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On the linear stability of eccentrically stiffened functionally graded
annular spherical shell on elastic foundations

Vu Thi Thuy Anh, Pham Hong Cong, Dao Huy Bich and Nguyen Dinh Duc*

University of Engineering and Technology, Vietnam National University, Hanoi – 144, Xuan
Thuy – Cau Giay, Hanoi, Vietnam

(Received 9 April 2015; accepted 14 June 2015)

The study deals with the formulation of governing equations of eccentrically stiffened
functionally graded materials annular spherical shells resting on elastic foundations
and based upon the classical shell theory and the smeared stiffeners technique taking
into account geometrical nonlinearity in Von Karman-Donnell sense. The annular
spherical shells are reinforced by eccentrically longitudinal and transversal stiffeners
made of full metal or full ceramic depending on situation of stiffeners at metal-rich
side or ceramic-rich side of the shell respectively. Approximate solutions are assumed
to satisfy the simply supported boundary condition and Galerkin method is applied to
obtain closed-form relations of bifurcation type of buckling loads. Numerical results
are given to evaluate effects of inhomogeneous, dimensional parameters, outside
stiffeners and elastic foundations to the buckling of structures.

Keywords: linear stability; FGM annular spherical shells; eccentrically stiffened;
elastic foundations

1. Introduction

Shells have increased structural stiffness compared to plates. The advantage of shell
structures is their capability of carrying loads and moments by a combined membrane
and bending action due to their curvature. On the other hand, advanced composite or
functionally graded materials (FGM) provide high-performance and reliability due to
their well-known characteristics. As a result, shell structures made of FGM will con-
tinue being widely used for many years in various engineering fields such as naval,
aerospace, auto-motive, industrial constructions and for sporting goods, medical devices
and many other areas. Moreover, the FGM shells, as other composite structures, usually
reinforced by stiffening members to provide the benefit of added – load-carrying static
and dynamic capability with a relatively small additional weight penalty. In other
words, in order to provide material continuity and ease of manufacture, the FGM shells
are reinforced by an eccentrically homogeneous stiffener system. To date, the investiga-
tion on statics and dynamics of eccentrically stiffened shell structures made of FGM
have received comparatively little attention. Najafizadeh et al. [1] studied linear static
buckling of FGM axially loaded cylindrical shell reinforced by ring and stringer FGM
stiffeners. Bich et al. studied nonlinear post-buckling and dynamics of eccentrically
stiffened functionally graded shallow shells and panels.[2,3] Dung and Hoa [4,5]
presented an analytical study of nonlinear static buckling and post-buckling analysis of
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eccentrically stiffened functionally graded circular cylindrical shells under external pres-
sure and torsional load with FGM stiffeners and approximate three-term solution of
deflection taking into account the nonlinear buckling shape. Recently, Duc et al. [6–11]
have published several studies on the eccentrically stiffened shell structures made of
FGM under mechanical and thermal loads; for example, they investigated nonlinear
dynamic response of imperfect eccentrically stiffened doubly curved FGM shallow
shells on elastic foundations,[6] presented nonlinear post-buckling of imperfect eccentri-
cally stiffened FGM double-curved thin shallow shells in thermal environments,[7]
studied nonlinear response of imperfect eccentrically stiffened ceramic-metal-ceramic
FGM circular cylindrical shells surrounded by elastic foundations and subjected to axial
compression.[11]

Notice that in all the publications mentioned above, the shell structures are mainly
concentrated in the common form, while nowadays, with the development of esthetics,
architecture and design are becoming diversified and abundant, the special shapes of
the spherical shells more widely used in practical applications. In which, the annular
spherical shell is one of the special shapes of the spherical shells. Despite the evident
importance in practical applications, it is a fact from the open literature that investiga-
tions on the thermo-elastic, dynamic and buckling analysis of FGM annular spherical
shell is comparatively scarce. The most difficult part in annular shell problems is com-
plex calculations.

Can enumerate some studies of annular spherical shells as Alwar and Narasimhan
[12] investigated the axisymmetric nonlinear analysis of laminated orthotropic annular
spherical shells, the object of this investigation is to give analytical solutions of large
axisymmetric deformation of laminated orthotropic spherical shells including asymmet-
ric laminates. Wu and Tsai [13] studied the asymptotic differential quadrature (DQ)
solutions of functionally graded annular spherical shells by combining the method of
DQ with the asymptotic expansion approach. Most recently, Anh et al. [14] analyzed
the nonlinear buckling analysis of thin FGM annular spherical shells on elastic founda-
tions under external pressure and thermal loads. Bich and Phuong [15] investigated the
buckling analysis of FGM annular spherical shells and segments subjected to compres-
sive load and radial pressure.

In this paper, the linear analysis of eccentrically stiffened FGM annular spherical
shell is investigated. The shells are reinforced by eccentrically longitudinal and trans-
verse stiffeners made of full metal or full ceramic depending on situation of stiffeners
on the metal-rich side or ceramic-rich side of the shell, respectively. Approximate solu-
tions are assumed to satisfy the simply supported boundary condition and Galerkin
method is applied to obtain closed-form relations of bifurcation type of buckling loads.
The paper analyzed and discussed the effects of material and geometrical properties,
elastic foundations and eccentrical stiffeners on the buckling load of the eccentrically
stiffened FGM annular spherical shell.

2. Functionally graded annular spherical shell and elastic foundation

Consider an annular spherical shell made of FGM with radius of curvature R, rise H
(H is the distance from the bottom plane of annular spherical shell with radius r1 to the
peak of the spherical shell, from which is creating the annular spherical shell), radii of
lower and upper bases r1, r0 respectively and thickness h. The FGM annular spherical
shell reinforced by eccentrically longitudinal and transverse stiffeners is shown in
Figure 1.

2 V.T.T Anh et al.
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The annular spherical shell is made from a mixture of ceramics and metals, and is
defined in coordinate system (φ, θ, z), where φ and θ are in the meridional and circum-
ferential directions of the shells, respectively and z is perpendicular to the middle
surface, positive inward.

Suppose that the material composition of the shell varies smoothly along the thick-
ness by a simple power law in terms of the volume fractions of the constituents as

VcðzÞ ¼ 2zþh
2h

� �k
; � h

2 � z� h
2 ;

VmðzÞ ¼ 1� VcðzÞ:
(1)

where k (volume fraction index) is a non-negative number that defines the material dis-
tribution, subscripts m and c represent the metal and ceramic constituents, respectively.

The effective properties of FGM shallow spherical shell such as modulus of elastic-
ity, the coefficient of thermal expansion, the coefficient of thermal conduction of FGM
annular spherical shell can be defined as:

EðzÞ ¼ Em þ Ecm
2zþ h

2h

� �k

; � h

2
� z� h

2
: (2)

the Poisson ratio ν is assumed to be constant v(z) = const and Ecm = Ec − Em.
The reaction–deflection relation of Pasternak foundation is given by [14]:

qe ¼ k1w� k2Dw

where Dw ¼ @2w
@r2 þ 1

r
@w
@r þ 1

r2
@2w
@h2

is a Laplace’s operator, w is the deflection of the annular

spherical shell, k1 is Winkler foundation modulus, and k2 is the shear layer foundation
stiffness of Pasternak model.

3. Theoretical formulations and stability analysis

In the present study, the classical shell theory is used to obtain the equilibrium and
compatibility equations as well as expressions of buckling loads and nonlinear load–
deflection curves of thin FGM annular spherical shells. For a thin annular spherical
shell it is convenient to introduce a variable r, referred as the radius of parallel circle

Figure 1. Configuration of the eccentrically stiffened FGM annular spherical shell.
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with the base of shell and defined by r = R sin φ. Moreover, due to shallowness of the
shell it is approximately assumed that cos φ = 1, Rdφ = dr.

According to the classical shell theory, the strains at the middle surface and the
change of curvatures and twist are related to the displacement components u, v, w in
the φ, θ, z coordinate directions, respectively, taking into account Von Karman–Donnell
nonlinear terms as [14,15]:

e0r ¼ @u
@r � w

R þ 1
2 ð@w@rÞ2;

e0h ¼ 1
r

@v
@h þ u
� �� w

R þ 1
2r2 ð@w@hÞ2;

c0rh ¼ @v
@r þ 1

r
@u
@h � v

r þ 1
r
@w
@r

@w
@h ;

vr ¼ @2w
@r2 ;

vh ¼ 1
r
@w
@r þ 1

r2
@2w
@h2

;

vrh ¼ 1
r
@2w
@r@h � 1

r2
@w
@h :

(3)

where e0r and e0h are the normal strains, c0rh is the shear strain at the middle surface of
the spherical shell, χr, χθ, χrθ are the changes of curvatures and twist.

The nonlinear equilibrium equations of a perfect shallow spherical shell based on
the classical shell theory are: [14,15]

@Nr

@r
þ 1

r

@Nrh

@h
þ Nr

r
� Nh

r
¼ 0; (4)

@Nh

r@h
þ @Nrh

@r
þ 2Nrh

r
¼ 0; (5)

@2Mr
@r2 þ 2

r
@Mr
@r þ 2ð@2Mrh

r@r@h þ 1
r2

@Mrh
@h Þ þ 1

r2
@2Mh

@h2
� 1

r
@Mh
@r þ 1

R ðNr þ NhÞ
þNr

@2w
@r2 � 2Nrh

1
r2

@w
@h � @2w

r@r@h

� �
þ Nh

1
r
@w
@r þ 1

r2
@2w
@h2

� �
þ q� k1wþ k2Dw ¼ 0:

(6)

The force and moment resultants of an FGM annular spherical shell are:

Nr ¼ A11 þ E0A1

s1

� �
e0r þ A12e

0
h � B11 þ C1ð Þvr � B12vh;

Nh ¼ A12e
0
r þ A22 þ E0A2

s2

� �
e0h � B12vr � ðB22 þ C2Þvh;

Nrh ¼ A66c
0
rh � 2B66vrh;Mr ¼ B11 þ C1ð Þe0r þ B12e

0
h � D11 þ E0I1

s1

� �
vr � D12vh;

Mh ¼ B12e
0
r þ B22 þ C2ð Þe0h � D12vr � D22 þ E0I2

s2

� �
vh;

Mrh ¼ B66c
0
rh � 2D66vrh;

(7)

Where,

A11 ¼ A22 ¼ E1
1�m2 ; A12 ¼ E1m

1�m2 ; A66 ¼ E1
2ð1þmÞ ; C1 ¼ E0A1z1

s1
; C2 ¼ E0A2z2

s2
;

B11 ¼ B22 ¼ E2
1�m2 ; B12 ¼ E2m

1�m2 ; B66 ¼ E2
2ð1þmÞ ; I1 ¼ d1h31

12 þ A1z21; z1 ¼ h1þh
2 ;

D11 ¼ D22 ¼ E3
1�m2 ; D12 ¼ E3m

1�m2 ; D66 ¼ E3
2ð1þmÞ ; I2 ¼ d2h32

12 þ A2z22; z2 ¼ h2þh
2 ;

s1 ¼ 2pr
n1

; s2 ¼ Ru1�Ru0
n2

¼ R
n2

arsin r1
R � arsin r0

R

� �
:

(8)

where s1, s2 – the distance between eccentrically longitudinal and transverse stiffeners
respectively. A1, A2 – the cross-sectional area of eccentrically longitudinal and latitude

4 V.T.T Anh et al.
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stiffeners, respectively. d1; d2 and h1; h2 – the width and height of eccentrically
longitudinal and latitude stiffeners, respectively. n1; n2 – the numbers of eccentrically
longitudinal and latitude stiffeners respectively, and E0 – Young’s modulus of the
stiffeners. E0 = Ec if the stiffeners are reinforced on the surface of the ceramic-rich side,
E0 = Em if the stiffeners are reinforced on the surface of the metal-rich.

E1 ¼
Rh=2

�h=2

Ec þ Ecm
2zþh
h

� �kh i
dz ¼ hEm þ hEcm

kþ1 ;

E2 ¼
Rh=2

�h=2

z Ec þ Ecm
2zþh
h

� �kh i
dz ¼ h2Ecm

1
kþ2 � 1

2kþ2

� �
;

E3 ¼
Rh=2

�h=2

z2 Ec þ Ecm
2zþh
h

� �kh i
dz ¼ h3Em

12 þ h3Ecm
2ðkþ1Þðkþ2Þðkþ3Þ :

(9)

Stability equations of FGM annular spherical shells may be established by the adjacent
equilibrium criterion. It is assumed that equilibrium state of the FGM annular spherical
shells and under applied load is represented by displacement components u0, v0, w0.
The state of adjacent equilibrium differs from that of stable equilibrium by u1, v1, w1

and the total displacement components of a neighboring configuration are:

u ¼ u0 þ u1; v ¼ v0 þ v1; w ¼ w0 þ w1: (10)

Similarly, the force resultants of a neighboring state are represented by:

Nr ¼ N 0
r þ N 1

r ; Nh ¼ N0
h þ N 1

h ; Nrh ¼ N0
rh þ N 1

rh;

Mr ¼ M 0
r þM 1

r ; Mh ¼ M0
h þM1

h ; Mrh ¼ M 0
rh þM 1

rh:
(11)

where terms with 0 subscripts represent the force and moment resultants corresponding
to u0, v0, w0 displacements and those with 1 subscripts represent the portions of incre-
ments corresponding to u1, v1, w1.

The equilibrium state and the state of adjacent equilibrium have satisfied all of
Equations (3)–(7), subtract the corresponding equations and retain the linear terms have
been obtained the stability of linear equations, which written as

e01r ¼ @u1
@r � w1

R ;

e01h ¼ 1
r

@v1
@h þ u1

� �� w1
R ;

c01rh ¼ r @
@r

v1
r

� �þ 1
r
@u1
@h ;

v1r ¼ @2w1
@r2 ;

v1h ¼ 1
r
@w1
@r þ 1

r2
@2w1

@h2
;

v1rh ¼ 1
r
@2w1
@r@h � 1

r2
@w1
@h :

(12)

the nonlinear equilibrium equations are:

@N1
r

@r þ 1
r
@N1

rh
@h þ N1

r
r � N1

h
r ¼ 0; (13)

@N1
h

r@h þ
@N1

rh
@r þ 2N1

rh
r ¼ 0; (14)

@2M1
r

@r2 þ 2
r
@M1

r
@r þ 2

@2M1
rh

r@r@h þ 1
r2

@M1
rh

@h

� �
þ 1

r2
@2M1

h

@h2
� 1

r
@M1

h
@r þ 1

R ðN1
r þ N 1

h Þ
þN0

r
@2w1
@r2 � 2N 0

rh
1
r2

@w1
@h � @2w1

r@r@h

� �
þ N 0

h
1
r
@w1
@r þ 1

r2
@2w1

@h2

� �
� k1w1 þ k2Dw1 ¼ 0:

(15)

where the force and moment resultants for the state of stability are given by
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N 1
r ¼ A11 þ E0A1

s1

� �
e01r þ A12e01h � B11 þ C1ð Þv1r � B12v1h;

N 1
h ¼ A12e01r þ A22 þ E0A2

s2

� �
e01h � B12v1r � B22 þ C2ð Þv1h;

N 1
rh ¼ A66c01rh � 2B66v1rh;

M 1
r ¼ B11 þ C1ð Þe01r þ B12e01h � D11 þ E0I1

s1

� �
v1r � D12v1h;

M 1
h ¼ B12e01r þ B22 þ C2ð Þe01h � D12v1r � D22 þ E0I2

s2

� �
v1h;

M 1
rh ¼ B66c01rh � 2D66v1rh:

(16)

The considered FGM annular spherical shells are assumed to be subjected to combina-
tion of external pressure q (Pascal) uniformly distributed on the outer surface and uni-
formly compressive load p (Pascal) acting on the two end edges in the tangential
direction to meridian of the shells. Therefore, the pre-buckling state will be symmetric
and determined by membrane forces N 0

r ; N0
h and N0

rh ¼ 0. Projecting all external and
internal forces acting on an element of the annular shell onto its axis of revolution
yields [15]:

pr0ph sinu0 þ prN0
r sinuþ

Zp

0

Zu

u0

qR cosu sinudhRdu ¼ 0; (17)

and onto the z-direction of the shells yields:

N0
r

R1
þ N 0

h

R2
þ q ¼ 0; (18)

in which r0 = R sin φ0, r = Rsin φ, R1 = R2 = R.
Performing some calculation leads to:

N 0
r ¼ � qR

2 1� sin2 u0

sin2 u

� �
� ph r0 sinu0

R sin2 u
;

N 0
h ¼ �N 0

r � Rq ¼ � qR
2 1þ sin2 u0

sin2 u

� �
þ ph r0 sinu0

R sin2 u
;

(19)

and replacing sinu0 ¼ r0
R ; sinu ¼ r1

R ;yields:

N 0
r ¼ �qR

r2 � r20
� �

2r2
� ph

r20
r2
; N0

h ¼ �qR
r2 þ r20
� �

2r2
þ ph

r20
r2
; N0

rh ¼ 0: (20)

Substitution of Equations (12), (16) and (20) into Equations (13)–(15) gives stability
equations in terms of displacement increments as:

l11ðu1Þ þ l12ðv1Þ þ l13ðw1Þ ¼ 0; (21)

l21ðu1Þ þ l22ðv1Þ þ l23ðw1Þ ¼ 0; (22)

l31ðu1Þ þ l32ðv1Þ þ l33ðw1Þ þ ql34ðw1Þ þ pl35ðw1Þ þ k1l36ðw1Þ þ k2l37ðw1Þ ¼ 0; (23)

where the operators lij denote the corresponding expressions with variables. The bound-
ary conditions in this case, are expressed by:

w1 ¼ 0; M 1
r ¼ 0; N1

r ¼ 0; N1
rh ¼ 0; at r ¼ r0 (24)

From boundary conditions (24) approximate solutions for Equations (21)–(23) are
assumed as:

6 V.T.T Anh et al.
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u1 ¼ U cos mp r�r0ð Þ
r1�r0

sin nhð Þ;
v1 ¼ V sin mp r�r0ð Þ

r1�r0
cos nhð Þ;

w1 ¼ W sin mp r�r0ð Þ
r1�r0

sin nhð Þ:
(25)

where m, n are numbers of half waves in meridional and circumferential directions,
respectively.

Due to r0 ≤ r ≤ r1 and for sake of convenience in integration, Equations (21) and
(22) are multiplied by r2and Equation (23) by r3.

Subsequently, introduction of solutions (24) into obtained equations and applying
Galerkin method for the resulting equation, we have:

Rr1
r0

Rp
0
R1 cos

mp r�r0ð Þ
r1�r0

sin nhð Þrdrdh ¼ 0;

Rr1
r0

Rp
0
R2 sin

mp r�r0ð Þ
r1�r0

cos nhð Þrdrdh ¼ 0;

Rr1
r0

Rp
0
R3 sin

mp r�r0ð Þ
r1�r0

sin nhð Þrdrdh ¼ 0:

(26)

where R1, R2, R3 are the left-hand sides of Equations (21)–(23) after these equations are
multiplied by r2, r,2and r3, respectively, and substituted into solutions (24), we obtain
the following equations:

a11U þ a12V þ a13W ¼ 0;
a21U þ a22V þ a23W ¼ 0;

a31U þ a32V þ a33 þ qa34 þ pa35 þ k1a36 þ k2a37ð ÞW ¼ 0;
(27)

where the details of coefficients aij may be found in Appendix 1.
Because the solutions (24) are nontrivial, the determinant of coefficient matrix of

Equations (27) must be zero

a11 a12 a13
a21 a22 a23
a31 a32 a33 þ qa34 þ pa35 þ k1a36 þ k2a37ð Þ

������
������ ¼ 0 (28)

Solving Equation (28) for p and q yields:

qa34 þ pa35 ¼
a31½ a12a23 � a13a22ð Þ þ a32 a13a21 � a11a23ð Þ
þ a33 þ k1a36 þ k2a37ð Þ a11a22 � a12a21ð Þ�

a12a21 � a11a22
(29)

Equation (29) is used for determining the buckling loads of FGM annular spherical
shells under uniform compressive load, external pressure, and combined loads. For
given values of the material and geometrical properties of the shells, critical buckling
loads are determined by minimizing loads with respect to values of m; nð Þ.

By introducing parameter s ¼ p
q, Equation (29) becomes:

q ¼
a31½ a12a23 � a13a22ð Þ þ a32 a13a21 � a11a23ð Þ
þ a33 þ k1a36 þ k2a37ð Þ a11a22 � a12a21ð Þ�

a12a21 � a11a22ð Þ a34 þ a35sð Þ (30)
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4. Results and discussion

The linear stability of eccentrically stiffened functionally graded annular spherical shell
is analyzed in this section. The shell consists of aluminum (metal) and alumina
(ceramic) with the Young modulus of Aluminum Em = 70 × 109 Pa, and alumina
Ec = 380 × 109 Pa. The Poisson ratio is chosen to be v = 0.3 for simplicity. To illustrate
the present approach, consider a FGM annular spherical shell with and without eccen-
trical stiffeners. The geometric parameters of annular and stiffeners considered here are
[15] d1 ¼ d2 ¼ 0:002m; h1 ¼ h2 ¼ 0:005m; R ¼ 2m. Unless otherwise specified, the
inside stiffeners of the shell is ceramic-rich and the outside stiffeners is metal-rich. In
case of no mention of the inside or outside stiffeners, mean was calculated for the
inside stiffener of ceramic.

In which r0
R ¼ 1

20

�
; r1

R ¼ 0:5; R ¼ 2m; d1 ¼ d2 ¼ 0:002m; h1 ¼ h2 ¼ 0:005m;
k1 ¼ 0; k2 ¼ 0; n1 ¼ n2 ¼ 30Þ, (·)* donate the buckling mode shape m; nð Þ and in
case without stiffeners A1 = A2 = I1 = I2 = 0.

Table 1 presents the critical buckling load of shell with and without eccentrical
stiffeners under external pressure. The results show that the shell reinforced by the stiff-
eners has a great influence on stability of annular spherical shell under radial pressure.
With the same input parameters, the efficiency of the stiffeners increased when the ratio
R/h or volume fraction index k increased.

The effects of ratio r0/R and r1/R on the critical load pcr and qcr of the FGM annu-
lar spherical shell with and without eccentrical stiffeners under compressive load and
external pressure are shown in Tables 2 and 3. Obviously, the compression load and
the external pressure of eccentrically stiffened FGM annular spherical shell increased
when the ratio r1/R increases and r0/R decreases.

Tables 4 and 5 respectively indicate the influence of the elastic foundation
k1; k2ð Þon the critical loads pcr and qcr of the eccentrically stiffened FGM annular
spherical shell. Notice that with the increased value of the k1 N/m3

� � ¼
0� 107; 2:5� 107; 5� 107ð Þ and unchanged value of the k2, or the reverse, the
increased value of the k2 N/mð Þ ¼ 0� 105; 2:5� 105; 5� 105ð Þ and unchanged value
of the k1, the critical load values increase.In case k1 ¼ k2 ¼ 0ð Þ the value of the critical
load is minimal and in case k1 ¼ 5� 107 N/m3; k2 ¼ 5� 107 N/m the largest.

Tables 6 and 7 show the critical loads pcr; qcr of the shell. Notice that the value of
the critical load of the inside stiffeners are larger than the critical load of the outside
stiffeners. This is understandable because the inside stiffeners of the shell is ceramic-
rich and the outside stiffeners is metal-rich and the ceramic module of elasticity greater
than the metal. With the same of the number stiffeners ns ¼ 30ð Þ;the values of critical

Table 1. The critical buckling load qcr MPað Þ of the FGM annular spherical shell under external
pressure.

k

R/h = 800 R/h = 1000 R/h = 1200

Without
stiffeners

With
stiffeners

Without
stiffeners

With
stiffeners

Without
stiffeners

With
stiffeners

0.2 0.523 (1, 23) 1.727 (1, 13) 0.381 (1, 16) 1.321 (1, 11) 0.122 (1, 19) 1.131 (1, 11)
1 0.334 (1, 13) 1.245 (1, 9) 0.146 (1, 14) 1.025 (1, 9) 0.076 (1, 14) 0.87 (1, 10)
5 0.109 (1, 11) 0.812 (1, 9) 0.04 (1, 11) 0.678 (1, 9) 0.03 (1, 13) 0.589 (1, 9)
10 0.03 (1, 11) 0.728 (1, 9) 0.01 (1, 9) 0.605 (1, 9) 0.01 (1, 11) 0.52 (1, 8)*

*indicates mode shape (m, n) of minimum buckling load of the stiffened shell.
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load in the case of ring-stiffened shell is the largest of the three cases of stiffener
arrangement (stringer, ring, orthogonal).

The effect of stiffener number on critical loads pcr; qcr is shown in Tables 8, 9 and
Figures 2, 3.

Table 7. Effect of stiffeners arrangement on critical load qcr MNð Þ, k ¼ 1; R=h ¼ 1000;ð
r1=R ¼ 0:3; R=r0 ¼ 20; k1 ¼ 0; k2 ¼ 0Þ.
qcr MNð Þ Outside Inside

Un-stiffened 0.2772 (1, 5) 0.2772 (1, 5)
Stringer n1 ¼ 30ð Þ 0.6979 (1, 4) 0.7007 (1, 4)
Ring n2 ¼ 30ð Þ 0.7261 (1, 4) 0.8259 (1, 4)
Orthogonal n1 ¼ n2 ¼ 15ð Þ 0.7124 (1, 4) 0.7704 (1, 4)

Table 5. Influences of elastic foundation on the critical load qcr MNð Þ of the shell external
pressure k ¼ 1; R=h ¼ 1000; r1=R ¼ 0:3; R=r0 ¼ 20ð Þ.
k2(N/m)

0 × 105 1 × 105 2.5 × 105 5 × 105k1(N/m
3)

0 × 107 0.8361 (1, 5) 0.9316 (1, 5) 1.0748 (1, 5) 1.3135 (1, 5)
1 × 107 0.8832 (1, 5) 0.9786 (1, 5) 1.1218 (1, 5) 1.3605 (1, 5)
2.5 × 107 0.9537 (1, 5) 1.0491 (1, 5) 1.1924 (1, 5) 1.4311 (1, 5)
5 × 107 1.0712 (1, 5) 1.1667 (1, 5) 1.3099 (1, 5) 1.5486 (1, 5)

Table 6. The effect of stiffener arrangement on critical load pcr GPað Þ, k ¼ 1; R=h ¼ 1000;ð
r1=R ¼ 0:3; R=r0 ¼ 20Þ.
pcr textGPað Þ Outside Inside

Un-stiffened 18.7728 (1, 1) 18.7728 (1, 1)
Stringer n1 ¼ 30ð Þ 20.3599 (1, 1) 20.9102 (1, 1)
Ring n2 ¼ 30ð Þ 21.7343 (1, 1) 27.6560 (1, 1)
Orthogonal n1 ¼ n2 ¼ 15ð Þ 21. 0549 (1, 1) 24.4792 (1, 1)

Table 4. Influences of elastic foundation on the critical load pcr GPað Þ of the shell under
compressive load R ¼ 2; k ¼ 1; R=h ¼ 1000; r1=R ¼ 0:3; R=r0 ¼ 20ð Þ.
k2(N/m)

0 × 105 1 × 105 2.5 × 105 5 × 105k1(N/m
3)

0 × 107 28.208 (1, 1) 29.7972 (1, 1) 32.1801 (1, 1) 36.1518 (1, 1)
1 × 107 31.1018 (1, 1) 32.6904 (1, 1) 35.0734 (1, 1) 39.0450 (1, 1)
2.5 × 107 35.4416 (1, 1) 37.0303 (1, 1) 39.4133 (1, 1) 43.3849 (1, 1)
5 × 107 42.6748 (1, 1) 44.2635 (1, 1) 46.6464 (1, 1) 50.6181 (1, 1)
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Both tables show that the value of the critical load increases when the stiffener
number increased and vice versa. The increasing trend of critical load curve with
increasing the stiffener number can be seen in figures 2 and 3.

Table 8. Effect of stiffeners number on critical load pcr GPað Þ, k ¼ 1; R=h ¼ 1000;ð
r1=R ¼ 0:3; R=r0 ¼ 20; k1 ¼ 0; k2 ¼ 0Þ.

Stiffener number n1 ¼ n2ð Þ
pcr GPað Þ

Outside Inside

10 20.5055 (1, 1) 21.7095 (1, 1)
20 20.7814 (1, 1) 23.1253 (1, 1)
30 21. 0549 (1, 1) 24.4792 (1, 1)
40 21.3261 (1, 1) 25.7752 (1, 1)
50 21.5949 (1, 1) 27.0172 (1, 1)

Table 9. Effect of stiffener number on critical load qcr MNð Þ, k ¼ 1; R=h ¼ 1000;ð
r1=R ¼ 0:3; R=r0 ¼ 20; k1 ¼ 0; k2 ¼ 0Þ.

Stiffener number n1 ¼ n2ð Þ
qcr MNð Þ

Outside Inside

10 0.7024 (1, 4) 0.7240 (1, 4)
20 0.7074 (1, 4) 0.7483 (1, 4)
30 0.7124 (1, 4) 0.7704 (1, 4)
40 0.7173 (1, 4) 0.7909 (1, 4)
50 0.7220 (1, 4) 0.8100 (1, 4)

10 20 30 40 50
20

22

24

26

28
Outside stiffeners
Inside stiffeners

( )crp GPa

Stiffeners number 1 2n n

Figure 2. Effect of stiffeners number on critical load pcr GPað Þ.
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5. Concluding remarks

The present paper aims to propose a linear analysis of eccentrically stiffened FGM annular
spherical shell on elastic foundations under uniform external pressure and compressive
load. Approximate solutions are assumed to satisfy the simply supported boundary condi-
tion and Galerkin method is applied to obtain closed-form solutions of bifurcation type of
linear stability. The effects of material, geometrical properties, elastic foundations, combi-
nation of external pressure and stiffener arrangement, stiffener number on the linear stabil-
ity of eccentrically stiffened FGM annular spherical shell are analyzed and discussed.
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Appendix 1.

a11 ¼
n2pA66 r20 � r21

� �
8

þp2m2 3pA11 r31 þ r20r1þ r0r21 þ r30
� �þ 2E0A1n1 r21 þ r0r1þ r20

� �	 

48 �r1þ r0ð Þ þ

þp r20 � r21
� �

A11þ 2A22ð Þ
16

þpE0A2 r20 � r21
� �
8s2

;

a12 ¼ � 1

12
p2mn r21 þ r0r1 þ r20

� �
A12 þ A66ð Þ � n �r1 þ r0ð Þ2 A12 þ 2A66 þ A22ð Þ

8m

� n �r1 þ r0ð Þ2E0A2

8ms2
;

a13 ¼ n2p2m r1þ r0ð Þ B12þ2B66ð Þ
8

þp3m3 3pB11 r31þ r20r1þ r0r21þ r30
� �þ2E0A1z1n1 r21 þ r0r1þ r20

� �	 

48 �r1þ r0ð Þ2

þ �mp 3p r31þ r20r1þ r0r21þ r30
� �

A11þA12ð Þþ2E0A1n1 r21 þ r0r1þ r20
� ��3pR 2B22þ2C2þB11ð Þ r1þ r0ð Þ	 


48R

þ � r1þ r0ð Þ �r1þ r0ð Þ2 2A22þA11þ3A12ð Þ
16

� r1þ r0ð Þ �r1þ r0ð Þ2E0A2

8mRs2
;

a21 ¼ � p2mn r21 þ r0r1 þ r20
� �

A12 þ A66ð Þ
12

þ n �r1 þ r0ð Þ2 A12 � A22ð Þ
8m

� nE0A2 �r1 þ r0ð Þ2
8ms2

;

a22 ¼
n2p r20 � r21

� �
A22

8
þ p3m2 r1 þ r0ð Þ r20 þ r21

� �
16 �r1 þ r0ð Þ þ pA66 r20 � r21

� �
16

þ n2pE0A2 r20 � r21
� �

8s2
;
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a23 ¼ � pn3 �r1 þ r0ð Þ B22 þ C2ð Þ
4

� m2np3 r21 þ r0r1 þ r20
� �

B12 þ 2B66ð Þ
12 �r1 þ r0ð Þ

� n �r1 þ r0ð Þ3 A22 þ A12ð Þ
8pm2R

þ pnE0A2 r30 � r31
� �

12Rs2
þ � nE0A2 �r1 þ r0ð Þ3

8pm2Rs2

þ pn �r1 þ r0ð Þ 2 A22 þ A12ð Þ r21 þ r0r1 þ r20
� �þ 3R B12 � B22 � C2ð Þ	 


24R
;

a31¼mn2p2

12
B12þ2B66ð Þ r21þr0r1þr20

� ��n2 �r1þr0ð Þ2
8m

B12þ2B66�B22�C2ð Þ

�E0A2 �r1þr0ð Þ2 r21þr0r1þr20
� �

8mRs2

þþ mp
160R

�8p A11þA12ð Þ r40þr30r1þr20r
2
1þr0r31þr41

� ��5E0A1n1 r31þr20r1þr0r21þr30
� �þ

þ5RE0A1n1z1 r1þr0ð Þþ20pRB12 r21þr0r1þr20
� �� �

þþ �r1þr0ð Þ2 4p r21þr0r1þr20
� �

2A11þA12�A22ð Þþ3E0A1n1 r1þr0ð Þ�6pRB12

	 

32pmR

�3 �r1þr0ð Þ4 2A11þA12�A22ð Þ
16p2m3R

þþp3m3 8pB11 r40þr30r1þr20r
2
1þr0r31þr41

� �þ5E0A1n1z1 r31þr20r1þr0r21þr30
� �	 


160 �r1þr0ð Þ2

þ3E0A2 �r1þr0ð Þ4
16p2m3Rs2

;

a32 ¼ �pn3

8
r20 � r21
� �

B22 þ C2ð Þ � p3nm2 r1 þ r0ð Þ r20 þ r21
� �

B12 þ 2B66ð Þ
16 �r1 þ r0ð Þ

� n r20 � r21
� � �r1 þ r0ð Þ2 A12 þ A22ð Þ

16Rpm2

þ np r20 � r21
� �

A12 þ A22ð Þ r20 þ r21
� �þ 3R B12 þ 2B66ð Þ	 

16R

þ pnE0A2 r40 � r41
� �

16Rs2

� 3nE0A2 r20 � r21
� � �r1 þ r0ð Þ2
16Rpm2s2

;

a33¼
m2n2p3 r20þr0r1þr21

� �
2D66þD12ð Þ

6 �r1þr0ð Þ þn2 �r1þr0ð Þ3 B12þB22þC2ð Þ
4pm2R

þn4pD22 �r1þr0ð Þ
4

þ �r1þr0ð Þ5E0A2

8p3m4R2s2
þþpE0A2 �r1þr0ð Þ r41þr0r31þr20r

2
1þr30r1þr40

� �
20R2s2

þ3 �r1þr0ð Þ5 A11þA22þ2A12ð Þ
8p3m4R2

þE0A2 r20þr0r1þr21
� � �r1þr0ð Þ3

4pm2R2s2
þ�pn2 �r1þr0ð Þ

24R
4 B12þB22þC2ð Þ r20þr0r1þr21

� �þ
þ3R 4D66þ8D12�D22ð Þ

� �

þ p4m4

160 �r1þr0ð Þ3
8pD11 r40þr0r31þr41þr30r1þr20r

2
1

� �þ
þ5E0I1n1 r30þr0r21þr20r1þr31

� �� �

þ� p2m2

160R �r1þr0ð Þ
10E0A1z1n1 r30þr0r21þr20r1þr31

� ��20pRD12 r20þr0r1þr21
� �

þ16p B12þB11ð Þ r40þr0r31þr41þr30r1þr20r
2
1

� ��5Rn1E0I1 r1þr0ð Þ
� �

þ 2n2þ1ð Þn2pE0I2 �r1þr0ð Þ
4s2

þþ �r1þr0ð Þ
160R2

20pR B12�B22�C2þ2B11ð Þ r20þr0r1þr21
� �þ5E0A1n1 r30þr0r21þr20r1þr31

� �þ
þ8p A11þA22þ2A12ð Þ r40þr0r31þr41þr30r1þr20r

2
1

� �þ10E0A1n1z1R r1þr0ð Þ�30pR2D12

� �

þ� �r1þr0ð Þ3
32p2m2R2

8p A11þA22þ2A12ð Þ r20þr0r1þr21
� �þ

þ6pR B12�B22�C2þ2B11ð Þþ3E0A1n1 r1þr0ð Þ
� �

;
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a34 ¼ � pRn2 �r1 þ r0ð Þ r21 þ r0r1 þ 4r20
� �
24

� R 2n2 þ 3ð Þ �r1 þ r0ð Þ3
322p

þ p3Rm2 3r31 þ 4r20r1 þ 6r0r21 þ 2r30
� �

120
þ�Rp �r1 þ r0ð Þ �r21 � r0r1 þ r20

� �
16

;

a35 ¼ hr20p �r1 þ r0ð Þ n2 þ 1ð Þ
4

� hr20m
2p3 r20 þ r0r1 þ r21

� �
12 �r1 þ r0ð Þ ;

a36 ¼ 3 �r1 þ r0ð Þ5
8m4p3

� �r1 þ r0ð Þ2 r30 � r31
� �

4m2p
þ p �r1 þ r0ð Þ5

20
;

a37 ¼
p r30 � r31
� �

8
� m2p3 r40 þ r20r

2
1 þ r0r31 þ r30r1 þ r41

� �
20 �r1 þ r0ð Þ

� 2n2 þ 3ð Þ �r1 þ r0ð Þ3
16pm2

� pn2 r30 � r31
� �
12

:

16 V.T.T Anh et al.
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