Distance magnetic nanoparticle detection using a magnetoelectric sensor for clinical interventions

D.T. Huong Giang^{1*}, D.X. Dang¹, N.X. Toan¹, N.V. Tuan², A.T. Phung³ and N.H. Duc^{1*}

¹Laboratory for Micro-nano Technologies and Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy Road, Cau Giay, Hanoi, Viet Nam

² Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam

³ Departement of Electrical and Electronic Equipment, School of Electrical Engineering, Hanoi University of Science and Technology, Suite 106, C3 Building, 1 Dai Co Viet Road, Hanoi, Vietnam

Abstract: Distance magnetic nanoparticle detections were investigated by using a magnetoelectric based magnetic sensor with a long type bilayer Metglas/PZT laminate composite. In homogeneous magnetic fields, the sensor exhibits a sensitivity of 307.4 mV/Oe, which is possible for a detection limit of 2.7×10^{-7} emu. This sensor can detect an amount of 0.31 µg of the superparamagnetic Fe₃O₄-chitosan fluid at 2 mm height above the sensor surface. To detect a spot with magnetic nanoparticles at a distance of about 7.6 mm, it should contain at least 50 µg of iron oxide. This approach is able to develop for local detection of magnetic nanoparticles at a depth of centimeters in the body during clinical interventions.

Keywords: Magnetic sensor; Magnetoelectric effects; Nanoparticle detection; Shear-lag effects; Medical application.

REVIEW OF SCIENTIFIC INSTRUMENTS (Accepted Paper)

*) Corresponding authors: D.T. Huong Giang – giangdth@vnu.edu.vn N.H. Duc – ducnh@vnu.edu.vn Tel.: 84 – 4 – 3754 9665; Fax: 84 – 4 – 3754 7460