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ABSTRACT
The authors of this article investigate the nonlinear stability of axisymmetric functionally graded annular
spherical shells with temperature-dependent material properties subjected to thermo-mechanical loads
and resting on elastic foundations. Equilibrium and compatibility equations are derived by using the classi-
cal thin shell theory in terms of the shell deflection and the stress function. Approximate analytical solutions
are assumed to satisfy simply supported boundary conditions and Galerkinmethod is applied to obtain the
closed-form of load–deflection paths. An analysis is carried out to show the effects of material and geomet-
rical properties and combination of loads on the stability of the shells.

1. Introduction

Functionally graded materials (FGMs) consisting of metal and
ceramic constituents have received increasing attention in struc-
tural applications. Smooth and continuous changes in material
properties enable FGMs to avoid interface problems and unex-
pected thermal stress concentrations. By high performance heat
resistance capacity, FGMs are now chosen for use as structural
components exposed to severe temperature conditions, such as
aircraft, aerospace structures, nuclear plants, and other engi-
neering applications. This has prompted considerable researches
to focus on the thermo-elastic, dynamic, and buckling analyses
of FGMs in recent years.

The structures, as plates and shells, are usually supported by
an elastic foundation. Therefore, it is necessary to account for
effects of elastic foundations for a better understanding of the
buckling and post-buckling behavior of the structures. By using
the theory of elasticity and theory of shells, many approaches
have been used to analyze the interaction between the structures
and the elastic foundations. The problems of designing struc-
tures on elastic foundations were investigated by Gorbunov-
Possadov et al. [1]. Regarding the nonlinear behavior of a
spherical shell, Nie [2] studied nonlinear behavior of imperfect
shallow spherical resting on Pasternak foundation by adopting
the asymptotic iteration method with classical boundary con-
ditions. The nonlinear buckling behavior of orthotropic trun-
cated conical shells surrounded by an elastic medium was stud-
ied by Sofiyev [3] based on the finite deformation theory with
von-Karman nonlinearity and Galerkin method to obtain the
expressions for upper and lower critical axial loads. Duc et
al. [4] investigated nonlinear axisymmetric response of FGM
shallow spherical shells and double curved shallow FGM

CONTACT Nguyen Dinh Duc ducnd@vnu.edu.vn Department of Mechanical Engineering and Automation, Vietnam National University, -Xuan Thuy, Cau Giay,
Hanoi , Vietnam.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umcm.

panels [5] on the Winkler–Pasternak foundations. The non-
linear post-buckling of imperfect eccentrically stiffened FGM
double-curved thin shallow shell (with outside reinforced stiff-
eners) resting on elastic foundations and including tempera-
ture effects were also investigated by Duc and Quan [6] using
the stress function and Galerkin procedure. Sofiyev [7] investi-
gated buckling and the vibration analysis [8] of simply supported
FGM truncated conical shells resting on the two-parameter elas-
tic foundations. Nonlinear free vibration response, static, and
the maximum transient response under uniformly distributed
load of orthotropic thin spherical caps on elastic foundation
have been obtained by Dumir [9].

Despite the evident importance in practical applications, to
the best of our knowledge, there has been no publication on
buckling FGM annular spherical shells. The annular spherical
shell is not the same as the spherical shell, and the presence of
the radii r1, r0 of the annular shell leads to the complicated cal-
culation. After much time focused on researching, Anh et al.
[10] recently announced the results of the buckling and post-
buckling of thin annular spherical shells, with assuming the
annular is un-axisymmetric shells. In this study, the authors
wanted to develop research trying to apply the transformation,
which was used by Ahn et al. [10], to solve the problems related
to the FGM axisymmetric annular spherical shells under the
thermo-mechanical loads and resting on Winkler–Pasternak-
type elastic foundations. In addition, remarkably the material
properties of the FGM annular spherical shells were changing
and dependent on temperature, and the results were obtained
with a very distinct difference between the bucking and post-
buckling response of the axisymmetric and un-axisymmetric
annular spherical shells, which is the reason for the authors to
complete this study.

©  Taylor & Francis Group, LLC
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1422 V. T. T. ANH AND N. D. DUC

Figure . Configuration of an FGM axisymmetric annular spherical shell.

2. Governing equations

Consider that an axisymmetric annular spherical shell is sub-
jected to external pressure q uniformly distributed on the outer
surface as shown in Figure 1 where R is radius of curvature, h is
thickness, and r1, r0 indicates the radii of annular.

In the present study, the classical shell theory is used to obtain
the equilibrium and compatibility equations as well as expres-
sions of buckling loads and nonlinear load–deflection curves of
thin FGM axisymmetric annular spherical shells. It is appropri-
ate to introduce a variable r, referred to as the radius of parallel
circle with the base of shell and defined by r = R sinϕ. More-
over, due to shallowness of the shell it is approximately assumed
that cosϕ = 1,Rdϕ = dr.

2.1. Winkler–Pasternak-type elastic foundations

The FGM axisymmetric annular spherical shell is resting on the
elastic foundation. For the elastic foundation, one assumes the
two-parameter elastic foundationmodel proposed by Pasternak
[4]. The foundation medium is assumed to be linear, homoge-
nous, and isotropic. The bonding between the axisymmetric
annular spherical shell and the foundation is perfect and fric-
tionless. If the effects of damping and inertia force in the foun-
dation are neglected, the foundation interface pressure may be
expressed as: qe = k1w − k2�w, where �w = ∂2w

∂r2 + 1
r

∂w
∂r , w is

the deflection of the annular spherical shell, k1 is Winkler foun-
dation modulus, and k2 is the shear layer foundation stiffness of
the Pasternak model.

2.2. Material properties of functionally graded shells

The axisymmetric annular spherical shell is made of FGM from
a mixture of ceramics and metals, and is defined in a coordi-
nate system (ϕ, θ, z), where ϕ and θ are in the meridional and
circumferential direction of the shells, respectively, and z is per-
pendicular to the middle surface positive inwards.

Suppose that the material composition of the shell varies
smoothly along the thickness by a simple power law in terms
of the volume fractions of the constituents as:

Vc(z) =
(
2z + h
2h

)k

, Vm(z) = 1 −Vc(z); −h
2

≤ z ≤ h
2
,

(1)

where k (volume fraction index) is a non-negative number that
defines the material distribution.

Effective properties Pre f f of the shell are determined by linear
rule of mixture as:

Pre f f (z,T ) = Prm(T )Vm(z) + Prc(T )Vc(z), (2)

where Pr denotes a temperature-dependent material property,
and subscripts m and c stand for the metal and ceramic con-
stituents, respectively. Specific expressions of material coeffi-
cients are obtained by substituting Eq. (1) into Eq. (2) as:

[E(z,T ), v(z,T ), ρ(z,T ), α(z,T ), K(z,T )]

= [Em(T ), νm(T ), ρm(T ), αm(T ), Km(T )]

+ [Ecm(T ), νcm(T ), ρcm(T ), αcm(T ), Kcm(T )]
(
2z + h
2h

)k

,

(3)

where

Ecm(T ) = Ec(T ) − Em(T ) , νcm(T )

= νc(T ) − νm(T ), ρcm(T ) = ρc(T ) − ρm(T ),

αcm(T )=αc(T )−αm(T ) , Kcm(T )=Kc(T )−Km(T ). (4)

It is evident from Eqs. (3) and (4) that the upper surface of
the shell (z = −h/2) is ceramic-rich, while the lower surface
(z = h/2) is metal-rich, and the percentage of ceramic con-
stituent in the shell is enhanced when k increases. A material
property Pr, such as the elastic modulus E, Poisson ratio ν, the
mass density ρ, the thermal expansion coefficientα, and coeffi-
cient of thermal conduction K can be expressed as a nonlinear
function of temperature [4, 5]:

Pr(z,T ) = P0
(
P−1T−1 + 1 + P1T 1 + P2T 2 + P3T 3), (5)

in which T = T0 + �T (z), �T is temperature rise from stress-
free initial state, and more generally, �T = �T (z) and T0 =
300K (room temperature); P0, P−1, P1, P2, and P3 are coefficients
characterizing the constituent materials.

2.3. Fundamental relations and governing equations

According to the classical shell theory, the strains at the middle
surface and the change of curvatures and twist are related to the
displacement components u, v,w for the axisymmetric annular
spherical shell in the ϕ, θ, z coordinate directions, respectively,
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taking into account von Karman–Donnell nonlinear terms as
[9, 10]:

ε0r = ∂u
∂r

− w

R
+ 1

2

(
∂w

∂r

)2
, ε0θ = u

r
− w

R
; γ 0

rθ = 0,

χr = ∂2w

∂r2
, χθ = 1

r
∂w

∂r
, χrθ = 0, (6)

where ε0r and ε0θ are the normal strains, γ 0
rθ is the shear strain

at the middle surface of the shell, χr, χθ , χrθ are the changes of
curvatures and twist.

The strains across the shell thickness at a distance z from the
mid-plane are:

εr = ε0r − zχr, εθ = ε0θ − zχθ , γrθ = γ 0
rθ − zχrθ . (7)

Using Eqs. (6) and (7), the geometrical compatibility equa-
tion of the shell is written as:

− 1
r

∂ε0r
∂r

+ 1
r2

∂

∂r

(
r2

∂ε0θ
∂r

)
= −�w

r
− χrχθ . (8)

By the Hooke law, the stress–strain relationships are defined
as:

(σr, σθ ) = E(z)
1 − ν2 [(εr, εθ ) + ν (εθ , εr)

−(1 + v )α�T (1, 1)] , σrθ = 0, (9)

whereσr andσθ are the normal stress,σrθ is the shear stress at the
middle surface of the shell in the spherical system coordinate,
and �T denotes the increments of temperature from a surface
to another one of the shells.

The force andmoment resultants of the shell are expressed in
terms of the stress components through the thickness as:

(Ni j,Mij) =
h/2∫

−h/2

σi j(1, z)dz, i j = (rr, θθ ) . (10)

In case of (i = j = r) or (i = j = θ ), for simplicity it is
denoted as Nrr = Nr, Nθθ = Nθ , Mrr = Mr, Mθθ = Mθ .

By using Eqs. (7), (9), and (10) the constitutive relations can
be given as:

(Nr, Mr) = (E1, E2)
1 − ν2

(
ε0r + νε0θ

) − (E2, E3)
1 − ν2 (χr + νχθ )

− (m,b)

1 − v
,

(Nθ , Mθ ) = (E1, E2)
1 − ν2

(
ε0θ + νε0r

) − (E2, E3)
1 − ν2 (χθ + νχr)

− (m,b)

1 − v
,

(Nrθ , Mrθ ) = 0. (11)

From the relations one can write:

ε0r = 1
E1

(Nr − νNθ ) + E2
E1

χr + m

E1
;

ε0θ = 1
E1

(Nθ − νNr) + E2
E1

χθ + m

E1
; γ 0

rθ = 0, (12)

Mr = E2
E1

Nr − D1(χr + νχθ ) − b

1 − v
;

Mθ = E2
E1

Nθ − D1(χθ + νχr) − b

1 − v
; Mrθ = 0, (13)

where

D1 = E1E3 − E2
2

E1(1 − ν2)
, E1 =

h/2∫
−h/2

[
Ec + Ecm

(
2z + h

h

)k
]
dz

=
(
Em + Ecm

k + 1

)
h,

E2 =
h/2∫

−h/2

z

[
Ec + Ecm

(
2z + h

h

)k
]
dz

= h2Ecm
(

1
k + 2

− 1
2k + 2

)
,

E3 =
h/2∫

−h/2

z2
[
Ec + Ecm

(
2z + h

h

)k
]
dz

=
(
Em
12

+ Ecm
2(k + 1)(k + 2)(k + 3)

)
h3,

(m,b) =
h/2∫

−h/2

[
Em + Ecm

(
2z + h

h

)k
]

×
[
αm + αcm

(
2z + h

h

)k
]

�T (1, z)dz.

(14)

The nonlinear equilibrium equations of a perfect shallow
spherical shell based on the classical shell theory [4] are as
follows:

∂Nr

∂r
+ Nr

r
− Nθ

r
= 0, (15)

∂2Mr

∂r2
+ 2

r
∂Mr

∂r
− 1

r
∂Mθ

∂r
+ 1

R
(Nr + Nθ )

+ 1
r

∂

∂r

(
rNr

∂w

∂r

)
+ q − k1w + k2�w = 0. (16)

Equation (15) is identically satisfied by introducing a stress
function F as:

Nr = 1
r

∂F
∂r

, Nθ = ∂2F
∂r2

. (17)
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1424 V. T. T. ANH AND N. D. DUC

Substituting Eqs. (6), (12), and (17) into Eqs. (8) and substi-
tuting Eqs. (6), (13), and (14) into Eq. (16) leads to:

1
E1

��F = −�w

r
− ∂2w

∂r2
1
r

∂w

∂r
, (18)

D1��w − �F
R

− 1
r

∂F
∂r

∂2w

∂r2
− 1

r
∂w

∂r
∂2F
∂r2

= q − k1w + k2�w. (19)

Regularly, the stress function F should be determined by the
substitution of deflection functionw into compatibility equation
(19) and solving the resulting equation. However, such a pro-
cedure is very complicated in mathematical treatment because
the obtained equation is a variable coefficient partial differ-
ential equation. Accordingly, integration to obtain exact stress
function F(r, θ ) is extremely complex. Similarly, the problem
of solving the equilibrium is in the same situation. Therefore,
one should find a transformation to lead Eqs. (18) and (19)
into constant coefficient differential equations. Suppose such a
transformation:

w = w(ξ ), F = F0(ξ )e2ξ , where r = r0eξ , ξ = ln
r
r0

. (20)

From (20), it is easy to show that the shell is just a partic-
ular case of the annular shell in which r0 = 0. Technically, the
variable ξ unfortunately is not determined. Hence, we cannot
apply this result for the spherical shell. The calculation of the
annular shell using the transformation (20) is much more com-
plicated. This, therefore,makes our calculation for FGMannular
spherical shell in this article different from the obtained results
in [4].

Substituting Eq. (20) into Eqs. (18) and (19) and establishing
a lot of calculations lead to the transformed equations:

1
E1

(
∂4F0
∂ξ 4 + 4

∂3F0
∂ξ 3 + 4

∂2F0
∂ξ 2

)

= − r20
R

∂2w

∂ξ 2 − 1
e2ς

(
∂2w

∂ξ 2 − ∂w

∂ξ

)
∂w

∂ξ
, (21)

D1

(
∂4w

∂ξ 4 − 4
∂3w

∂ξ 3 + 4
∂2w

∂ξ 2

)

− r20e4ξ

R

(
∂2F0
∂ξ 2 + 4

∂F0
∂ξ

+ 4F0
)

−

−
(

∂F0
∂ξ

+ 2F0
) (

∂2w

∂ξ 2 − ∂w

∂ξ

)
e2ξ

−
(

∂2F0
∂ξ 2 + 2F0 + 3

∂F0
∂ξ

)
∂w

∂ξ
e2ξ

= qr40e
4ξ − k1r40e

4ξ + k2r20e
2ξ . (22)

Equations (21) and (22) are the basic equations used to inves-
tigate the nonlinear buckling of FGM axisymmetric annular
spherical shells.

3. Stability analysis

This section will investigate the nonlinear response of FGM
axisymmetric annular spherical shell. The shell is assumed to
be simply subjected to along the periphery and uniformly dis-
tributed load on the outer surface of the shell. Depending on the
in-plane behavior at the edge of the boundary conditions will be
considered in case the edges are simply supported and immov-
able. The boundary conditions are:

u = 0,w = 0,
∂2w

∂ξ 2 − ∂w

∂ξ
= 0, Nr = N0, Nrθ = 0,

with ξ = 0 (i.e., at r = r0), (23)

where N0 is the normal force on the immovable edges.
To solve the equations of (21) and (22), we must find two

dependent unknowns:w(ς ) and F0(ς ). It can easily be seen that
the unknowns form [7, 10, 11]:

w = Weξ sin(βξ ), β = mπ

a
, a = ln

r1
r0

, (24)

used in [7, 10, 11], in whichW is the maximum amplitude of
deflection and m, n are the numbers of half waves in merid-
ional and circumferential direction, respectively, satisfying the
boundary conditions (23).

Substituting deflection function (24) into Eq. (21) and solv-
ing the obtained equation with boundary conditions (23) for
unknown function F0 leads to:

F0 = f1eξ sin(βξ ) + f2eξcos(βξ ) + f3 sin(2βξ )

+ f4cos(2βξ ) + N0
r20
2

, (25)

where

f1 = r20E1W
R

�1, f2 = r20E1W
R

�2,

f3 = E1W 2

32β
; f4 = 0,

�1 =
(−9 − 17β2 − 7β4 + β6)

(9 − 22β2 + β4)2 + (8β3 − 24β)
2 ;

�2 = 6
(
β + 2β3 + β5)

(9 − 22β2 + β4)2 + (8β3 − 24β)
2 . (26)

Applying Galerkin method with the limits of integral is given
by the formula:

a∫
0

eξ sin(βξ )dξ = 0, (27)

where  is the left-hand side of Eq. (22) after substituting Eqs.
(24) and (25), and we obtain the following equation:

q + N0
__
M5

__
W +N0

__
M6 =

__
M1

__
W +

__
M2

__
W 2 +

__
M3

__
W 3, (28)
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where

__
M1 = −

__
D1

(R2
0 − R2

1)R4
h(25 + β2)

(
1 + β2)β

4R0
[
R5
0 − R5

1(−1)m
]

−
__
E1(25 + β2) (β�1 + 3�2)

(
R6
0 − R6

1
)
R2
h

12
[
R5
0 − R5

1(−1)m
]
R0

−
__
D1

(
R6
0 − R6

1
)
(25 + β2)β

12R0 (9 + β2)
[
R5
0 − R5

1(−1)m
]K1

−
__
D1 R2

h

(
R4
0 − R4

1
)
(25 + β2)β(3 + β2)

8R0 (4 + β2)
[
R5
0 − R5

1(−1)m
] K2,

__
M2 =

__
E1 R3

h(25 + β2)

R2
0 (625 + 250β2 + 9β4)

×
[
15 − 37β2

16
− β2(46 + 14β2)�1 − β(3β4

+ 72β2 + 165)�2

]
,

__
M3 = −

__
E1 R4

h(25 + β2)
(
5 + β2)β

(
R4
0 − R4

1
)

256 (4 + β2)R3
0
[
R5
0 − R5

1(−1)m
] ,

M4 = β

[
r50 − r51(−1)m

]
r0 (25 + β2)

,

__
M5 = β

(
β2 + 3

) (
25 + β2)R2

h

(
R4
0 − R4

1
)

8 (4 + β2)R0
[
R5
0 − R5

1(−1)m
] ,

__
M6 = 2Rh,

(29)

and putting

__
E1 = E1

h
,
__
E2 = E2

h2
,
__
W = W

h
,Rh = h

R
,R0 = r0

R
,
__
D
1

= D1

h3
,N0 = −ph,K1 = h4k1

D1
,K2 = h2k2

D1
.

Equation (28) is used to determine the buckling loads and
nonlinear equilibrium paths of the FGM axisymmetric annular
spherical shell under mechanical and thermal loads including
the effect of elastic foundations.

3.1. Nonlinearmechanical stability analysis

The FGM axisymmetric annular spherical shell with the edges
are simply supported and immovable. The shell is assumed to be
only subjected to uniformly distributed load on the outer surface
and rested on elastic foundations, meaning N0 = 0.

Thus, Eq. (28) reduces to:

q =
__
M1

__
W +

__
M2

__
W 2 +

__
M3

__
W 3 . (30)

The shells only exhibit extremum-type buckling when the
material and geometric parameters satisfy specific conditions,
i.e., loss of stability occurs at a limit point. The extremum pres-
sure buckling load of the shell can be found from Eq. (30)

with the condition
__
M2

2 −3
__
M1

__
M3 > 0 and has the correspond-

ing value:

qupper =
__
M2 +

√__
M2

2 −3
__
M1

__
M3

3
__
M3

×
⎛
⎝5

__
M2

2 +6
__
M1

__
M3 +5

__
M2

√__
M2

2 −3
__
M1

__
M3

9
__
M3

⎞
⎠, (31)

qlower =
__
M2 −

√__
M2

2 −3
__
M1

__
M3

3
__
M3

×
⎛
⎝5

__
M2

2 +6
__
M1

__
M3 −5

__
M2

√__
M2

2 −3
__
M1

__
M3

9
__
M3

⎞
⎠. (32)

The snap-through behaviormay be predicted and intensity of
the snap-through behavior is given by the difference between the
value of upper and lower buckling load points. If the condition
is not satisfied, there exists only one equilibrium shape and the
deflection-load curve is stable.

3.2. Nonlinear thermo-mechanical stability analysis

A simply supported FGM axisymmetric annular spherical shell
with immovable edges under external pressure and thermal load
is considered. The condition expressing the immovability on the
edges, u = 0 (on r = r0, r1), is fulfilled on the average sense as:

∫ π

0

∫ r1

r0

∂u
∂r

rdrdθ = 0 ⇒
∫ ln r1

r0

0

(
∂u
∂r

)
ξ

r20e
eξdξ = 0. (33)

From Eqs. (6), (11), and (17), one can obtain the following
expression:

∂u
∂r

= 1
E1

(
1
r

∂F
∂r

− ν
∂2F
∂r2

)
+ E2

E1
∂2w

∂r2
+ m

E1

+w

R
+ 1

2

(
∂w

∂r

)2
(34)

Substituting the transformation (20) into Eq. (34) leads to:

(
∂u
∂r

)
ξ

= 1
E1

[
1
r20

(
∂F0
∂ξ

+ 2F0
)

− v

r20

(
∂2F0
∂ξ 2 + 3

∂F0
∂ξ

+ 2F0
)]

+E2
E1

1
r20e2ξ

(
∂2w

∂ξ 2 − ∂w

∂ξ

)

+w

R
− 1

2r20e2ξ

(
∂w

∂ξ

)2
+ m

E1
. (35)

Introducing Eqs. (24), (25), and (26) into Eq. (35) and then
inserting the obtained equation into Eq. (33), performing some
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Table . Material properties of the constituent materials of the considered FGM shell.

Material Property P0 P−1 P1 P2 P3

SiN (ceramic) E (Pa) .e  –.e– .e– –.e–
ρ(kg/m3     
α (K−1) .e–  .e–  
k (W/mK) .    
ν .    

SUS
(metal)

E (Pa) .e  .e– –.e– 

ρ (kg/m3)     
α (K−1) .e–  .e–  

k (W/mK) .    
ν .    

calculations and arrangements we obtain:

N0 = − m

(1 − ν)
+ E1

8r20 (1 − ν)

(
2β2 + ν

)
W 2

+ 2E1

Rr0 (1 − ν)
(
r20 − r21

)⎛
⎜⎝

(
r30 − (−1)m r31

) (
νβ�1 + (2v − 1) �2 + β

(9 + β2)

)
−E2

E1
Rβ

(
r0 − (−1)m r1

)
⎞
⎟⎠W,

(36)

which represents the normal stress on the immovable edge
depending on thermal load and pre-buckling deflection.

Environment temperature is assumed to be uniformly raised
from initial value T0 at which the shell is thermal stress free,
to the final one Tf and temperature change (�T = Tf − T0) is
independent to thickness variable [12]. The temperature param-
eter m is expressed through �T by integration in (14) as:

m = Ph�T, (37)

where P = Ecαc + Ecαmc + Emcαc

k + 1
+ Emcαmc

2k + 1
.

Subsequently, employing this expression m in Eq. (36), and
then substitution of the result N0 into Eq. (28) leads to:

q = 2PRh

(1 − ν)
�T +

(__
M1 +φ1�T − φ4

) __
W

+
(__
M2 −φ2 − φ5

) __
W 2 +

(__
M3 −φ3

) __
W 3, (38)

where the constantsφ1, φ2, φ3, φ4, φ5 are given in theAppendix.
From Eqs. (36) and (38), �T can be expressed formally as

follows:

�T = q

φ1
__
W + 2PRh

(1−v )

−
(__
M1 −φ4

)
φ1

__
W + 2PRh

(1−v )

__
W

−
(__
M2 −φ2 − φ5

)
φ1

__
W + 2PRh

(1−v )

__
W 2 −

(__
M3 −φ3

)
φ1

__
W + 2PRh

(1−v )

__
W 3 . (39)

Equation (39) is used to determine the deflection-thermal
load curve of the FGM axisymmetric annular spherical shell,
with external pressure on the outer surface of the shell given.
Because the properties of component materials are dependent

on temperature, an iterative algorithm is used to obtain the non-
linear curve.

4. Results and discussion

Consider a FGM axisymmetric annular spherical shell made
from Si3N4 (ceramic) and SUS304 (metal). The typical values of
the coefficients of the FGM with temperature-dependent mate-
rial properties mentioned in (2) are listed in Table 1 [4, 12].

In this section, the shell is assumed to be simply supported
along boundary edges. In all figures, W/h denotes the dimen-
sionless and maximum deflection of the shell.

First, the study investigated the behavior of the FGM axisym-
metric annular spherical shell only subjected to uniformly dis-
tributed load; the effect of material constituent on the nonlinear
response of the shell is shown in Figure 2. As can be seen, the
load-deflection curve is lower when k increases. This is expected
because the axisymmetric annular spherical shell is made from
a mixture of ceramic and metal, but ceramic constituent has a
much higher elastic modulus than the metal constituent and it
is decreased when k increases. However, as observed in Figure 2,
the enhancement in load carrying capacity of a ceramic-rich
axisymmetric annular spherical shell is more severe because

Figure . Influences of material constituents on the nonlinear response of the FGM
axisymmetric annular spherical shell under uniformly distributed load.
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Figure . Influences of thickness ratio on the behavior of the FGM axisymmetric
annular spherical shell under uniformly distributed load.

after the load-deflection curve reached the extreme load con-
ditions, it dropped rapidly on a steep slope, i.e., there is a
significant difference between the upper and lower buckling
state.

Geometrical parameters also have a great influence on the
nonlinear response of FGM axisymmetric annular spherical
shell. Specifically, the effects of thickness-radius ratio are shown
in Figure 3. As can be observed, the R/h ratio decreases cor-
responding to the thicker axisymmetric annular spherical shell
and the load carrying capacity is increased. But, the decrease in
R/h ratio is accompanied by a drop of nonlinear equilibrium
paths and a more severe snap-through response.

The elastic foundations are added with the aim to enhance
the load carrying capacity and stability of the FGM axisym-
metric annular spherical shell. Figure 4 considers the effects of

Figure . Effects of both elastic foundation on the nonlinear response of the FGM
axisymmetric annular spherical shell.

Figure . Impact of each elastic foundation on the nonlinear response of the FGM
axisymmetric annular spherical shell.

both elastic foundations on the behavior of the shell. Interest-
ingly, as soon as the elastic foundations are added, the non-
linear deflection-load curves become nearly-linear path. The
enhancement of the Winkler foundation modulus and stiffness
of the Pasternak foundation make a significant improvement
in load carrying capacity of the shell. Figure 5 illustrates the
impact of each elastic foundation on the behavior of the shell.
As can be seen, the Pasternak foundation has a larger impact
thanWinkler foundation on nonlinear response of the shell and
this is corresponding to the higher post-buckling curves. It illus-
trates the accuracy of the proposed approach. By combining
Winkler and Pasternak foundation, the capacity of load carrying
is significantly increased. Especially, these figures also exhibit
the response of the shell as being more stable.

Influences of temperature gradient on the load carrying
capacity of the shell are considered in Figure 6. Clearly,
deflection-load curves lower when temperature increases. This

Figure . Effects of temperature change on capacity of load carrying of the FGM
axisymmetric annular spherical shell.
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1428 V. T. T. ANH AND N. D. DUC

Figure . Influences of material constituents on the thermal load carrying capacity
of FGM axisymmetric annular spherical shell.

shows the bad effects of temperature on the nonlinear response
of the shell. Indeed, the load carrying capacity has been reduced
while temperature gradient increases. In Figure 6, temperature
also makes the curves to be bifurcated load buckling and the
shell was initially subjected to thermal stress in the presence of
temperature. Figure 7 depicts the effects of the changing inmate-
rial constituents affect the thermal loading ability. Obviously,
the volume fraction index k increases, ceramic constituent ratio
decreased, and deflection-load curves are significantly lower.
Similar to the case of external load, ceramic’s elasticmodulus has
a large impact on the behavior of the shell and it is expected.

Figure 8 considers interaction of both elastic foundations
on the thermal load carrying capacity with pre-existent exter-
nal pressure. As can be seen, load carrying ability is improved
significantly when we increase the stiffness of the two elastic
foundations. These values are not significantly increased but the
deflection-thermal load curves are much higher, which showed

Figure . Effects of elastic foundations on the thermal loading ability of the FGM
axisymmetric annular spherical shell with pre-existent external pressure.

Figure . Effects of thickness-radius ratio on the thermal nonlinear response of the
FGM axisymmetric annular spherical shell.

that the shell is very sensitive to such changes. In addition, the
results also show a large influence of the elastic foundations to
the stability of the structure. This is to be expected and delivers
the most effect in improving the durability of the structure.

Figures 9 and 10 investigate effects of geometrical parameters
on the thermal nonlinear response and thermal load carrying
capacity of the shell. Figure 9 illustrated the effects of curvature
radius-to-thickness ratio R/h on the nonlinear response of the
shells subjected to thermal load. Here, the curves are bifurcation
buckling load type and there is no snap-through phenomenon
in the outward shells as soon as the temperature change hap-
pens. Clearly, the thermal load bearing capability of the shell is
enhanced as h/R ratio increases. Figure 10 depicts the effects of
two base-curvature radius ratio r1/r0 on the nonlinear response
of the shells. It is shown that the nonlinear response of the shells
is very sensitive with change of r1/r0 ratio characterizing the

Figure . Effects of radii r0 and r1 on the thermal nonlinear response of the FGM
axisymmetric annular spherical shell.
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shallowness of the shell. Specifically, the enhancement of the
upper buckling loads and the load carrying capacity in small
range of deflection as r1/r0 increases is followed by very severe
snap-through behaviors. In other words, in spite of possessing
higher limit buckling loads, deeper shells exhibit a very unstable
response from the post-buckling point of view. Furthermore, in
the same effects of base-curvature radius ratio r1/r0, the load of
the nonlinear response of the shells is higher when the shallow-
ness of the shell (H) is smaller, where His the distance between
two radius r1/r0, and calculated is by:

H(r1, r0) =
√
R2 − r20 −

√
R2 − r21 = R

[√
1 −

( r0
R

)2

−√
1 −

( r1
R

)2
]

.

The present figures of this study were obtained with a
very distinct difference between the bucking and post-buckling
response of the axisymmetric and un-axisymmetric annular
spherical shells in Duc et al. [10].

5. Concluding remarks

The present article aims to propose an analytical approach
to study the nonlinear buckling and post-buckling response
of the thin axisymmetric FGM annular spherical shell with
temperature-dependent material properties on elastic founda-
tions subjected to mechanical and thermal loads. Based on the
classical thin shell theory, the equilibrium and compatibility
equations are derived in terms of the shell deflection and the
stress function. This system of equations has been transformed
into another system of more simple equations, so the appropri-
ate formulas for FGM axisymmetric annular spherical shells are
found to be a special case. Due to the properties of component
materials being dependent on temperature, an iterative algo-
rithmhas been used to obtain the nonlinear curve. The effects of
the material composition, volume fraction of constituent mate-
rials, Winkler and Pasternak type elastic foundations, and tem-
perature on the nonlinear stability of the FGM shells are ana-
lyzed and discussed.
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Appendix

φ1 = P�T
8(1 − ν)

β
(
β2 + 3

) (
β2 + 25

) (
R4
0 − R4

1
)
R2
h

R0 (4 + β2)
(
R5
0 − R5

1(−1)m
) ;

φ2 = 2
__
E1 β

(
β2 + 3

) (
25 + β2) (

R2
0 + R2

1
) (
R3
0 − R3

1(−1)m
)
R3
h

8R2
0 (1 − v ) (4 + β2)

(
R5
0 − R5

1(−1)m
)

×

⎛
⎜⎜⎝

νβ�1 + (2ν − 1) �2+

+ β

(9 + β2)

⎞
⎟⎟⎠

−2
__
E2 β2 (

β2+3
) (

β2+25
) (
R2
0+R2

1
) (
R0−R1(−1)m

)
R4
h

8R2
0 (1−v ) (4+β2)

(
R5
0−R5

1(−1)m
) ;

φ3 =
__
E1

(
2β2 + v

) β
(
β2 + 3

) (
25 + β2) (

R4
0 − R4

1
)
R4
h

64 (1 − v )R3
0 (4 + β2)

(
R5
0 − R5

1(−1)m
) ;

φ5 =
__
E1

(
2β2 + ν

)
R3
h

4R2
0 (1 − v )

.

φ4 = 4
__
E1

(
R3
0 − R3

1(−1)m
)
R2
h

R0 (1 − ν)
(
R2
0 − R2

1
)

×
(

vβ�1 + (2ν − 1) �2 + β

(9 + β2)

)

−4
__
E2 β

(
R0 − (−1)mR1

)
R3
h

R0 (1 − ν)
(
R2
0 − R2

1
) .
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