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The nonlinear stability of eccentrically stiffened functionally graded (FGM) annular spherical segment
resting on elastic foundations under external pressure is studied analytically. The FGM annular spherical
segment are reinforced by eccentrically longitudinal and transversal stiffeners made of full metal or
ceramic depending on situation of stiffeners at metal-rich or ceramic-rich side of the shell respectively.
Based on the classical thin shell theory, the governing equations of FGM annular spherical segments are
derived. Approximate solutions are assumed to satisfy the simply supported boundary condition of
segments and Galerkin method is applied to study the stability. The effects of material, geometrical
properties, elastic foundations, combination of external pressure and stiffener arrangement, number of
stiffeners on the nonlinear stability of eccentrically stiffened FGM annular spherical segment are ana-
lyzed and discussed. The obtained results are verified with the known results in the literature.
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1. Introduction

In recent years, many authors have focused on the static and
dynamic of eccentrically stiffened plate and shell structures be-
cause these structures usually reinforced by stiffening members to
provide the benefit of added load-carrying static and dynamic
capability with a relatively small additional weight penalty. In
additions, eccentrically stiffened plate and shell is a very im-
portant structure in engineering design of aircraft, missile and
aerospace industries. As a result, there are many researches on the
static and dynamic of eccentrically stiffened shell and plate
structures, especially structures made of composite material.

For the eccentrically stiffened plate, the elastic stability of ec-
centrically stiffened plates [1] was studied by Meiwen and Issam
by a finite element model. The formulation was based on the be-
havior of the plate-stiffener system and accounts for the different
neutral surfaces for bending in the x-z and y-z planes. Duc and
Cong [2] studied the nonlinear post-buckling of an eccentrically
stiffened thin FGM plate resting on elastic foundations in thermal
environments by using a simple power-law distribution. An ex-
perimental study on stiffened plates subjected to combined action
of in-plane load and lateral pressure is described in [3] by Shan-
mugam et al. The paper [4] presented a periodic concept in stif-
fened-thin-plates by applying Bloch's theorem. Through the es-
tablished dynamic equation for periodically stiffened-thin-plate
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(PSTP), the band gap of PSTP is calculated with the help of center-
finite-difference-method (CFDM) by Zhou et al.

Studies on the static and dynamics were carried out with ec-
centrically stiffened shallow shells made of laminated composite
material. For example, Li and Qiao [5] studied the nonlinear free
vibration and parametric resonance analysis for a geodesically-
stiffened anisotropic laminated thin cylindrical shell of finite
length subjected to static or periodic axial forces using the
boundary layer theory. In [6], by Sarmila, the finite element
method has been applied to analyze free vibration problems of
laminated composite stiffened shallow spherical shell panels with
cutouts employing the eight-noded curved quadratic iso-para-
metric element for shell with a three noded beam element for
stiffener formulation. For the composite stiffened laminated cy-
lindrical shells, in [7], by Li et al., a layerwise theory was used to
model the behavior of the composite laminated cylindrical shells,
and the eight-noded solid element is employed to discrete the
stiffeners, and then, based on the governing equations of the shells
and stiffeners, governing equation of the composite stiffened la-
minated cylindrical shells was assembled by using the compat-
ibility conditions to ensure the compatibility of displacements at
the interface between shells and stiffeners. Li and Yang [8] in-
vestigated the post-buckling of shear deformable stiffened an
isotropic laminated cylindrical shell under axial compression.
Formulation of the dynamic stiffness of a crossply laminated cir-
cular cylindrical shell subjected to distributed loads was studied
by Casimir et al. [9]. By using the commercial ANSYS finite element
software, Less and Abramovich [10] studied the dynamic buckling
of a laminated composite stringer stiffened cylindrical panel. Bich
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Nomenclature

k The volume fraction index (non-negative number)

w The deflection of the annular spherical shell

ky The Winkler foundation modulus

k, The shear layer foundation stiffness of Pasternak
model.

¢, &)  The normal strains

yrg The shear strain at the middle surface of the spherical
shell

% Xy» %, The changes of curvatures and twist

S1, Sy The distance between eccentrically longitudinal and

latitude stiffeners respectively

The cross-sectional area of eccentrically longitudinal

and latitude stiffeners respectively

d,, d,, h;, h, The width and height of eccentrically longitudinal

and latitude stiffeners respectively

The numbers of eccentrically longitudinal and latitude

stiffeners respectively

E, The Young's modulus of the stiffeners. E, = E, if the
stiffeners are reinforced at the surface of the ceramic-
rich, Ey=E, if the stiffeners are reinforced at the
surface of the metal-rich

A Ay

n, n

et al. [11] presented analytical approach to investigate the non-
linear dynamic of imperfect reinforced laminated composite plates
and shallow shells using the classical thin shell theory with the
geometrical nonlinearity in von Karman-Donnell sense and the
smeared stiffeners technique.

As well as know a functionally graded material (FGM) is a two-
component composite characterized by a compositional gradient
from one component to the other. In contrast, traditional compo-
sites are homogeneous mixtures, and they therefore involve a
compromise between the desirable properties of the component
materials. Since significant proportions of an FGM contain the pure
form of each component, the need for compromise is eliminated.
The properties of both components can be fully utilised. This is
mainly due to the increasing use of FGM as components of
structures in the advanced engineering. For FGM, many researches
focused on the static and dynamical analysis of stiffened shallow
shells. For example, recently, Duc et al. [12-19] has published
several studies on the eccentrically stiffened shell structures made
of FGM and the majority of these studies have been synthesized in
the book [28]. First example [12] Duc studied the nonlinear ther-
mal dynamic analysis of eccentrically stiffened S-FGM circular
cylindrical shells surrounded on elastic foundations using the
Reddy’s third-order shear deformation shell theory [13], presented
nonlinear mechanical, thermal and thermo-mechanical post-
buckling of imperfect eccentrically stiffened thin FGM cylindrical
panels on elastic foundations [14], investigated nonlinear dynamic
response of imperfect eccentrically stiffened doubly curved FGM
shallow shells on elastic foundations [15], presented nonlinear
post-buckling of imperfect eccentrically stiffened FGM double
curved thin shallow shells in thermal environments [16], studied
nonlinear response of imperfect eccentrically stiffened ceramic-
metal-ceramic S-FGM circular cylindrical shells surrounded on
elastic foundations and subjected to axial compression. Bich et al.
studied nonlinear post-buckling and dynamic of eccentrically
stiffened functionally graded shallow shells and panels [20,21],
besides a lot of other researchers by the same authors. In addition,
linear static buckling of FGM axially loaded cylindrical shell re-
inforced by ring and stringer FGM stiffeners has studied by Naja-
fizadeh et al. [22]. Accurate buckling solutions of grid-stiffened
functionally graded cylindrical shells under compressive and
thermal loads has studied by Sun et al. [23].

The annular spherical shell and annular spherical segment are
two of the special shapes of the spherical shells. An annular
spherical segment or an open annular spherical shell limited by
two meridians and two parallels of a spherical shell. It has become
popularly in engineering designs, but despite the evident im-
portance in practical applications, from the open literature that
investigations on the thermo-elastic, dynamic and buckling ana-
lysis of annular spherical segment is comparatively scarce. In ad-
dition, the special geometrical shape of this structure is a big

difficulty to find the explicit solution form. Can enumerate some
studies of annular spherical shell and segment as Bich and Phuong
[24] investigated the buckling analysis of FGM annular spherical
shells and segments subjected to compressive load and radial
pressure. Most recently, Anh et al. analyzed the nonlinear buckling
analysis of thin FGM annular spherical shells on elastic founda-
tions under external pressure and thermal loads in [25], the
nonlinear stability of axisymmetric FGM annular spherical shells
under thermo-mechanical load in [26,27] investigated the non-
linear stability of thin FGM annular spherical segment resting on
elastic foundations in thermal environment.

In this paper, the nonlinear analysis of eccentrically stiffened
FGM annular spherical segment shells is investigated. The seg-
ment-shells are reinforced by eccentrically longitudinal and
transversal stiffeners made of full metal or full ceramic depending
on situation of stiffeners at metal-rich side or ceramic-rich side of
the shell respectively. The paper analyzed and discussed the ef-
fects of material and geometrical properties, elastic foundations
and eccentrically stiffeners on the stability of the eccentrically
stiffened FGM annular spherical segment.

2. Functionally graded annular spherical shell and elastic
foundation

Consider a FGM annular spherical segment or a FGM open
annular spherical shell limited by two meridians and two parallels
of a spherical shell resting on elastic foundations with radius of
curvature R, base radii of lower and upper bases r, 1, respectively,
open angle of two meridional planes g and thickness h. The FGM
annular spherical segment reinforced by eccentrically longitudinal
and transverse stiffeners is subjected to external pressure ¢ uni-
formly distributed on the outer surface as shown in Fig. 1.

Assume that the FGM segment — shell is made from a mixture
of ceramic and metal constituents and the effective material
properties vary continuously along the thickness by the power law
distribution

k
2z+h h h
VC(Z)—( oh )-_ESZSE.
V@ =1 - V2. (1

in which subscripts m and c represent the metal and ceramic
constituents, respectively.

According to the mentioned law, the Young modulus can be
expressed in the form

2z+h
2h

k
E(z)=Em+Ecm( ),—gszsg.

@

where the Poisson ratio v is assumed to be constant v(z) = const
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Fig. 1. Configuration of a FGM annular spherical segment shells and eccentrically stiffened FGM annular spherical shell.

and E.,,, =E. - E,.
The reaction-deflection relation of Pasternak
2w 1ow 1 0%w

aw=22 4 Wy SV
o - ror 2 92

foundation
q, = kw — kbAaw, where
operator.

is a Laplace's

3. Theoretical formulations and stability analysis

For a thin annular spherical segment shells it is convenient to
introduce a variable r, referred as the radius of parallel circle with
the base of shell and defined by r =R sin ¢. Moreover, due to
shallowness of the shell it is approximately assumed that
cos¢ =1, Rdp = dr.

The strains at the middle surface and the change of curvatures
and twist are related to the displacement components u, v, w in
the ¢, 6, z coordinate directions (where ¢ and ¢ are in the mer-
idional and circumferential direction of the shells, respectively and
z is perpendicular to the middle surface positive inwards), re-
spectively, taking into account Von Karman — Donnell nonlinear
terms as [20,25].

goza—u—w+l(ﬂ)2 )(:aziw

"~ R 2\lor)’ T oo’
gozl(ﬂﬂ,)_ui(m)z Lo low 10w

" r\oo R 2r*\ o0 O ror 129’
o_ov_ lou_v Tlowow _1ow _dow
Ty Y0 T T T or a0 %0 Tore0 T 2a00 (3)

The nonlinear equilibrium equations of a perfect shell based on
the classical shell theory [20].
N, Ny N N
a 1 90 roor “4)

LNG + aNTH + 2Nr9 =0,
rof or r 5)
°M; 2 M, My 1M 10°M, 10M, 1
STl T S e - S SN+ N,
o2 roor ( rorod = r2 90 2 2 T or R( -+ Np)

+ Ny

o*w Tow o*w low 10°w
6| Nl -+ 55—

o2 200  roroo roar | rZ gg?

+q —kw + k,Aw = 0. 6)

The constitutive stress-strain equations by Hooke law for the
shell material are omitted here for brevity. The contribution of
stiffeners can be accounted for using the Lekhnitskii smeared
stiffeners technique [12-15,28]. Then integrating the stress-strain
equations and their moments through the thickness of the shell,
the expressions for force and moment resultants of an eccen-
trically stiffened FGM annular spherical segment are obtained.

[ E
[An + %) A1z 0 —(B11+Q) -By 0
N, E,
Nr A]z [Azz + %] 0 —B]z —(322 + Cz) 0
o 2
Nig | _ 0 0 Ase 0 0 —2Bgg
M; Eoh
B11+ G B 0 —|Dy1+ — -D 0
M, (Bi1+G) 12 ( LR 12
Myp Egl
B]z (322 + Cz)e 0 —D]z —(Dzz + SL;] 0
0 0 Bgs 0 0 ~2Dgg |
e
e
"
Xr
Xo
Xro @)
where Ay, By, Dy, ( i,j=1,2,6) are extensional, coupling and
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bending stiffness of the shell without stiffeners:

=A, =0 _: = B . =_h .
Al]_AZZ_l_DZ‘ A12_l_y2’ A66_2(1+,/)'
Ey . Ew E. .
311=Bzz=1722v B1z=1sz' 66 = 30277
E Eyv ., E .
Dy =Dy, = _32v D12=ﬁ, Des = 5525
with
2nr Ry, —Rpy R T . 1),
§;=="—,5,=——2 = —|arsin— — arsin> |;
n n, n, R R
= E()A1Zl: G = EOAZZ2;
51 S2
dih} hy+h d,h; hy+h
L=+ Azl 7= L="22 1 Az3 2, = 21—
1T T AT T b sy T s =T ®)
hj2 hE,,
E = E. +E dz = hE, +
1 »/h/|: Cm( ):| +]

h/2 h 1
E,= E+E dz = hE _1 )
2 /h/zz[ <t ( h )] ‘m(k+2 2k+2)

I 22+ h) W’E, WE,,
E;= JE +E dz =
3 [h/zz [ ct ‘”‘( h ] ] =12 T2k hik+ 2)(k +3) (9

Substitution of (Eqgs. (3) and 7) into (Egs. (4)-6) gives 3 non-
linear equations of u, v, w.

In this study, an analytical approach is used to investigate the
nonlinear stability of FGM annular spherical segment resting on
elastic foundations under external pressure. The FGM annular
spherical segment is assumed to be simply supported along the
periphery and subjected to external pressure uniformly dis-
tributed on the outer surface of the shell. Depending on the in-
plane behavior at the edge of boundary conditions will be con-
sidered in cases the edges are simply supported, immovable and
movable.

Case A: The edges of the annular spherical segment are simply
supported and movable. For this case, the boundary conditions are
expressed by

w=0, M,=0, N,=0, Ny=0,atr=r,
w=0, M,=0, Ny=0, Ny,=0,at6=0,p (10)

From boundary conditions (10) approximate solutions for the
nonlinear equations of u, v, w are assumed as

u=U cos ma(r = 1) sin( n—ﬂa):
n—To p
v =V sin M COS(@):
n-To p
w = W sin Msin( n—ﬂg)
n-r p 11

where m, n are numbers of half waves in meridional and cir-
cumferential direction, respectively.

Subsequently, introduction of solutions (11) into obtained
3 nonlinear equations of u, v, w, we obtain the equations, which
have form

Riu,v,w)=0
Ryu,v,w)=0
Ry(u, v, w) =

Applying Galerkin method for the resulting, that are

/ / Rico )sm(na)rdrde 0;

f f R,sin Mcos(nﬁ)rdrde =0,
0 -

f f Rysin )sm(ne)rdrde 0.

12)
we obtain the following equations
ayU + a,V + a3W + a W2 = 0,
ao1U + @5,V + ay3W + apW? = 0,
31U + a3,V + a33W + (a34U + G35V + ki3 + kytlz)
W + a3gW? + azqW? + a310q = 0, 13)

where the detail of coefficients a; notation may be found in Ap-
pendix. A.

Eq. (13) allows determine the deflection curve equation with
form

3 2
q =W + quW* + G3W + (Gaky + Gsko)W. (14
with
Gy = G34by + G35by + a39,

—0310
Gy = A31by + A3yby + A3aby + A35bs + a5,

—0310

G = 3;by + azybs + a3 Ca = Gz6 .
3= ————————, (4= ;

—0310 —0310
Co— Gz7 . b, = Gy30p; — Gyslyp b, — G140y — Gp4ly)
15 = 1= v Dy ==

G1201 — y10p (1201 — 10y
_ W40y — Gyglyq,
(1107 — Ayp0q

—0310
b, = S3%1 ~ O3ty
Q1103 — Aqp0y1

Eq. (14) is used for determining the nonlinear stability of ec-
centrically stiffened functionally graded annular spherical segment
under uniform external pressure in case when the edges of the
annular spherical segment are simply supported and movable. For
given values of the material and geometrical properties of the FGM
annular segment, critical loads are determined by minimizing
loads with respect to values of m, n.

Case B: The edges of the annular spherical segment are simply
supported and immovable. For this case, the boundary conditions
are expressed by

u=0, w=0, M,=0, N,=0, Ny=0,atr=r
w=0, My;=0, Ny=0, Ny,=0,at6=0,p (15)

With boundary conditions (15), the approximate solutions for
the nonlinear equations of u, v, w are assumed as

7"171’(1’ ) COS[ @):
n-Tro p

u = Usin

mz(r —r
v =V cos M sin(n—”e);
n—r p
w = W sin Msin( n_”g)
n-r p (16)

Completely similar to the first case, the equation allows de-
termining load deflection curve of the similar form

q =g W +g,W + g, W+ (ng] + 8 15ko)W. a7

with
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Table 1
The critical loads g, x 10(MPa) of eccentrically stiffened functionally graded an-
nular spherical segment under uniform external pressure.

k Phuong [20] Case A Case B
0 1.3859 1.3613 1.4062
1 0.7485 0.7378 0.7503
5 0.4508 0.4317 0.4632

_ tagly + t3sly + b3,

_ t31ly + t3oly + tgly + t3sly + tg
1= 2 T ,

—l310 —l310
_ tyily + t3ols + B33, _ b
13 = _t ’ 14~ _¢
310 310

t37 c L= t13t22 - f23t]2 . I, = f14f22 - t24t12 .

g]5 = = ’
t1aty1 — by

—typ" | iy = bty

l — t13t21 - t23t11 : l — t14t21 - t24t11;
tityy — tabyy tityy — tialyy
and the detail of coefficients t; are given in Appendix. B.

Eq. (17) is used for determining the nonlinear stability of ec-
centrically stiffened functionally graded annular spherical segment
under uniform external pressure in case when the edges of the
annular spherical segment are simply supported and immovable.

4. Results and discussion

The nonlinear stability of eccentrically stiffened functionally
graded annular spherical segment is analyzed in this section. The
shell consists of aluminum (metal) and alumina (ceramic) with the
Young modulus of Aluminum is E,, = 70 x 10° Pa, and alumina
E. =380 x 10° Pa. The Poisson's ratio is chosen to be v = 0.3 for
simplicity.

4.1. Comparison study

To validate the proposed approach, the critical loads of eccen-
trically stiffened functionally graded annular spherical segment

Table 2

with elastic foundations are compared with the known results in
the literature. There has not been any publication from the open
literature about eccentrically stiffened annular spherical segment.
As such, the study is conducted a comparison with the critical load
of functionally graded annular spherical segment under uniform
external pressure [24] by Phuong in the same conditions and
geometrical parameters, the results are presented in Table 1. The
critical load changes are calculated by closed-form relation (14)
and (17) with

R/h =800, §=x/6,1R=02, r,/R=05, (m,n)=(5,1).

As can be seen in Table 1, the good agreement in the compar-
ison verified the accuracy of the present approach in this paper.

4.2. The influence of the initial conditions and geometry parameters
on nonlinear stability of FGM annular spherical segment with ec-
centrically stiffened

To illustrate the present approach, consider a FGM annular
spherical segment with eccentrically stiffened. The geometric
parameters of annular and stiffeners considered here are [24]
d; =d, =0.002m, h;y=h,=0.005m, n; = n, =30, R=2m. Unless
there wise specified, the inside stiffeners of the shell is ceramic-
rich and the outside stiffeners is metal-rich. In case no mention
the inside or outside stiffeners mean is calculated for the inside
stiffeners in ceramic.

Table 2 show the effects of open angle g, volume fraction index
k and ratio R/h on the critical loads qcr(MPa)of annular spherical
segments under external pressure without elastic foundations. It is
evident that critical loads decrease when the volume of these
parameter increases in case B. ie in cases when the edges of the
annular spherical segment are simply supported and immovable,
but in case A when the edges of the annular spherical segment are
simply supported and movable, the critical loads only decrease
when the volume of these parameter increases when the open
angle g < z/2, when g > z/2 the critical loads decrease when the
volume of R/h decrease.

Effects of the elastic foundations (K;, K;) and mode (m, n) on the
critical loads ¢, of FGM annular spherical segments are shown in

Effects of open angle g, volume fraction index k and ratio R/h on the critical loads q(r(MPa)of annular spherical segments under without elastic foundations (case A).

R/h p z[15 x[12 z/6 z/3 x[2 2zx(3
k 1p/R = 0.05, /R =0.5, (m, n) =(5, 1)
800 0 0.6856(A) 0.8626(A) 1.3955(A) 1.3667(A) 1.0889(A) 0.8134(A)
0.9228(B) 1.2321(B) 2.0931(B) 2.3102(B) 2.3382(B) 2.3467(B)
1 0.3292(A) 0.4067(A) 0.6531(A) 0.6575(A) 0.5405(A) 0.4199(A)
0.3616(B) 0.5080(B) 0.9397(B) 1.0675(B) 1.0873(B) 1.0938(B)
5 0.1814(A) 0.2168(A) 0.3388(A) 0.3432(A) 0.2857(A) 0.2256(A)
0.1927(B) 0.2650(B) 0.4818(B) 0.5474(B) 0.5578(B) 0.5613(B)
1000 0 0.4738(A) 0.6259(A) 1.0635(A) 1.0482(A) 0.8326(A) 0.6182(A)
0.6502(B) 0.9014(B) 1.5997(B) 1.7824(B) 1.8071(B) 1.8147(B)
1 0.2366(A) 0.3082(A) 0.5206(A) 0.5245(A) 0.4273(A) 0.3276(A)
0.2684(B) 0.3927(B) 0.7554(B) 0.8631(B) 0.8798(B) 0.8852(B)
5 0.1289(A) 0.1635(A) 0.2706(A) 0.2742(A) 0.2256(A) 0.1752(A)
0.1403(B) 0.2027(B) 0.3884(B) 0.4448(B) 0.4537(B) 0.4567(B)
1200 0 0.3610(A) 0.4925(A) 0.8624(A) 0.8530(A) 0.6764(A) 0.5005(A)
0.5020(B) 0.7130(B) 1.2992(B) 1.4556(B) 1.4772(B) 1.4839(B)
1 0.1855(A) 0.2502(A) 0.4355(A) 0.4387(A) 0.3553(A) 0.2701(A)
0.2168(B) 0.3244(B) 0.6360(B) 0.7283(B) 0.7425(B) 0.7472(B)
5 0.1005(A) 0.1325(A) 0.2272(A) 0.2299(A) 0.1877(A) 0.1442(A)
0.1123(B) 0.1672(B) 0.3284(B) 0.3772(B) 0.3849(B) 0.7472(B)

(A): case A; (B): case B
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Table 3

Effects of the elastic foundations (K, Ky) and mode (m, n) on the critical loads g,(MPa) of annular spherical segments under external pressure.

&, ) (0,0) (10,0) (100,10) (0,10) (10,20)
(m, n) Rfh = 800, 1y/R = 0.05, 1;/R =05, p =16, k=1.
(11) 0.2302 (A) 1.3279 e5 (A) 1.3272 €6 (A) 741165 (A) 1.3286 €5 (A)
—6.2012 (B) 3.8912 e6 (B) 42804 e7 (B) 3.8912 e6 (B) 11673 e7 (B)
(5,1) 0.6531(A) 2.2487 e5 (A) 2.2441 €6 (A) 516.0362 (A) 2.3467 e4 (A)
1.0938 (B) 2.8529 e5 (B) 3.1382 e6 (B) 2.8529 e5 (B) 8.5587 e5 (B)
9,1) 0.4313 (A) 0.6834 e5 (A) 0.6838 €6 (A) 448.7510 (A) 6.9242 e4 (A)
0.5935 (B) 0.8949 e5 (B) 0.9844 e5 (B) 8.9499 e4 (B) 2.6849 e5 (B)
(13) 0.5813 (A) 1.0258 e5 (A) 1.0263 €6 (A) 434.1690 (A) 1.0345 e5 (A)
10.2791 (B) 1.9897 €6 (B) 2.1887 e7 (B) 1.9897 €6 (B) 5.9692 e6 (B)
(1,5) 1.9205 (A) 0.7404 €5 (A) 0.7413 €6 (A) 858.3343 (A) 0.7576 €5 (A)
5.6218 (B) 1.0608 e6 (B) 1.1669 e7 (B) 1.0608 e6 (B) 3.1825 e6 (B)
Table 4 N . , _ 0.004 20 Gy = G3.1),
Effects of the number, type and position of stiffeners and elastic foundations on
nonlinear static response of the FGM annular spherical segment. 1= R H0!i = %
K, &) IG=0,K=0) G =50, K = 20)
(g, np) R/h =800, p=z/12, /R =0.05, n/R=0.5, (m,n) =3, 1. 0.003
(B)R/h=800 :
(0,0) 0.7152 (A) 3.4952 e5 (A) .
0.7248 (B) 3.6361 e5 (B) (B)R/h=1000—Ff—
(30,0) 0.4782 (A) 3.7823 (A) s /
0.4725 (B) 3.7983 (B) % 0.002 {(B)R/ h=1200 7
(0,30) —0.137 (A) —3.685e5 (A) = /
—0.1169 (B) —3.321 €2 (B) S > ,
(30,30) 0.2752 (A) 6.2376 e5 (A) 1 ,’ .
0.4067 (B) 6.6254 €2 (B) ) / /
R

Table 3. Obviously, the elastic foundations and mode (m, n) played
positive role on nonlinear static response of the FGM annular
spherical segment: the large K; and K, cloefficients are, the larger
loading capacity of the shells is and more influence in the case B
clearer than A; whereas effects of mode (m, n) seems not to follow
any rules. It is clear that the elastic foundations can enhance the
mechanical loading capacity for the FGM annular spherical seg-
ments, and the effect of Pasternak foundation K, on critical uni-
form external pressure is bigger than the Winkler foundation K.

Effects of the number, type and position of stiffener and elastic
foundations on nonlinear static response of the FGM annular
spherical segment with and without eccentrically stiffened are

0.004 12775 — 800,
(m,n)=(3,1),
=R/ =R
0.003 4 AO A
(A)k =0
= (A)k =1
& 00024 (k=5
=
0.001 -
O—I T T Ll T Ll
0 1 2 3 4 5
W /h

Fig. 2. Effects of volume fraction index k on the nonlinear stability of eccentrically
stiffened functionally graded annular spherical segment.

0.001

A)R / h=800
(A)R / h =1000

== — (AR /h=1200

0 1 2 3 4 5
W /h

Fig. 3. Effects of curvature radius-thickness ratio on the nonlinear stability of ec-
centrically stiffened functionally graded annular spherical segment.

presented in Table 4. (q_(MPa)).

The effects of material and geometric parameters on the non-
linear stability of eccentrically stiffened functionally graded an-
nular spherical segment (without effect of elastic foundations
K = K, = 0) are presented in Figs. 2 and 3. It is noted that in all
figures W/h denotes the dimensionless maximum deflection of the
shell.

Fig. 2 shows the effects of volume fraction index k(0, 1, 5) on
the nonlinear stability of eccentrically stiffened functionally gra-
ded annular spherical segment subjected to external pressure
(mode (m, n) = (3, 1)). As can be seen, the load-deflection curves
become lower when k increases.

Fig. 3 depicts the effects of curvature radius - thickness ratio
R/h (800, 1000 and 1200) on the nonlinear behavior of the external
pressure of eccentrically stiffened functionally graded annular
spherical segment (mode (m,n)=(3,1)). From Fig. 3 we can
conclude that when the annular spherical segments get thinner -
corresponding with R/h getting bigger, the critical buckling loads
will get smaller.

5. Concluding remarks

The present paper aims to propose a nonlinear analysis of ec-
centrically stiffened FGM annular spherical segment shells on
elastic foundations under uniform external pressure. Approximate
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solutions are assumed to satisfy the simply supported boundary

2202 2 2.2 2, 2 2 _ 2
condition and Galerkin method is applied to obtain closed-form nz (rO —h )A22 Agefrm” (17 + r0>(r0 + r]) ﬁAGG(rO - rl)

yy =
relations of bifurcation type of nonlinear stability. The effects of 2 8p 16(—1 + 1p) 16
material, geometrical properties, elastic foundations, combination 22 2E,A (r2 _ r2)
of external pressure and stiffener arrangement, stiffener number oA
on the nonlinear stability of eccentrically stiffened FGM annular 85,
spherical segment are analyzed and discussed.
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