
μ0 iΔr( )

Ez1
n−0.5 i, j + 0.5( )

+ Δt
μ0Δz

Eφ1
n−0.5 i, j +1( ) − Eφ1

n−0.5 i, j( )⎡⎣ ⎤⎦

H n
φ1 i+ 0.5, j + 0.5( ) = Hφ1

n−1 i+ 0.5, j +0.5( )

− Δt
μ0Δz

Er1
n−0.5 i+ 0.5, j +1( ) − Er1

n−0.5 i+0.5, j( )⎡⎣ ⎤⎦

+ Δt
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− Δt
μ0 i+ 0.5( )Δr⎡⎣ ⎤⎦
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× 1
Δr

i+1( ) Δr⎡⎣ ⎤⎦Eφ1
n−0.5 i+1, j( ) − iΔr[ ]Eφ1

n−0.5 i, j( ){ }

             

(6)

 where i and j are integer indexes (0 ≦ I ≦ imax, 0 ≦ j ≦ jmax) along r and z axis, respectively. 
Here, magnetic field Hn at the time step of n can be obtained. However on axis (i = 0) Hr 
cannot be obtained from Eq. (6). This boundary condition is given later.  
   The next step is to obtain plasma electron density ρ where evolution equation is written 
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where the momentum transfer collision time τc = 2.33×10-14 s. In the third term on RHS of 
Eq. (7), τr denotes electron recombination with a characteristic time of τr = 150 fs for fused 
silica(19). Although τr is reported to depend on electric field, it is treated as a constant value 
in this paper.  
   We consider ρ as a uniform value over a unit cell, and it is evaluated at center of the cell. 
Thus, the discretization of Eq. (7) is written as 
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where amplitude of electric field in a unit cell is needed to calculate ρ, and it is written as 
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   The next step is to obtain linear polarization P. To precisely describe Group Velocity 
Dispersion (GVD) we apply Sellmeier’s formation to FDTD method(20) which has three 
linear polarizations Pm (m = 1, 2, 3) of that evolution equations are written as  

Pζm +ωm
2 Pζm =ωm

2 bm ε0Eζ( ) m =1, 2, 3( )          (12) 

where parameters are b1 = 0.6961663, b2 = 0.4079426 , b3 = 0.8974794, λ1 = 0.0684043 μm, 
λ2 = 0.1162414 μm, λ3 = 9.896161 μm in fused silica(20) and ωm  = 2πc/λm . Equation (12) is 
discretized as 
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   The next step is to obtain D and E by using Eq. (1d). In a cylindrical coordinate system 
Eq. (1d) is rewritten as 
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Equation (14) is discretized as 
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and on axis (i = 0) Eφ and Ez cannot be obtained from Eq. (15). This boundary condition is 
given later. σ consists of absorption coefficients of photon-ionization αPI and plasma αplasma 
which are written as 

σ n = 2ε0n0c0 αPI
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αPI
n = WPI

n Ui

I n     (18) 

α plasma
n = s

2
ρ n = s

4
ρn+0.5 + ρ n−0.5( )   (19) 

Fn+0.5 is used to obtain En+0.5.  
   To obtain En+0.5, we apply relational expression between D and E which is written as 
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We can obtain En+0.5 by solving Eq. (21) substituting Eq. (16) with regard to En+0.5 
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   Above all is the algorithm to simulate laser light propagation under nonlinear coupling 
by using FDTD. In our calculation, sizes of spatial and time steps (Δr, Δz and Δt) are re-
stricted by  

Δr2 +Δz2 ≥ λ
N

                         (23) 

where N should generally be 20 or greater. These step sizes are also restricted by CFL con-
dition  
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and by Eq. (7). 

 

3.2 Boundary condition and Excitation source 
   On axis (i = 0) boundary condition of Eφ, Ez and Hr are written as 

Eφ 0, j( ) = 0,  Ez 0, j + 0.5( ) = 0,  Hr 0, j + 0.5( ) = 0
    

 

(25) 

   At i = imax , j = 0, jmax absorbing boundary condition (ABC) is Perfect Matched Layer 
(PML).(21) In this PML medium, components of E(Er, Eφ, Ez) and H(Hr, Hφ, Hz) are split 
into two subcomponents respectively : E(Erφ, Erz, Eφz, Eφr, Ezr, Ezφ), H(Hrφ, Hrz, Hφz, Hφr, Hzr, 

Hzφ). In this method H is calculated from Eq. (1c) and written as 
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where σ*
pml_r and σ*

pml_z are “magnetic loss” of PML medium which are explained later.  
   To obtain E, D is calculated from Eq. (1d) and written as 
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dium which are explained later, 
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3.3 Numerical condition 
   In order to examine FDTD-based calculation, the Gaussian fs-pulse propagation in silica 
in the high-power regime, where the power of the incident pulse is from several tens to sever-
al hundreds of times higher than Pcr of the glass, is simulated. First, the code is examined in 
regime of several tens times of Pcr by comparing with analytical results. We use an extension 
of Marburger’s formula(23) which has been proposed in a Kerr medium without dispersion and 
plasma defocusing effect. In this case, the position of the nonlinear focal points are shown to 
be closely reproduced by  

zNL = z0 χM + z0 f( )                      (35) 

where 

z0 = πw2n0 λ0 , χM = 1
0.367

Pin

Pcr

⎛

⎝
⎜

⎞

⎠
⎟

1/2

− 0.852
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

− 0.0219        (36) 

Here Pin indicates local maximum power in the temporal slice and Pcr denotes critical power 
of self focusing which is written as 

Pcr =
2πn0n2

λ0
2                           (37) 

 In the higher power regime, several hundreds times of Pcr, this code is compared with 
the BPM-based results and experiment results in Ref. (11). FDTD-based numerical condi-
tion follows a BPM-based short pulse propagation analysis(11). Calculation system is shown 
in Fig. 4. In this system, short pulse laser focused by convex lens is irradiated to fused silica. 
Calculation is started at point of 100 μm from the focal point and calculate laser light prop-
agation.  
   Parameters of laser and properties of medium are shown in Table 1. In this system 
Ti:Sapphier fs laser is considered and third order susceptibility χ(3) is estimated by nonlinear 
refractive index n2 = 3.54×10-16 cm2/W.(11)  
   In this study, furthermore, we calculate ultrashort pulse laser propagation under the con-
dition as shown in Fig. 4 and table 2 by varying the momentum collision time of plasma τc , 
because pulse laser propagation dependence on τc has not been fully investigated so far. 
Momentum collision time of plasma τc are shown in table 2, where the reciprocal of fre-
quency 1/ω is 2.676 fs at wavelength of 800 nm.  
 

                
Fig. 4  A schematic of computational domain 
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Table 1. Numerical condition for short pulse analysis 

Laser parameters 

Wavelength in air 800 nm  

Pulse width (13.5% width)  272 fs 

Beam diameter on surface 26 μm 

Pulse energy per pulse 1.1 μJ 

Property of medium 

n0 1.45 

χ(3) 1.97×10-22 m2/V2 

Ui 9.0 eV 

 

Table 2. Numerical condition for short and ultrashort pulse analysis 

Laser parameters 

Momentum transfer collision time τc 1/10ω, 1/ω, 10/ω 

Pulse width (13.5% width)  10/ω  

Wavelength in air 800 nm  

Pulse width (13.5% width)  272 fs 

Beam diameter on surface 26 μm 

Pulse energy per pulse 1.1 μJ 

 

4. Numerical results of short laser pulse 

   Figure 5 shows numerical and analytical values of nonlinear focal length(23) without dis-
persion and plasma defocusing effect. Here focal point of lens is 50 μm from the surface, and 
linear dispersion and nonlinear absorption are neglected. Other conditions are as same as Fig. 
4. Numerical results show a good agreement with the Marburger’s formula(23) in regime of 
several tens times of of Pcr. 
   Figure 6 show the beam radius for the fractions 13.5, 23.5, 33.5 and 43.5 % of radial 
peak fluence F(z) and plasma electron density distribution ρ(r,z). In Fig. 6 (a), focal length 
is shorter than that of lens. Therefore laser beam is strongly focused by Kerr effect. And 
around the focal point laser beam is defocused by the plasma and can be observed in Fig. 6 
(b). Table 3 shows beam radius RFDTD of FDTD-based result and RBPM of BPM-based result, 
and Table 4 shows plasma radius for 1024 m-3 rFDTD of FDTD-based result and rBPM of 
BPM-based result. From both results show good agreements of FDTD-based results with 
those of BPM and the experimental results in Ref. (11). Therefore, the present FDTD-based 
model shows identical characteristics of propagation to BPM-based and experimental re-
sults.  
   Fig. 7 shows plasma electron density distribution for pulse width of 1/ω = 27 fs. In this 
ultrashort pulse case, plasma splitting occurs. This splitting is occurred by interference be-
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tween focusing and strong plasma-defocused laser light. The same phenomenon can be ob-
served in BPM simulation in short pulse and ultrahigh power case(24) and experiment(25). 
Here it should be denoted that this phenomena essentially depends on not pulse width but 
input power.  
   These results show that the present FDTD-based model can describe NLO effects and 
the essential features observed in experiment. As far as the authors’ knowledge, it is the first 
time FDTD method succeeds to simulate the propagation of ultrafast pulse laser in several 
tens and hundreds times of Pcr. 

Fig. 5  Nonlinear focal length with no dispersion and no plasma  

 

 

(a) Beam radius for the fractions 13.5, 23.5, 33.5 and 43.5 % of  
  radial peak fluence F(z) 

 

 

(b) Plasma electron density distribution 
 

Fig. 6  Results of FDTD simulation  
 

Table 3. Beam radius R comparison FDTD-based with BPM-based result  

z [μm] RBPM [μm] RFDTD [μm] 
21.56 7.77 7.92 
52.87 3.077 3.076 
59.13 3.84 3.84 
68.53 2.42 2.50 
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Table 4. Radius of plasma r at 1024 m-3 comparison  

FDTD-based with BPM-based result 

z [μm] rBPM [μm] rFDTD [μm] 
53 2.2  2.0 
60 2.5 2.35 
80 0.89 1.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7  Plasma electron density distribution for pulse width of 27 fs  
 

5. Conclusion    

   In order to calculate the propagation of ultrashort pulse laser light in absorbing media, 
we have extended the existing FDTD model by employing the models in well-developed 
BPM-based model. In the present FDTD-based model, nonlinear absorption and the effect 
of laser-induced plasma are considered. Calculated results are examined by comparing with 
experiments, theory and BPM-based calculations. The calculated result of the present 
FDTD-based model exhibits identical characteristics of propagation to BPM-based, expe-
rimental and theoretical results and shows NLO effects by describing the essential features 
observed in experiment and theory.  
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