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To increase the thermal resistance of various structural components in high-temperature environments,
the present research deals with nonlinear stability analysis of thin annular spherical shells made of
functionally graded materials (FGM) on elastic foundations under external pressure and temperature.
Material properties are graded in the thickness direction according to a simple power law distribution in
terms of the volume fractions of constituents. Classical thin shell theory in terms of the shell deflection
and the stress function is used to determine the buckling loads and nonlinear response of the FGM
annular spherical shells. Galerkin method is applied to obtain closed e form of load e deflection paths.
An analysis is carried out to show the effects of material, geometrical properties, elastic foundations and
combination of external pressure and temperature on the nonlinear stability of the annular spherical
shells.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Nowadays, with the development of aesthetics, architectures
and designs are becoming diversified and abundant. Thus, it re-
quires study of shape and material of structures to be cared.

A considerable number of published researches in recent years
have focused on the thermo-elastic, dynamic and buckling analyses
of functionally graded material (FGM). This is mainly due to the
increasing use of FGM as the components of structures in the
advanced engineering. FGM consisting of metal and ceramic con-
stituents have received remarkable attention in structural appli-
cations. Smooth and continuous change in material properties
enable FGM to avoid interface problems and unexpected thermal
stress concentrations. By high performance heat resistance capac-
ity, FGM is now chosen to use as structural components exposed to
severe temperature conditions such as aircraft, aerospace struc-
tures, nuclear plants and other engineering applications.

As a result, the problems relating to the thermo-elastic, dynamic
and buckling analyses of plates and shells made of FGMs have
attracted attention of many researchers, especially the FGM
spherical shells. Shahsiah et al. (2006) extended their previous
works for isotropic material to analyze linear stability of FGM
shallow spherical shells subjected to three types of thermal loading.
Ganapathi (2007) studied the problem, which is performed on the
x: þ84 4 3754 77 24.

served.
point of view of small deflection and the existence of type-
bifurcation buckling of thermally loaded spherical shells. The
nonlinear axisymmetric dynamic stability of clamped FGM shallow
spherical shells has been analyzed by Prakash et al. (2007) using the
first order shear deformation theory and finite element method.
Bich and Tung (2011) have studied the nonlinear axisymmetric
response of functionally graded shallow spherical shells under
uniform external pressure including temperature effects. Huang
(1964) reported an investigation on unsymmetrical buckling of
thin isotropic shallow spherical shells under external pressure.
Tillman (1970) investigated the buckling behavior of clamped
shallow spherical caps under a uniform pressure load. Uemura
(1971) employed a two term approximation of deflection to treat
axisymmetrical snap buckling of a clamped imperfect isotropic
shallow spherical shell subjected to uniform external pressure.
Nonlinear static and dynamic responses of spherical shells with
simply supported and clamped immovable edge have been
analyzed by Nath and Alwar (1978) by making use of Chebyshev's
series expansion. Nonlinear free vibration response, static response
under uniformly distributed load, and the maximum transient
response under uniformly distributed step load of orthotropic thin
spherical caps on elastic foundation have been obtained by Dumir
(1985). Buckling and postbuckling behaviors of laminated spher-
ical caps subjected to uniform external pressure also have been
analyzed by Xu (1991) and Muc (1992). Duc et al. (2014) investi-
gated nonlinear axisymmetric response of FGM shallow spherical
shells on elastic foundations.
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The annular spherical shell is one of the special shapes of the
spherical shells. Despite the evident importance in practical
applications, it is a fact from the open literature that in-
vestigations on the thermo-elastic, dynamic and buckling ana-
lyses of FGM annular spherical shell are comparatively scarce.
There has been recently a few of publications on the annular
shells. The most difficult in annular shell problems is complex
calculations.

Alwar and Narasimhan (1992) investigated the axisymmetric
nonlinear analysis of laminated orthotropic annular spherical
shells, the object of this investigation is to give analytical solutions
of large axisymmetric deformation of laminated orthotropic
spherical shells including asymmetric laminates. Wu and Tsai
(2004) studied the asymptotic DQ solutions of functionally
graded annular spherical shells by combining the method of dif-
ferential quadrature (DQ) with the asymptotic expansion approach.
Dumir et al. (2005) analyzed axisymmetric dynamic buckling
analysis of laminated moderately thick shallow annular spherical
cap under central ring load and uniformly distributed transverse
load, applied statically or dynamically as a step function load. Kiani
and Eslami (2013) studied an exact solution for thermal buckling of
annular FGM plates on an elastic medium, Bagri and Eslami (2008)
generalized coupled thermo-elasticity of functionally graded
annular disk considering the LordeShulman theory.

To the best of our knowledge, there has been recently no pub-
lication on solution of the nonlinear stability analysis (buckling and
post-buckling) of thin FGM annular spherical shells on elastic
foundations under temperature.

In this study, by using the classical thin shell theory, an
approximate solution, which was proposed by Agamirov (1990)
and was used by Sofiyev (2010) for truncated conical shells, the
authors tried to give analytical solutions to the problem of
nonlinear stability analysis of FGM thin annular spherical shells on
elastic foundations under uniform external pressure and
temperature.
2. Governing equations

Consider an annular spherical shell made of FGM resting on
elastic foundations with radius of curvature R, base radii r1,r0 and
thickness h. The FGM annular spherical shell is subjected to
external pressure q uniformly distributed on the outer surface as
shown in Fig. 1.

The annular spherical shell is made from a mixture of ceramics
andmetals, and is defined in coordinate system (4,q,z), where 4 and
q are in the meridional and circumferential direction of the shells,
respectively and z is perpendicular to the middle surface positive
inwards.

Suppose that the material composition of the shell varies
smoothly along the thickness by a simple power law in terms of the
volume fractions of the constituents as
Fig. 1. Configuration of a FGM
Vc
�
z
� ¼ �2zþ h

2h

�k

; �h
2
� z � h

2
;

VmðzÞ ¼ 1� VcðzÞ:
(1)

where k (volume fraction index) is a non-negative number that
defines the material distribution, subscripts m and c represent the
metal and ceramic constituents, respectively.

The effective properties of FGM shallow spherical shell such as
modulus of elasticity, the coefficient of thermal expansion, the
coefficient of thermal conduction of FGM annular spherical shell
can be defined as

½EðzÞ;aðzÞ;KðzÞ� ¼½Em;am;Km� þ ½Ecm;acm;Kcm�
�
2zþ h
2h

�k

;

� h
2
� z � h

2
:

(2)

The Poisson ratio n is assumed to be constant v(z) ¼ const and
Ecm ¼ Ec � Em, acm ¼ ac � am, Kcm ¼ Kc � Km.

The reactionedeflection relation of Pasternak foundation is
given by Dumir (1985) amd Duc et al. (2014).

qe ¼ k1w� k2Dw

where Dw ¼ v2w
vr2 þ 1

r
vw
vr þ 1

r2
v2w
vq2

is a Laplace's operator, w is the
deflection of the annular spherical shell, k1 is Winkler foundation
modulus and k2 is the shear layer foundation stiffness of Pasternak
model.

In the present study, the classical shell theory is used to obtain
the equilibrium and compatibility equations as well as expressions
of buckling loads and nonlinear load-deflection curves of thin FGM
annular spherical shells. For a thin annular spherical shell it is
convenient to introduce a variable r, referred as the radius of par-
allel circle with the base of shell and defined by r ¼ Rsin4. More-
over, due to shallowness of the shell it is approximately assumed
that cos4 ¼ 1, Rd4 ¼ dr.

According to the classical shell theory, the strains at the middle
surface and the change of curvatures and twist are related to the
displacement components u,v,w in the 4,q,z coordinate directions,
respectively, taking into account Von KarmaneDonnell nonlinear
terms as (Bich and Tung, 2011; Dumir, 1985; Xu, 1991; Duc et al.,
2014).
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;
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vr2
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1
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v2w

vq2
;

crq ¼
1
r
v2w
vrvq

� 1

r2
vw
vq

:

(3)
annular spherical shell.
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where ε
0
r and ε

0
q are the normal strains, gqr is the shear strain at the

middle surface of the spherical shell, cr,cq,crq are the changes of
curvatures and twist.

The strains across the shell thickness at a distance z from the
mid-plane are:

εr ¼ ε
0
r � zcr ; εq ¼ ε

0
q � zcq ; grq ¼ gqr � zcrq: (4)

Using Eqs. (3) and (4), the geometrical compatibility equation of
a shallow spherical shell is written as (Bich and Tung, 2011; Duc
et al., 2014).

1
r2

v2ε0r

vq2
� 1

r
vε0r
vr

þ 1
r2

v

vr

 
r2
vε0q
vr

!
� 1
r2

v2

vrvq

 
rgqr

!

¼ �Dw
r

þ c2rq � crcq; (5)

The stressestrain relationships for annular spherical shell
including temperature effect are defined by the Hooke law

ðsr; sqÞ ¼ EðzÞ
1� n2

½ðεr ; εqÞ þ nðεq; εrÞ � ð1þ vÞaDTð1;1Þ�;

srq ¼ EðzÞ
2ð1þ nÞgrq:

(6)

where sr and sq are the normal stress, srq is the shear stress at the
middle surface of the spherical shell in spherical system coordinate
and DT denotes the increments of temperature from a surface to
another one of FGM annular spherical shell.

The force and moment resultants of an FGM spherical shell are
expressed in terms of the stress components through the thickness
as:

�
Nij;Mij

� ¼ Zh=2
�h=2

sij
�
1; z
�
dz; ij ¼ ðrr; qq; rqÞ (7)

In case of (i ¼ j ¼ r) or (i ¼ j ¼ q) for simplicity denoted Nrr ¼ Nr,
Nqq ¼ Nq, Mrr ¼ Mr, Mqq ¼ Mq.

By using Eqs. (4), (6) and (7) the constitutive relations can be
given as
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(8)

From the relations one can write
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(9)
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where:
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The nonlinear equilibrium equations of a perfect shallow
spherical shell based on the classical shell theory (Xu, 1991; Muc,
1992)
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(14)

The Eqs. (12) and (13) are identically satisfied by introducing a
stress function F as

Nr ¼ 1
r
vF
vr

þ 1
r2

v2F

vq2
; Nq ¼ v2F

vr2
; Nrq ¼ �1

r
v2F
vrvq

þ 1
r2

vF
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: (15)

Substituting Eqs. (3), (9) and (15) into the Eq. (5) and
substituting Eqs. (3), (10) and (15) into Eq. (14) leads to

1
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DDF¼�Dw
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(17)

Regularly, the stress function F should be determined by the
substitution of deflection function w into compatibility equation
(16) and solving resulting equation. However, such a procedure is
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very complicated in mathematical treatment because obtained
equation is a variable coefficient partial differential equation.
Accordingly, integration to obtain exact stress function F(r,q) is
extremely complex. Similarly, the problem of solving the equilib-
rium is in the same situation. Therefore one should find a trans-
formation to lead Eqs. 16 and 17 into constant coefficient
differential equations. Suppose such a transformation.

w ¼ w
�
2
�
; F ¼ F0

�
2
�
e22; where r ¼ r0e

2; 2 ¼ ln
r
r0

(18)

Substituting Eq. (18) into Eqs. 16 and 17 and establishing a lot of
calculations lead to the transformed equations.
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Eqs. (19) and (20) are the basic equations used to investigate the
nonlinear buckling of FGM annular spherical shells. These are
nonlinear equations in terms of two dependent unknownsw(2) and
F0(2).
3. Stability analysis

In this section, an analytical approach is used to investigate the
nonlinear stability analysis of FGM annular spherical shell under
mechanical loads including the effects of temperature. The FGM
annular spherical shell is assumed to be simply supported along the
periphery and subjected to mechanical loads uniformly distributed
on the outer surface and the base edges of the shell. Depending on
the in-plane behavior at the edge of boundary conditions will be
considered in case the edges are simply supported and immovable.
For this case, the boundary conditions are

u ¼ 0; w ¼ 0;
v2w
v22

� vw
v2

¼ 0; Nr ¼ N0; Nrq ¼ 0; with

2 ¼ 0 ði:e at r ¼ r0Þ: (21)

where N0 is the fictitious compressive load rendering the immov-
able edges.
The boundary conditions (21) can be satisfied when the
deflectionw is approximately assumed as follows (Agamirov, 1990;
Sofiyev, 2010)

w ¼ We2 sin b12ð Þsin nqð Þ; b1 ¼ mp

a
; a ¼ ln

r1
r0

(22)

where W is the maximum amplitude of deflection and m,n are the
numbers of half waves in meridional and circumferential direction,
respectively. The form of this approximate solution was proposed
by Agamirov (1990) and it was used by Sofiyev (2010) for FGM
truncated conical shells.

Introduction of Eq. (22) into Eq. (19) gives
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�
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Solving this obtained equation with the boundary conditions
(21) for the stress function F0 yields

F0 ¼ f1e
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(24)where
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and

A¼ 9� 22b21 þ b41 þ n4 � 10n2 þ 2b21n
2;B¼ 8b31 � 24b1 þ 8b1n
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The remaining constants are given in Appendix I.
After substitution Eqs. (22) and (24) in Eq. (20), for simplicity,

the left hand side of the last obtained equation is denoted by F.
Applying Galerkin method with the limits of integral is given by the
formula

Zln r1
r0

0

Z2p
0

Fe2 sinðb12ÞsinðnqÞd2dq ¼ 0; (27)

we obtain the following equation
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q� N0A5

B1r20
W � A0N0

RB1
¼
 
DA3

B1r40
þ E1A4

B1R2
þ k1A6

B1
þ k2A7

B1r20

!
W

þ E1A2

RB1r20
W2 þ E1A1

B1r40
W3: (28)

where the constants B1,A0,A1,A2,A3,A4,A5,A6,A7 are given in Appendix
II.

Eq. (28) is used to determine the buckling loads and nonlinear
equilibrium paths of FGM annular spherical shell under uniform
external pressure with and without the effects of temperature
conditions.
3.1. Mechanical stability analysis

The simply supported FGM annular spherical shell with freely
movable edge is assumed to be subjected to external pressure q (in
Pascals) uniformly distributed on the outer surface of the shell in
the absence of temperature conditions. In this case N0 ¼ 0 and Eq.
(28) reduces to

q ¼
 
D*R4hA3

B1R40
þ E*1A4R2h

B1
þ K1D*A6

B1
þ K2D*A7R2h

B1R20

!
W*

þ E*1A2R3h
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�
W*�2 þ E*1A1R4h

B1R40

�
W*�3 (29)

where, by putting

E*1 ¼ E1
h
; E*2 ¼ E2

h2
; W* ¼ W

h
; Rh ¼ h

R
; R0 ¼ r0

R
; D* ¼ D

h3
; K1

¼ k1h4

D
; K2 ¼ k2h2

D
:

If the FGM annular spherical shell does not rest on elastic
foundations (K1 ¼ K2 ¼ 0), we received:

q ¼
 
D*R4hA3

B1R40
þ E*1A4R2h

B1

!
W* þ E*1A2R3h

B1R20

�
W*�2 þ E*1A1R4h

B1R40

�
W*�3:

(30)

Eq. (30) may be used to find static critical buckling load and
trace postbuckling load-deflection curves of FGM annular spherical
shell. It is evident q(W*) curves originate from the coordinate
origin. In addition, Eq. (29) indicates that there is no bifurcation e

type buckling for pressure loaded annular spherical shell and
extremum e type buckling only occurs under definite conditions.

The extremum pressure buckling load of the shell can be found
from Eq. (29) using the condition dq

dW* ¼ 0.
3.2. Thermomechanical stability analysis

A FGM annular spherical shell simply supported with immov-
able edges under simultaneous action of uniform external pressure
q and temperature is considered.

The condition expressing the immovability on the boundary
edges, i.e. u ¼ 0 on r ¼ r0, and r ¼ r1 is fulfilled on the average sense
as

Zp
0

Zr1
r0

vu
vr
rdrdq ¼ 0: (31)

From Eqs. (3) and (9) one can obtain the following relation
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Using the transformation (18) into Eq. (32) yields
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(33)

Introduction of Eqs. 22 and 24 into the Eq. (33) then substituting
obtained result into Eq. (31) lead to the expression for the fictitious
load N0 (where the constants A8,A9,A10 are given in Appendix II.)

N0 ¼ �Fm
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�
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W2

(34)
which represents the fictitious compressive stress making the
edges immovable.

Specific expressions of parameter Fm in two cases of thermal
loading will be determined.
3.2.1. Uniform temperature rise
Environment temperature is assumed to be uniformly raised

from initial value Ti at which the shell is thermal stress free, to final
one Tf and temperature change (DT ¼ Tf � Ti) is independent to
thickness variable (Bich and Tung, 2011). The thermal parameter
Fm can be expressed in terms of the DT:Fm ¼ PhDT. Subsequently,
employing this expression Fm in Eq. (34) and then substitution of
the result N0 into Eq. (28) lead to
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(35)
Eq. (35) shows that when thermal load (DT) s 0 the deflection
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curve q(W*) starting from a pressure point on the axis q defined by
the term: �A0PDTRh=ð1� vÞB1.
3.2.2. Through the thickness temperature gradient
The metal-rich surface temperature Tm is maintained at stress

free initial value while ceramic-rich surface temperature Tc is
elevated and in this case, the temperature through the thickness is
governed by the one-dimensional Fourier equation of steady-state
heat conduction established in spherical coordinate system whose
origin is the center of complete sphere as (Bich and Tung, 2011)

d
dz

�
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dz

	
þ 2KðzÞdT

zdz
¼ 0; T





z¼R�h

2

¼ Tm; T




z¼Rþh

2

¼ Tc;

(36)
where z is radial coordinate of a point which is distant z from the
shell middle surface with respect to the center of sphere, i.e.,
z ¼ Rþ z and R� h=2 � z � Rþ h=2.

The solution of Eq. (36) can be obtained as follows.

TðzÞ ¼ Tm þ DTZ Rþh
2

R�h
2

dz

z2KðzÞ

Zz
R�h

2

dt
t2KðtÞ (37)

where, in this case of thermal loading, DT ¼ Tc � Tm is the tem-
perature difference between ceramic-rich and metal-rich surfaces
of the FGM spherical shell. Due to mathematical difficulty, this
section only considers linear distribution of metal and ceramic
constituents, i.e. k ¼ 1, and

KðzÞ ¼ Km þ Kcm
2ðz� RÞ þ h

2h
: (38)

Substituting Eq. (38) into Eq. (37) gives temperature distribution
across the shell thickness as

TðzÞ ¼ Tm þ DT
I

(
4Kcm

ðKc þ Km � 2KcmRhÞ2h�
ln

ðKc þ KmÞhþ 2Kcmz
2hKm

� ln
2ðRþ zÞ
2R� h

	

þ 2ð2zþ hÞ
ðKc þ Km � 2KcmRhÞðRþ zÞ2R� h

) (39)

where z has been replaced by z þ R after integration.
Assuming the metal surface temperature as reference temper-

ature and substituting Eq. (39) into Eq. (11) give Fm ¼ hDTL
I .

The explicit analytical expressions of L,I are calculated and given
in the Appendix.

By following the same procedure as the preceding loading case
we obtain thermo-mechanical q(W*) curves for the case of through
the thickness temperature gradient as Eq. (35) provided is replaced
by L/I. Such an expression is omitted here for sake of brevity.
Fig. 2. Effects of volume fraction index k on the nonlinear response of the FGM annular
spherical shell under external pressure.
4. Results and discussion

In this section, the nonlinear response of the FGM annular
spherical shell is analyzed. The shell is assumed to be simply sup-
ported along boundary edges and, unless otherwise specified,
edges are freely movable. In characterizing the behavior of the
spherical shell, deformations in which the central region of a shell
moves toward the plane that contains the periphery of the shell are
referred to as inward deflections (positive deflections). De-
formations in the opposite direction are referred to as outward
deflection (negative deflections).
The following properties of the FGM shell are chosen (Bich and
Tung, 2011; Duc et al., 2014):

Em ¼ 70 GPa; am ¼ 23� 10�6 �C�1; Km ¼ 204W=mK;
Ec ¼ 380 GPa am ¼ 7:4� 10�6 �C; Km ¼ 10:4W=mK:

where Poisson's ratio is chosen to be v ¼ 0.3.
The effects ofmaterial andgeometric parameters on thenonlinear

response of the FGMannular spherical shells undermechanical loads
(without effect temperature and elastic foundationsK1 ¼ K2 ¼ 0) are
presented in Figs. 2e5. It is noted that in all figures W/h denotes the
dimensionless maximum deflection of the shell.

Fig. 2 shows the effects of volume fraction index k(0,1,5,þ∞) on
the nonlinear response of the FGMannular spherical shell subjected
to external pressure (mode(m,n) ¼ (1,11)). As can be seen, the load-
deflection curves become lower when k increases. This is expected
because the volume percentage of ceramic constituent, which has
higher elasticity modulus, is dropped with increasing values of k.

Fig. 3 depicts the effects of curvature radiuse thickness ratio R/h
(200, 300, 400, and 500) on the nonlinear behavior of the external
pressure of the FGM annular spherical shells (mode (m,n) ¼ (1,11)).
From Fig. 3 we can conclude that when the annular spherical shells
get thinner e corresponding with R/h getting bigger, the critical
buckling loads will get smaller.

Fig. 4 analyzes the effects of 2 base-curvature radius ratio r1/r0
on the nonlinear response of FGM annular spherical shells sub-
jected to uniform external pressure. It is shown that the nonlinear
response of annular spherical shells is very sensitive with change of
r1/r0 ratio characterizing the shallowness of annular spherical shell.
Specifically, the enhancement of the upper buckling loads and the
load carrying capacity in small range of deflection as r1/r0 increases
is followed by a very severe snap e through behaviors. In other
words, in spite of possessing higher limit buckling loads, deeper
spherical shells exhibit a very unstable response from the post-
buckling point of view. Furthermore, in the same effects of base-
curvature radius ratio r1/r0 the load of the nonlinear response of
FGM annular spherical shells is higher when the shallowness of
annular spherical shell (H) is smaller, where H is the distance be-
tween two radius r1,r0, and calculated by

H
�
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� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 5 examines the dependence of the nonlinear response of
FGM annular spherical shells on the mode (m,n). It is easily



Fig. 4. Effects of radius of baseecurvature radius ratio r1/r0 on the nonlinear response
of FGM annular spherical shells.

Fig. 6. Effects of the elastic foundations (K1,K2) on the nonlinear response of FGM
annular spherical shells.

Fig. 3. Effects of curvature radiusethickness ratio on the nonlinear response of FGM
annular spherical shells under external pressure.
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recognized that with m ¼ 1, the more increased the value of n, the
higher increasing of the value of extreme point, corresponding to
the higher load capacity of the shells. Note that, when m is even or
m � 3, the graphic consists of symmetric curves through the origin
of the coordinate system and the extreme point does not exist in
the load-deflection curves.

The effects of temperature and elastic foundations on the
nonlinear response of the FGM annular spherical shells under
uniform external pressure are presented in Figs. 6e10.
Fig. 5. Effects of mode (m,n) on the nonlinear response of FGM annular spherical
shells.
Effects of the elastic foundations (K1,K2) on the nonlinear
response of FGM annular spherical shells are shown in Fig. 6.
Obviously, elastic foundations played positive role on nonlinear
static response of the FGM annular spherical shell: the large K1 and
K2 coefficients are, the larger loading capacity of the shells is. It is
clear that the elastic foundations can enhance the mechanical
loading capacity for the FGM annular spherical shells, and the effect
of Pasternak foundation K2 on critical uniform external pressure is
bigger than the Winkler foundation K1.

Fig. 7 presents the effects of temperature and elastic foundations
on the nonlinear response of FGM annular spherical shells under
uniform external pressure. As shown in Fig. 7, the temperature
makes the annular spherical shell to be deflected outward prior to
mechanical loads acting on it. Under mechanical loads, outward
deflection of the shell is reduced, and external pressure exceeds
bifurcation point of load, an inward deflection occurs. In this
context, Fig. 7 also shows the bad effect of temperature on the
nonlinear response of the FGM annular spherical shells. Indeed, the
mechanical loading ability of the system has been reduced in the
presence of temperature.

The effects of temperature gradient through the thickness on the
nonlinear response of FGM annular spherical shells under uniform
external pressure are shown in Fig. 8. In this case, the metal-rich
Fig. 7. Effects of uniform temperature rise and elastic foundations on the nonlinear
response of FGM annular spherical shells.



Fig. 10. Effects of curvature radiusethickness ratio on the thermal nonlinear response
of FGM annular spherical shells.

Fig. 8. Effects of temperature gradient on the nonlinear response of FGM annular
spherical shell.
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surface temperature Tm is maintained at initial value Tm ¼ 27 �C
(room temperature) and temperature is transmitted from ceramic-
rich surface through the thickness of annular. In Figs. 7 and 8, we
can realize that the buckling load capacities of the shell in the cases
of uniform temperature rise are better than the one in cases of
gradient temperature through the thickness of the shell.

Fig. 9 shows the effects of volume fraction index k on the thermal
nonlinear response of FGM annular spherical shells under uniform
temperature rise. As can be observed, the annular spherical shells
deflect outwards under thermal loads and the response of the
annular spherical shells are relatively benign, i.e. there is no snap-
through phenomenon and bifurcation type buckling.

Fig. 10 presents the effects of curvature radius-thickness ratio
on the thermal nonlinear response of FGM annular spherical shells
under uniform temperature rise. It is evident that the effects of
curvature radiusethickness ratio on the thermal nonlinear
response is not considerable, i.e. the thermal load-deflection
curves approach contiguous when the ratio R/h changes.

Fig. 11 examines the dependence of the thermal nonlinear
response of FGM annular spherical shells on the mode (m,n) in the
presence of temperature. It is easily recognized that withm¼ 1, the
more increased the value of n the higher increasing of the thermal
nonlinear response.
Fig. 9. Effects of volume fraction index k on the thermal nonlinear response of FGM
annular spherical shells.
Fig. 12 investigates the effects of the pre-existent external
pressure on the thermal loading ability of the annular spherical
shells in the presence of temperature. Shown in this figure is a
monotonically increasing nonlinear response with outward
deflection of the annular spherical shells. The annular spherical
shells exhibit a bifurcation buckling behavior when they are
subjected to external pressure prior to the application of thermal
load. Both the bifurcation buckling loads and the capability of
temperature resistance are enhanced with the increase in pre-
existent uniform external pressure. However, with all values of
mechanical load, the thermal postbuckling behavior is very
stable, i.e. without a snap-through. In fact, the shell deflects
inwards under external pressure and when temperature reaches
a specific value, i.e. bifurcation point temperature, the shell
surface returns to initial state. When the temperature exceeds
bifurcation point, the spherical shell is monotonically deflected
outwards.

5. Concluding remarks

Due to practical importance of FGM annular spherical shells and
the lack of investigations on stability of these structures, the pre-
sent paper aims to propose an analytical approach to study the
Fig. 11. Effects of mode (m,n) on the thermal nonlinear response of FGM annular
spherical shells.



Fig. 12. Effects of pre-existent external pressure on the thermal nonlinear response of
FGM shallow spherical shells.
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problem of nonlinear stability analysis of FGM thin annular
spherical shells on elastic foundations under uniform external
pressure and temperature. Based on the classical shell theory, the
equilibrium and compatibility equations are derived in terms of the
shell deflection and the stress function. This system of equations
has been transformed into another system of more simple equa-
tions. Galerkin method is used to get the explicit expression of
postbuckling load-deflection curves of the shells. The effects
of material, geometrical properties, elastic foundations and com-
bination of external pressure and temperature on the nonlinear
buckling and postbuckling of the FGM annular spherical shells are
analyzed and discussed.
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32b31 þ 32b1n

2
�2	 ;
t4 ¼
n
C2b

2
1 þ 16

�
b31 þ b1n

2
��

� b1n
2 þ b1 � b31

�o
2
�
C1C2 þ

�
32b31 þ 32b1n

2
�2	 ;
t5 ¼
4
n
ðb41 � b21Þðb1n2 � b1 þ b31Þ � 4b31ðb21n2 � b21Þ

o
�
16b41 � 16b21

�2 þ 1024b61

;

t6 ¼
8
n�

b41 � b21

��
b21n

2 � b21

�
þ
�
b1n

2 � b1 þ b31

�
b31

o
�
16b41 � 16b21

�2 þ 1024b61

;

j ¼ ln
ð2þ RhÞ
ð2� RhÞ

; h ¼ ln
Kc

Km
; J ¼ Kc þ Km � 2Kcm

R
h
;

d ¼ ðac þ amÞðEc þ EmÞ; y ¼ Ecmðac þ amÞ þ acmðEc þ EmÞ:
L¼ Kcmd

J2

�
j

�
R
h
þ1
2

�
�1
	
� d

2J

�
j� 2h

2R�h

�
þ d

J2
ðKm�KcþhKcÞþ

�Kcmy

J2

"
R
h
�
 �

R
h

�2

�1
4

!
j

#
� y

J

�
1� j

Rh

�

� y

2J2Kcm

�
K2
m�K2

c þ2hKmKc

�

þKcmEcmacm
J2

�
1
9
þ4R2

3h2
�
�
1
6
þ4R3

3h3

�
j

	

þ2Ecmacm
J

"
h

6ð2R�hÞþ
R
h
�j

�
R
h

�2
#

þEcmacm
9J2K2

cm

h
4
�
K3
m�K3

c

�
þ3Kc

�
K2
c þ3K2

m

�
h
i
;

I¼ 4Kcm

J2
ln

Kcð2R�hÞ
Kmð2RþhÞþ

8h2

J
�
4R2�h2

� :
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