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Abstract—Based on the minimum noise subspace (MNS) method
previously introduced in the context of blind channel identification,
generalized minimum noise subspace (GMNS) is proposed in this
paper for array processing that generalizes MNS with respect to
the availability of only a fixed number of parallel computing units.
Different batch and adaptive algorithms are then introduced for
fast and parallel computation of signal (principal) and noise (mi-
nor) subspaces. The computational complexity of GMNS and its
related estimation accuracy are investigated by simulated experi-
ments and a real-life experiment in radio astronomy. It is shown
that GMNS represents an excellent tradeoff between the computa-
tional gain and the subspace estimation accuracy, as compared to
several standard subspace methods.

Index Terms—Batch and adaptive algorithms, principal and mi-
nor subspace, MNS, GMNS, PCA, MCA, parallel computing, radio
frequency interference (RFI) mitigation, radio astronomy.

I. INTRODUCTION

PRINCIPAL subspace analysis (PSA) and minor subspace
analysis (MSA) play important roles in many practical

signal processing applications such as high resolution parameter
estimation [1], blind source separation [2], and radio frequency
interference mitigation [3]. Important problems closely related
to PSA and MSA are principal component analysis (PCA) and
minor component analysis (MCA) that usually require eigen-
subspaces of the data covariance matrix [4].

For batch systems, standard subspace techniques based on
singular value decomposition (SVD) or eigenvalue decomposi-
tion (EVD) are often applied. Although these techniques have
high performance advantages, they face high computational
complexity, generally of O(n3) operations, where n is the di-

Manuscript received June 21, 2016; revised January 1, 2017 and March 15,
2017; accepted March 28, 2017. Date of publication April 18, 2017; date of
current version May 17, 2017. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Yimin D. Zhang. This
work was supported by Vietnam National Foundation for Science and Technol-
ogy Development (NAFOSTED) under Grant 102.02-2015.32. (Corresponding
author: Viet-Dung Nguyen.)

V.-D. Nguyen and K. Abed-Meraim are with the PRISME laboratory,
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mension of the observation vector or the number of sensors.
This complexity causes a serious handicap for large-dimensional
systems such as large sensor networks [5], massive multiple-
input-multiple-output (MIMO) systems [6], or large antenna
arrays like the square kilometer array (SKA) used in radio as-
tronomy [7]. In addition, SVD-like methods are not suitable
for adaptive subspace tracking because it requires repeated
decompositions. In such a case, the use of distributed algo-
rithms [8], parallel computation schemes [3], and fast adaptive
techniques [9]–[11] becomes of high interest and generally leads
to large gains in terms of computational complexity and memory
requirements.

To concretely motivate our research, we now give an exam-
ple about the LOw Frequency Array (LOFAR) telescope [12],
which can be considered as a pathfinder for SKAs [7]. A LOFAR
telescope provides a flexible way for all-sky monitoring. In such
a system, to attain desired sensitivity (at least several orders of
magnitude higher than most communication systems) and accu-
rate spatial resolution, a huge amount of small phased arrays for
future SKAs are used and distributed over a large area instead of
a small number of big dishes. According to [7], several hundreds
of mid- to high-frequency 15 m dishes will be located in South
Africa and Africa, and several hundreds of thousands of low-
frequency antennas will be located in Western Australia. Thus, it
allows an observation of multiple directions at the same time on
the sky at a reasonable cost. However, it also leads to challenging
problems as follows. First, a massive amount of data, which are
collected from some distributed stations and then transmitted to
a data center, need to be processed. Second, due to high sensi-
tivity, observed radio astronomical signals are very weak; they
are typically 40 dB to over 100 dB weaker than signals from
active services. If we suppose further that subspace approaches
such as multiple signal classification (MUSIC) [13], estimation
of signal parameters via rotational invariance techniques (ES-
PRIT) [14] and their variants are adopted, it is then problematic
to deal with both computational complexity and “subspace fu-
sion” of the massive data. The latter, similar to data fusion, is
the process of integration of multiple subspaces representing
the same real-world object into consistent, accurate, and useful
representations of the “global” minor and principal subspaces.

From a technical point of view, suppose that we have at hand
a parallel computing architecture with K computing units1. The

1A parallel computing architecture can be, but not limited to, a multi-core
processor, a graphics processing unit (GPU) or a field-programmable gate array
(FPGA) board.
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question of interest in this paper is: How can we exploit this
architecture to fuse subspaces, and then to achieve the “global”
minor or principal subspaces, as well as to reduce the compu-
tational cost for extracting these subspaces? A simple and effi-
cient subspace method called MNS was proposed in [15]. This
method estimates the noise subspace via a set of noise vectors
(a basis of the noise subspace) that can be computed in parallel
from a set of tuples of system outputs. MNS is much more ef-
ficient because it avoids large-scale EVD/SVD computation in
the standard subspace method. MNS has been applied to blind
system identification [15], source localization [16], array cali-
bration [16], multichannel blind image deconvolution [17], and
adaptive subspace tracking [18]. However, the number of paral-
lel computing units based on which MNS is implemented is the
same as the dimension of the noise subspace and is, generally
not equal to the actually available number of computing units
(K) of the parallel computing architecture in use. In addition,
the performance of MNS is degraded if the number of outputs
is very large compared to that of the inputs.

In this paper, we are not only to generalize MNS from [15]
in such a way that we can handle MNS computation with a
given K number of parallel computing units but also to handle
principal subspace computation that was not dealt with in [15].
The main contributions of this paper are summarized as follows.

1) Via the introduction of the concept of a generalized prop-
erly connected sequence (GPCS), we propose the GMNS
concept and then several efficient GMNS-based algo-
rithms for MSA and PSA, given a fixed number of parallel
computing units. It is noted that we have disseminated par-
tial results on GMNS in our conference contribution [19],
and in this paper we provide detailed proofs and extensive
experiments.

2) We then propose an algorithm to estimate the principal
eigenpairs from the corresponding principal subspaces
(i.e., solving the PCA problem) by solving a joint di-
agonalization problem.

3) We develop efficient adaptive versions of the above pro-
posed GMNS-based batch algorithms for both principal
subspace tracking (PST) and minor subspace tracking
(MST) by integrating several existing (non-GMNS-based)
subspace tracking algorithms in our parallel framework
of GMNS. As will be shown, our GMNS-based adap-
tive algorithms have advantages in terms of computational
complexity and convergence rate. It should be noted that
some adaptive algorithms for MNS have already been pro-
posed in [20] but they are limited to least minor subspace
analysis.

4) We further propose efficient GMNS-based adaptive algo-
rithms for principal eigenvector tracking (PET) from the
corresponding GMNS-based PST algorithms. The per-
formance of our algorithms is nearly identical to that of
standard SVD-based algorithms and the computational
complexity is lower.

5) We apply our GMNS-based PSA method to a real-life
application– radio frequency interference (RFI) mitiga-
tion in radio astronomy.

The minor and principal subspaces can be exploited in different
ways in different algorithms. For example, while MUSIC and its
variants use the minor subspace for direction of arrival (DOA)
estimation, ESPRIT and its variants use the principal subspace
to achieve the desired result. In this paper, GMNS considers
both minor and principal subspace estimation, whereas MNS
only considers minor subspace estimation. The potential of
GMNS are two-fold. First, GMNS provides a framework that
allows the estimation of both minor and principal subspaces in
parallel. Second, it can be used to fuse data from several data
sources. In the practical application on RFI mitigation studied in
Section VII, it will be shown that it is difficult or expensive
to directly estimate the “global” principal subspace from the
available data covariances of several stations. On another
note, GMNS has recently been applied to parallelizable tensor
decomposition [21].

The rest of the paper is organized as follows. The MNS con-
cept and its implementation are briefly reviewed in Section II.
The GMNS concept and the GMNS-based batch algorithms for
MSA and PSA/PCA are proposed in Sections III and IV, respec-
tively. GMNS-based adaptive algorithms are then developed in
Section V, with some details on the computational complexity.
The performance of the proposed GMNS-based batch and adap-
tive algorithms is presented in Sections VI and VII, including
the real-life application on RFI mitigation.

II. MINIMUM NOISE SUBSPACE: A REVIEW

Let us consider a general linear system with p inputs and
n outputs (p < n), which obeys the following model for the
input-output relationship:

x(t) = As(t) + n(t), (1)

where x(t) ∈ Cn is the observation vector, A ∈ Cn×p is the
system matrix of full column rank, s(t) ∈ Cp is the random
source vector, and n(t) ∈ Cp is the additive white noise vector
with unknown variance σ2 . The data covariance matrix is then
given by

Rxx = E{x(t)x(t)H } = ARssAH + σ2I, (2)

where Rss is the source covariance matrix of full rank.
It is of interest to compute the minor subspace of Rss for that

MNS was proposed in order to achieve fast computation in a
parallel manner [15]. In particular, the concept of properly con-
nected sequence (PCS) is defined and the system is re-organized
into n − p subsystems based on a selected PCS. Then, the mi-
nor subspace will be efficiently estimated by computing the
least (noise) eigenvector, corresponding to the least eigenvalue,
of each subsystem. The PCS concept is to guarantee that the
noise vectors computed from the subsystems form a basis of the
noise subspace. In the following, we will review the concept of
PCS and the implementation of MNS.

A. Properly Connected Sequence

Denote the n system outputs by a set of members m1 ,m2 ,
. . . , mn . Consider a sequence of n − p subsets of out-
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Fig. 1. MNS implementation.

puts, wherein each subset i contains p + 1 members and
is denoted by the (p + 1)-tuple ti = (mi1 ,mi2 , . . . , mip + 1 ),
i = 1, . . . , n − p. This sequence is said to be properly con-
nected, if the following conditions are satisfied:

{mi1 , . . . , mip
} ⊂ {mjk

| j < i, 1 ≤ k ≤ p + 1},
mip + 1 �∈ {mjk

| j < i, 1 ≤ k ≤ p + 1}.
These conditions mean that each tuple in the sequence has p
members in common with its preceding tuples, along with an-
other member not so. For instance, if we consider a system
with p = 2 inputs and n = 6 outputs, the following sequence of
n − p = 4 tuples is a PCS:

t1 = (m1 ,m2 ,m3); t2 = (m1 ,m2 ,m4);

t3 = (m2 ,m3 ,m5); t4 = (m2 ,m5 ,m6).

B. MNS Implementation

Now, given a PCS of n − p tuples of system outputs, the (par-
tial) observation vector xi(t) = [xi1 (t), xi2 (t), . . . , xip + 1 (t)]

T

of p + 1 outputs corresponding to the i-th tuple has the following
structure:

xi = Ais(t) + ni(t), (3)

and its covariance matrix is given by

Ri = E{xi(t)xH
i (t)} = AiRssAH

i + σ2I, (4)

where Ai is the response matrix of the i-th subsystem and ni(t)
is the corresponding additive white noise. Each subsystem in (4)
has a noise subspace of minimum dimension (i.e., equal to one),
suggesting the naming of MNS.

From each Ri , a noise vector vi is constructed by first com-
puting the least eigenvector v̂i of Ri , and then zero-padding
(ZP) it according to

vi(j) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if the j-th system output does
not belong to the i-th tuple,

v̂i(j′), if the j-th system output is the
j′-th entry of i-th tuple,

(5)

for 1 ≤ j ≤ n.
In practice, Ri is estimated by the sample average as

R̂i = 1
T

∑
t xi(t)xH

i (t), with T being the sample size. It is
proved in [15] that the resulting set of noise vectors {vi}, for
1 ≤ i ≤ n − p, forms a basis of the noise subspace. Fig. 1 illus-
trates the MNS implementation.

III. MINOR SUBSPACE ANALYSIS USING GMNS

As stated in Section I, the objective of this paper is to ex-
ploit the available parallel computing architecture, when having
access to exactly K computing units, in order to reduce the com-
putational cost for extracting the minor or principal subspaces
of Rxx . We approach this by generalizing MNS.

It is observed that each noise vector in MNS is estimated
by the use of a minimum number of system outputs (i.e., p + 1)
which might lead to a non-negligible performance loss if n � p.
In addition, to achieve the parallel computation of the noise
vectors, (n − p) computing units are needed, a number which
depends on the impinging source number p and is usually a
non-controllable system parameter.

Next, we propose a GMNS-based method for MSA, hereafter
referred to as GMNS-MSA, to overcome the above-mentioned
shortcomings. Given K computing units, we need to compute
the (n − p) noise vectors.

Let us write n − p = dK + r, where d and r are integers
and 0 ≤ r < K, and for simplicity we assume that r = 0, i.e.,
(n − p)/K is integer-valued. Now, we propose a concept of
generalized properly connected sequence (GPCS), which gen-
eralizes the PCS concept used in MNS.

Definition 1: A GPCS is a sequence of K (p + d)-tuples
ti = (mi1 , . . . , mip + d

) for 1 ≤ i ≤ K that satisfies the follow-
ing conditions:

{mi1 , . . . , mip
} ⊂ {mjk

| j < i, 1 ≤ k ≤ p + d}, (6)

{mip + 1 , . . . , mip + d
} �∈ {mjk

| j < i, 1 ≤ k ≤ p + d}. (7)

In other words, each tuple in the sequence has p members in
common with its preceding tuples along with d other members
not so.

Given a GPCS of K (p + d)-tuples of the outputs, the noise
vectors are computed as follows. First, for each i-th subsystem,
we compute the covariance matrix Ri of size (p + d) × (p + d),
and hence its d least eigenvectors, represented by matrix V̂i .
Then, we construct the desired noise submatrix Vi according to
the following rule2:

Vi(j, :) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if the j-th system output does
not belong to the i-th tuple,

V̂i(j′, :), if the j-th system output is the
j′-th entry of i-th tuple.

(8)

Finally, we concatenate the K submatrices Vi , 1 ≤ i ≤ K,
to have the global noise matrix V = [V1 , . . . ,VK ] whose
columns form a basis of the noise subspace under the con-
ditions given in the following theorem, with proof given in
Appendix A.

Theorem 1: Under the assumption that every p rows of A
are linearly independent, the noise matrix V has full column
rank (i.e., rank(V) = n − p) and hence its columns span the
desired noise subspace of the data covariance matrix Rxx .

The GMNS-MSA method is illustrated in Fig. 2 and its im-
plementation is summarized in Table I.

2In the sequel, V(j, :) refers to the j-th row vector of V.
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Fig. 2. GMNS for MSA, with K = 3 subsystems. The green (bold) part
represents the p outputs shared by three subsystems.

TABLE I
SUMMARY OF GMNS FOR MSA

The main advantage of GMNS-MSA is the reduction of the
computational cost in comparison with the standard method. In
particular, GMNS-MSA requires O((p + (n − p)/K)2T ) flops
for the computation of the subsystem covariance matrices plus
O((p + (n − p)/K)2(n − p)/K) flops for the estimation of
the least eigenvectors. Whereas, the standard method requires
O(n2T ) flops for the estimation of the global covariance matrix
plus O(n2(n − p)) flops for the extraction of the noise vectors.
Obviously, if n � p, the overall cost is reduced by almost a
factor of K2 for the covariance matrix estimation and a factor
of K3 for the noise subspace estimation.

Following are some remarks on the GMNS-MSA method.
Remark 1: Generally, (n − p)/K is non integer-valued; that

is, 0 < r < K for r in n − p = dK + r. In that case, we will
use r tuples of length p + d′, with d′ = d + 1, and K − r tuples
of length p + d.

Remark 2: It should be noted that the GPCS concept is just a
practical way to guarantee that the obtained vectors form a basis
of the desired subspace. In other words, GPCS does not represent
necessary conditions to meet but only sufficient conditions.

Remark 3: For large dimensional systems when n � p, us-
ing only p + 1 system outputs as in the original MNS to compute
a noise vector may result in non-negligible performance loss.
Now if �(n − p)/K	 = d is relatively large, we will instead
use p + d + 1 outputs to estimate a given noise vector which
improves its estimation accuracy, as later shown in Fig. 5. It
also means that we need K < (n − d)/p so that the size of
subsystems is larger than p.

Remark 4: When p 
 n, one way to estimate the minor sub-
space is to first estimate the signal subspace (with a low cost)
and then obtain the noise subspace as its orthogonal comple-
ment. However, it is quite expensive to compute the orthogonal

complement subspace; i.e., O(p2n). In addition, extraction of an
orthogonal basis of the noise subspace would require a further
cost.

Remark 5: So far, we have assumed that p is known in ad-
vance. When this assumption is violated, many subspace al-
gorithms still work well in practice if we replace p with an
overestimated value, for example in the MUSIC algorithm. In
such a case, the value used by the algorithm can be just a guess
(overestimated value) of the exact value p.

Remark 6: In [22], a fast subspace estimation method was
proposed, exploiting the spatial whiteness of the additive noise.
In this paper, we exploit this property together with parallel
computing to achieve a much higher computational gain.

IV. PRINCIPAL SUBSPACE ANALYSIS AND PRINCIPAL

COMPONENT ANALYSIS USING GMNS

The original MNS was dedicated to MSA and above we have
proposed a GMNS-based method for MSA. In this section, we
propose a GMNS-based method for PSA using K subsystems
in a parallel manner. This method is hereafter referred to as
GMNS-PSA. In particular, we proposed algorithms for overlap-
ping and non-overlapping subsystems respectively. In addition,
we extend the method for PCA, which is hereafter referred to as
GMNS-PCA.

A. Principal Subspace Analysis Using GMNS

1) Subsystems Without Overlapping Parts: Let us assume
that we have a large dimensional system such that l = n/K > p
and, for simplicity, l is integer-valued. We divide the n system
outputs into K subsystems of length l each represented by

(m(i−1)l+1 , . . . , mil), i = 1, . . . , K.

Now, for each subsystem i, we compute the correspond-
ing covariance matrix Ri and its principal subspace matrix
Wi = AiQi , where Qi is an unknown nonsingular matrix of
size p × p.

To have a global estimate of the signal subspace (i.e., a matrix
W = AQ of size n × p where Q is any p × p nonsingular
matrix), we need to get rid of the unknown matrices Qi . For
that, we exploit the fact that all subsystems receive the same
source S of size p × T , that is,

Xi = AiS + Ni , i = 1, . . . , K, (9)

where S = [s(1), · · · , s(T )] and Ni is noise affecting the i-th
subsystem. Let us define

Si = W#
i Xi , (10)

where # denotes the pseudo-inverse operator3. Then, thanks
to (9), we have

Si = Q−1
i S + W#

i Ni , i = 1, . . . , K. (11)

In the noiseless case, it can be shown that

Si = TiS1 ,

3Most subspace estimation methods compute an orthonormal basis of the
desired subspace (see, e.g., [23]) in which case we have W#

i = WH
i .
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where Ti = Q−1
i Q1 . Matrix Ti can be estimated by solving

the following least square problem:

min
T i

‖ Si − TiS1 ‖2
2 .

Its solution is given by

T̂i = SiS
#
1 . (12)

Finally, the principal subspace weight matrix is obtained as

W =
[
WT

1 , (W2T2)T , . . . , (WK TK )T
]T ≈ AQ1 . (13)

In the noisy case, the estimate of the principal subspace weight
matrix in (13) is biased due to the effect of the noise term on
the estimation of Ti in (12). In fact, (12) can be rewritten as

T̂i =
(

SiSH
1

T

) (
S1SH

1

T

)−1

(14)

≈ (Q−1
i R̂ssQ−H

1 )(Q−1
1 R̂ssQ−H

1 + σ2I)−1 . (15)

Here we have substituted (11) into (14), and used the facts
that the subsystems are non-overlapping, their noise terms are
uncorrelated (spatially white noise assumption) and Wi are
unitary matrices that leads to E[WH

1 n1(t)nH
1 (t)W1 ] = σ2I

and, hence, WH
1 (N1NH

1 /T )W1 ≈ σ2I. Moreover, we remind
that the signal and the noise are uncorrelated, i.e., E[SNH

i ] = 0
and hence SNH

i /T ≈ 0. Because of the additive term σ2I, T̂i

deviates from its desired value and leads to an estimation bias
for the global weight matrix, especially, at low signal-to-noise
ratio (SNR).

To overcome this problem, we replace the previous estimate
of Ti by the following asymptotically unbiased estimate:

T̃i =
(

SiSH
1

T

) (
S1SH

1

T
− σ̂2I

)−1

= (WH
i Ri,1W1)(WH

1 R1W1 − σ̂2I)−1 , (16)

where

Ri,1 = E[xi(t)xH
1 (t)] (17)

σ̂2 = [Tr(R1) − Tr(WH
1 R1W1)]/(l − p). (18)

To obtain the noise power estimate in (18), we first obtain the
EVD of R1 as

R1 = A1RssAH
1 + σ2I

= Us(Λs + σ2I)UH
s + σ2UnUH

n , (19)

in which the columns of Us span the signal subspace of R1
and those of Un span the noise subspace of R1 . From (19) and
using WH

1 Un = 0, we then have

WH
1 R1W1 = WH

1 Us(Λs + σ2I)UH
s W1 . (20)

Since WH
1 Us is unitary, we have Tr(R1 − WH

1 R1W1) =
(l − p)σ2 , and thus (18).

The above biased and unbiased algorithms are referred to
as GMNS-N-PSA (N stands for non-overlapping) and GMNS-
NU-PSA (NU stands for non-overlapping and unbiased), re-
spectively. They are summarized in Table II. Fig. 3 illustrates
the steps described in this section.

TABLE II
SUMMARY OF GMNS FOR PSA: NON-OVERLAPPING AND

OVERLAPPING SUBSYSTEMS

Fig. 3. GMNS for PSA with non-overlapping parts; K = 3.

2) Subsystems With Overlapping Parts: In the above non-
overlapping case, we have assumed that n/K > p. To relax
this assumption and extend our method to cover also the case4

where n/K < p, we consider here overlapping subsystems of
size p + q sharing q system outputs, and represented by the
K tuples. For example, here, we choose all subsystems which
overlap with the first one:

(m1 , . . . , mq , mq+1 , . . . mp+q ),

(m1 , . . . , mq , m(i−1)d+1 , . . . , mid), i = 2, . . . , K.

In other words, the q first members of the first subsystem are
the q first members of the i-th subsystem, for i = 2, . . . , K. For
simplicity, we assume that d = (n − p)/K is integer-valued.
Now, for each subsystem, we compute the covariance matrix Ri

and its corresponding weight matrix Wi which can be written as

Wi =

[
Wolap

i

W′
i

]

=

[
Aolap

i

A′
i

]

Qi . (21)

To get rid of the matrices Qi , one exploits the overlap between
the first subsystem and the i-th subsystem by assuming that

4When using overlapping subsystems, we can deal with either n/K ≥ p or
n/K < p, while in the non-overlapping case, it is necessary to have n/K > p.
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Fig. 4. GMNS for PSA with overlapping parts; K = 3.

Fig. 5. Minor subspace estimation.

any p × p submatrix of A has full rank. In that case, the global
weight matrix is estimated as

W =
[
W̃T

1 ,W̃T
2 , . . . ,W̃T

K

]T

, (22)

where

W̃1 = W1 , (23)

W̃i = WiTi , i = 2, . . . , K, (24)

Ti = (Wolap
i )#(Wolap

1 ). (25)

This algorithm is referred to as GMNS-O-PSA (where O
stands for overlapping) and is summarized in Table II and illus-
trated in Fig. 4.

3) Complexity: Similar to GMNS-MSA in Section III, the
main advantage of the proposed GMNS-based PSA algorithms
resides in its reduced computational cost. GMNS-NU-PSA
costs O((n/K)2p + p2(n/K + p)) flops for the computation
of p signal subspace vectors and O(2(n/K)2T ) flops for the
computation of the covariance matrices Ri and the corre-
lation matrices Ri,1 , for i = 1, . . . , K. This overall cost is
approximately K2 less than the cost of a direct computa-
tion of the signal subspace using the global covariance ma-
trix, which takes O(n2(T + p)) flops. GMNS-O-PSA costs
O((p + q)2p + p2(2p + q)) flops for the computation of p sig-
nal subspace vectors and O((p + q)2T ) flops for the parallel
computation of the covariance matrices. If n � p, n � K and
T � 1, then q ≈ n/K, and hence GMNS-O-PSA is slightly
cheaper than GMNS-NU-PSA since it does not require comput-
ing the correlation matrices5.

B. Principal Component Analysis Using GMNS

Having estimated the principal subspace by the GMNS-PSA
method as presented in Section IV-A, we can further extract the
principal eigenvalues and eigenvectors of the covariance matrix
Rxx , resulting in a GMNS-based method for PCA. This method
is hereafter referred to as GMNS-PCA and is described below.

First, we note that

W = AQ = UsQ̃, (26)

where the columns of Us are p principal eigenvectors of Rxx ,
and Q̃ is a non-singular matrix of size p × p.

Now, consider the following expression:

W#RxxW = Q̃−1(UH
s RxxUs)Q̃ (27)

= Q̃−1

⎡

⎢
⎣

λ1 0
. . .

0 λp

⎤

⎥
⎦ Q̃, (28)

where λ1 , . . . , λp are the principal eigenvalues of Rxx .
Therefore, the principal eigenvectors and eigenvalues can

be found by computing matrix Q̃ that diagonalizes the matrix
W#RxxW.

We note that since GMNS-PCA estimates the principal eigen-
vectors from the principal subspace obtained by GMNS-PSA,
the eigenvectors are arranged in descending order of the corre-
sponding eigenvalues, i.e., λ1 ≥ λ2 ≥ · · · ≥ λp . Therefore, the

5For certain applications, e.g., radio astronomy, the global covariance matrix
is available (or already computed) for other needs. Hence, GMNS-NU-PSA
becomes more advantageous than GMNS-O-PSA in term of computational
complexity.
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TABLE III
SUMMARY OF GMNS FOR PCA

TABLE IV
SUMMARY OF GMNS FOR MST

performance of principal eigenvector estimation depends on that
of principal subspace estimation. The whole method is summa-
rized in Table III.

V. ADAPTIVE GMNS-BASED ALGORITHMS

In this section, we are interested in estimating the minor
and principal subspaces at each time index t from streaming
observations {x(t)}t≥1 .

A. Minor Subspace Tracking Using GMNS

Thanks to the parallel structure of GMNS-MSA, the conver-
sion from a batch system to an adaptive one is quite simple. This
leads to our proposed GMNS-based method for MST, which is
hereafter referred to as GMNS-MST.

In practice, to track the underlying minor subspace, we re-
place the SVD-based computation of the minor subspace from
the correlation matrix (i.e., Step 2 in Table I) with any existing
MST algorithms while keeping the remaining steps unchanged.
In our GMNS-MST, we integrate the FOOja algorithm [24] and
the FDPM algorithm [11].

It should be noted that the estimation of the covariance matrix
(i.e., Step 1 in Table I) is not required in FOOja and FDPM. As a
result, GMNS-MST provides a way to reduce the complexity of
the algorithms by a factor of K. The implementation of GMNS-
MST is summarized in Table IV.

Because of the way we construct the desired noise matrix
(i.e., Step 3 in Table IV), the computational cost of GMNS-
MST equals the cost of the tracking algorithm in use reduced
by a factor of K. For example, it costs O(np/K) if FOOja or
FDPM is used.

B. Principal Subspace Tracking Using GMNS

By extending GMNS-PSA as given in Section IV-A to adap-
tive processing, we now propose a GMNS-based method for
PST, which is hereafter referred to as GMNS-PST. Similar to
GMNS-PSA, we deal with two cases whether we have the sub-
systems with or without overlapping parts.

1) Subsystems Without Overlapping Parts: We observe that
matrix Ti can be expressed by

Ti = W#
i (XiX

#
1 )W1 . (29)

By this way, we can track the principal subspace Wi of each
subsystem and then compute the global weight matrix W as
in (13).

Because calculating the term XiX
#
1 in full scale is expensive

and not suitable for adaptive processing, we propose to use a
sliding window technique to overcome this problem. Denote by
N the window size. At time instant t, the subsystem Xi(t) can
be written as

Xi(t) = [xi(t − (N − 1)) · · · xi(t)]. (30)

In our GMNS-PST, we use the sliding window version of the or-
thogonal projection approximation subspace tracking (OPAST)
algorithm [25].

Now, to update Ti(t) efficiently, we first rewrite the term
Xi(t)X

#
1 (t) as

Xi(t)X
#
1 (t) = Pi(t)M−1(t), (31)

where

Pi(t) = Xi(t)XH
1 (t),

M(t) = X1(t)XH
1 (t).

Then, we obtain

Pi(t) =
N −1∑

τ =0

xi(t − τ)xH
1 (t − τ)

= Pi(t − 1) + xi(t)xH
1 (t) − xi(t − N)xH

1 (t − N),
(32)

M(t) =
N −1∑

τ =0

x1(t − τ)xH
1 (t − τ)

= M(t − 1) + x1(t)xH
1 (t) − x1(t − N)xH

1 (t − N).
(33)

Since M(t) has a rank-2 update structure, it can be efficiently in-
verted by applying the matrix inversion lemma to yield M−1(t).
However, substituting (32) and (33) into (31) and hence into (29)
still includes expensive matrix-matrix multiplications. Fortu-
nately, many fast tracking algorithms have a rank-1 update struc-
ture (e.g., the OPAST algorithm [10]) expressed in the form of

W(t) = W(t − 1) + p(t)qH (t). (34)

Thus, we can use this observation to compute (29) recursively
with only matrix-vector multiplications. To initialize Pi(0) and
M(0), we can either choose them arbitrarily or use the N first
snapshots in a batch way.
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TABLE V
SUMMARY OF GMNS FOR PST

This algorithm is referred to as GMNS-N-PST and summa-
rized in Table V.

Remark 7: Recall that in GMNS-PSA we have developed
both biased and unbiased estimators of Ti . However, in adaptive
processing, we have observed that the performance improve-
ment of PST in the unbiased case is negligible as compared to
the biased case. Thus, we only presented the latter, as above,
due to its simplicity.

2) Subsystems With Overlapping Parts: Similar to modify-
ing GMNS-MST to deal with the case where the subsystems
have overlapping parts, at each time instant in the adaptive ver-
sion of GMNS-O-PSA, we simply replace the SVD-based com-
putation of the principal subspace from the correlation matrix
(i.e., Steps 2 and 3 in Table II) with any existing PST algorithms
while keeping the remaining steps unchanged. Again, a similar
observation for efficiently computing Ti in the non-overlapping
case can also be applied here. This algorithm is referred to as
GMNS-O-PST and summarized in Table V.

C. Principal Eigenvector Tracking Using GMNS

Here we present an adaptive version of GMNS-PCA, as de-
scribed in Section IV-B, to track the principal eigenvectors from
the estimated principal subspace. It is hereafter referred to as
GMNS-PET.

According to (27), at time instant t, the following diagonal-
ization is performed:

W#(t)Rxx(t)W(t) = Q̃−1(t)

⎡

⎢
⎣

λ1(t) 0
. . .

0 λp(t)

⎤

⎥
⎦ Q̃(t).

(35)

Then, the principal eigenvectors are found to be

Us(t) = W(t)Q̃−1(t). (36)

A naive implementation of the above estimation is not nu-
merically efficient. Observed that (27) can be written as

W#(t)Rxx(t)W(t) ∼= E{W#(t)x(t)x(t)H W(t)}
∼= E{ỹ(t)yH (t)},

where

ỹ(t) = W#(t)x(t), (37)

y(t) = WH (t)x(t). (38)

The main cost thus comes from the calculation of the pseudo-
inverse operator in (37), which is then expressed as

ỹ(t) = [W(t)H W(t)]−1W(t)H x(t) = D(t)y(t),

where

D(t) = [W(t)H W(t)]−1 =

[

I +
K∑

k=2

TH
k (t)Tk (t)

]−1

.

(39)

Equation (39) yields because of the fact that Wk (t) (k =
1, . . . , K) are orthogonal, i.e., WH

k (t)Wk (t) = I. Thus, ỹ(t)
and y(t) can be obtained as

ỹ(t) =
K∑

k=1

ỹk (t), (40)

y(t) =
K∑

k=1

yk (t), (41)

where

ỹk = D(t)yk (t), (42)

yk = WH
k (t)xk (t), (43)

which can be implemented in parallel in each computing unit.
Then, according to (35), Q̃−1(t) can be estimated by per-

forming EVD of Z(t). Here, Z(t) is either obtained by

Z(t) =
L−1∑

τ =0

ỹ(t − τ)yH (t − τ)

= Z(t − 1) + ỹ(t)yH (t) − ỹ(t − L + 1)yH (t − L + 1),
(44)

if a sliding window of length L is used, or by

Z(t) =
t∑

τ =0

βt−τ ỹ(τ)yH (τ)

= βZ(t − 1) + ỹ(t)yH (t), (45)

if the exponential window is used (β being the forgetting fac-
tor, 0 < β ≤ 1). Once Q̃−1(t) has been estimated, the principal
eigenvectors are obtained by (36), which can again be esti-
mated in parallel. The algorithm costs O(np2/K) + O(p3) and
is summarized in Table VI.



NGUYEN et al.: GENERALIZED MINIMUM NOISE SUBSPACE FOR ARRAY PROCESSING 3797

TABLE VI
SUMMARY OF GMNS FOR PET

VI. SIMULATED EXPERIMENTS

In this section, the performance of subspace estimation is
studied by simulation. In all experiments, the system matrix A
is randomly generated but kept fixed for all Monte Carlo runs.
The sources are i.i.d. Gaussian processes of unit power. The
noise is spatially white with variance of σ2 . The SNR is defined
as

SNR = 10 log10
‖ A ‖2

σ2 . (46)

To assess the performance of the proposed algorithms, the
following two criteria are used: subspace estimation perfor-
mance (SEP) and eigenvector estimation performance (EEP).
The lower the values of SEP or EEP, the better the performance.

The SEP is defined as

SEP(t) =
Tr{WH

i (t)(I − Wex(t)WH
ex (t))Wi(t)}

Tr{WH
i (t)(Wex(t)WH

ex (t))Wi(t)} , (47)

where Wi is the estimated subspace at the i-th run, and Wex is
the exact subspace weight matrix computed by orthorgonalizing
A. In the case of a batch system, we can drop t from SEP.

The EEP is defined as

EEP(t) =‖ U(t) − Uex ‖2
F , (48)

where U(t) is the matrix of the estimated eigenvectors6, and
Uex is the matrix of the exact eigenvectors computed from the
exact covariance matrix (i.e., noiseless case) using the full SVD
algorithm. Similarly, we can drop t when considering a batch
system.

In all cases, the results are reported by taking the average
over 100 Monte Carlo runs. To assess the performance of
the algorithms with respect to the number of sources, p,
we present two different scenarios (p = 2 and p = 6) for
relatively large dimensional systems. A summary of parameters
used in the experiments is given in Table VII. For principal
subspace estimation/tracking, parameters are chosen based on
the configuration of one of real radio astronomy systems from
which we collected data, as described in Section VII. For minor
subspace estimation/tracking, the number of sensors is chosen
randomly but in such a way that (n − d)/p is integer-valued.
The value of T is considered following the radio astronomy
application (Section VII) where the sample size was large
enough and may even exceed 100 times n.

6To remove inherent ambiguities, the eigenvector norm is set to one and its
first entry is chosen to be positive real-valued.

TABLE VII
PARAMETERS USED IN OUR EXPERIMENTS

TABLE VIII
GPCS USED FOR FIRST EXPERIMENT

A. Minor Subspace Analysis

First, we assess the performance of GMNS-MSA against the
standard MSA method using SVD (SVD-MSA) with both small
(p = 2) and large (p = 6) numbers of sources. The results in-
dicate that GMNS-MSA has performance close to SVD-MSA
when p = 2, and it losses some accuracy at low SNR (i.e.,
SNR < 5 dB) when p = 6, as shown in Fig. 5(a). However, in
both experiments, the dominant cost of GMNS-MSA is reduced
by a factor of K2 , as compared to SVD-MSA. The selected
GPCS is given in Table VIII.

We then consider the effect of the number of sources on
the performance of GMNS-MSA by fixing n and changing
p. Moreover, we take into account two scenarios: low SNR
(SNR = 5 dB) and high SNR (SNR = 20 dB). Fig. 5(b) sug-
gests that GMNS-MSA is robust and comparable with SVD-
MSA in both scenarios.

We further assess impact of the number of computing units
K on the performance of GMNS-MSA by a study on perfor-
mance versus computational complexity. K is chosen so that the
number of sensors for each subsystem is greater than number of
sources as mentioned in Remark 3. There are two extreme cases,
K = 1 and K = n − p = 24. While the earlier corresponds to
GMNS-SVD (i.e., all data without division), the former is con-
sistent with MNS [15]. We can observe that there are a rise in
terms of error when increasing K. This is expected because of
a compromise between complexity and performance. Further-
more, at low SNR (SNR = 5 dB), using MNS leads to non-
negligible performance loss (Fig. 5(c)). In such a case, GMNS
is preferable.



3798 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 14, JULY 15, 2017

Fig. 6. Principal subspace estimation.

B. Principal Subspace/Component Analysis

For PSA, we compare the performance of GMNS-N-PSA,
GMNS-O-PSA and GMNS-NU-PSA with the standard PSA
method using SVD (SVD-PSA), for p = 2 and p = 6 as shown
in Figs. 6(a). Among the four algorithms, GMNS-N-PSA has
the lowest performance, as noticed in Section IV-A1. The three
other methods reach the SVD, except at low SNRs. Additionally,
we conduct a similar experiment as in the MSA case to evaluate
the effect of p on the performance of GMNS-N-PSA, GMNS-
O-PSA and GMNS-NU-PSA (Fig. 6(b)). At low SNR, GMNS-
N-PSA degrades the performance when p increases while
GMNS-O-PSA, GMNS-NU-PSA and SVD-PSA are compa-
rable. At high SNR, all algorithms are nearly identical in terms
of estimation accuracy.

Similar to the minor subspace case, we also examine the effect
of number of computing units on the performance of GMNS-
PSA. Again, K is chosen to preserve that the number of sensors

Fig. 7. Principal eigenvector estimation: EEP vs. SNR.

for each subsystem is greater than number of sources. We choose
GMNS-NU-PSA method to illustrate this point (Figs. 6(c)). At
low SNR and medium SNR, increasing K leads to slightly
reduced estimation performance.

For PCA, the same observation is done as for PSA, as shown
in Figs. 7. Similar to GMNS-MSA, GMNS-PCA based on the
three GMNS-MSA algorithms have the advantage of lower com-
putational cost with a gain approximately being equal to K2 , as
compared to the standard PCA method based on SVD.

C. Minor Subspace Tracking

For MST, we choose two low-cost algorithms, FOOja [24] and
FDPM [11], and one moderate-cost one, YAST (yet another sub-
space tracking) [26], and compare them with the corresponding
GMNS-based algorithms: GMNS-MST-FOOja, GMNS-MST-
FDPM and GMNS-MST-YAST. All algorithms run in a noisy
environment with SNR = 15 dB. The performance results with
respect to p = 2 and p = 6 are shown in Fig. 8, respectively.

Interestingly, the performance of GMNS-MST-FOOja is bet-
ter than FOOja even though its convergence rate is slower. The
reason is that dividing data into small subsystems reduces the
search space which then mitigates the local minima convergence
problem and enhances the overall performance. An analogous
observation can be seen for GMNS-MST-FDPM and FDPM.
Better convergence rate and estimation accuracy are obtained
by both YAST7 and GMNS-MST-YAST but at the expense of
higher computational complexity.

D. Principal Subspace Tracking

For PST, we compare OPAST and FDPM8, with their cor-
responding GMNS-based algorithms: GMNS-N-PST-OPAST,
GMNS-O-PST-OPAST, GMNS-N-PST-FDPM and GMNS-O-
PST-FDPM. It can be seen from Fig. 9 that the GMNS-based
algorithms have the same performance as their original algo-
rithms, but with a reduced cost. Also, we observe a clear ad-
vantage in favor of OPAST-based algorithms as compared to
FDPM-based ones.

7YAST has complexity of O(np2 ) as presented in [26].
8The principal subspace can be obtained by FDPM by changing the sign of

step size parameter.
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Fig. 8. Minor subspace tracking.

E. Principal Eigenvector Tracking

Since the performance of GMNS-based FDPM is worse
than GMNS-based OPAST, as just shown above, we apply the
GMNS-PET method in Section V-C using OPAST to track the
principal eigenvectors, with two parallelized GMNS-based al-
gorithms: GMNS-N-PST-OPAST and GMNS-O-PST-OPAST.
Then, we compare their results with the stand SVD-based algo-
rithm (SVD-PST). As shown in Fig. 10, both GMNS-N-PST-
OPAST and GMNS-O-PST-OPAST have the same performance
as that of SVD-PST.

VII. APPLICATION TO RFI MITIGATION IN RADIO ASTRONOMY

Now, we consider RFI mitigation which is a challenging prob-
lem in radio astronomy [27]. In general, RFI is difficult to void
even with the spectrum being protected and the deployed area
being relatively remote. The interference sources in radio astron-
omy can stem from various man-made wireless services such as
mobile cellular telephone, global positioning system satellites,
digital audio and video broadcasting, and so on.

The effect of RFI can be observed in Fig. 11(b). In this exam-
ple, the dataset comes from a single LOFAR station with n = 48
antennas, as shown in Fig. 11(a). Usually, those 48 antenna out-
puts are beamformed in real time and the corresponding signal
is sent to a central correlator for further radio astronomical pro-
cessing with other remote stations.

Fig. 9. Principal subspace tracking.

Fig. 10. Principal eigenvector tracking.
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Fig. 11. Image formation before (b) and after RFI mitigation (c-f). Qualitative comparison between SVD-based (c) and GMNS-based (d-f) subspace estimation
on RFI mitigation in radio astronomy. Signals-Of-Interest (SOIs): Cassiopeia A and Cygnus A; Radio-Frequency-Interference (RFI): a land mobile signal. (Best
view in color)

In our experiment, a 5.2 ms signal of those 48 antennas has
been stored on disk, and a 2 MHz band around a specific ter-
restrial RFI (a land mobile at 55 MHz) has been selected to
produce a 48 × 48 covariance matrix. The different sky images
presented in this section are derived from this matrix.

In Fig. 11(b), while signals-of-interest (SOIs) are not really
well-defined, a “strong” RFI appears at the horizon. This image
with distortions and artifacts is referred to as “dirty image”.
RFI can lead to distorted data and unwanted artifacts, causing
difficulty in astronomical observation.

To mitigate RFI, an efficient method is based on projection
in which a key step is subspace estimation. However, as stated
in the introduction, SVD- or EVD-based subspace estimation
methods are quite expensive in terms of computational com-
plexity. Here we will illustrate how we can apply the proposed
GMNS-based methods to tackle this problem while still pre-
serving the imaging quality.

The model under consideration can be presented as [28]

x(t) = Acc(t) + Arr(t) + n(t), (49)

where Ac ∈ Cn×m is the cosmic source spatial signature ma-
trix, c ∈ Cm is the cosmic source signal vector, Ar ∈ Cn×p is
the interference spatial signature matrix, r(t) ∈ Cp is the RFI
signal vector, and n(t) ∈ Cn is the additive white noise vector
with unknown variance σ2 .

Hence, we can estimate the data covariance matrix as

Rxx = AcRccAH
c + ArRrrAH

r + σ2I, (50)

where Rcc and Rrr are cosmic and RFI covariance matrices,
respectively. Here we have assumed that the cosmic sources,
the RFIs and the system noise are uncorrelated. The cosmic
sources are point sources because of relative distance between
the source and the instrument.

A. Orthogonal Projection Based RFI Mitigation Algorithm

This method can be implemented by first computing an or-
thogonal projection matrix Pr and then applying it to a “dirty”
covariance matrix to produce “clean” one (see [3], [29], [30]
and references therein). In particular, the orthogonal projector
is computed as

Pr = I − Wr (WH
r Wr )−1WH

r , (51)

where Wr is the estimated RFI principal subspace using
SVD/EVD. We can estimate the “clean” covariance matrix as

R̄ = PrRPH
r . (52)

In fact, we can apply the projection matrix at the pre-correlation
stage (i.e., at antenna array output). However, because the data
covariance matrix is produced by the radio astronomy system
by default, the described method is preferred.

In Fig. 11(c), the SVD-based subspace projector is applied
according to (51). A subspace of dimension 48 × 2, correspond-
ing to two principal eigenvalues, is selected. The Milky Way as
well as Cassiopeia A and Cygnus A are now strongly visible
and the land mobile signal has been mitigated.
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2) Qualitative Comparison: In Section VI, we have com-
pared the subspace estimation accuracy between the proposed
algorithms and the corresponding SVD-based algorithms quan-
titatively via numerical simulation. Now we conduct a qualita-
tive experiment using real-life data for further evaluation.

We replace the principal subspace in (51), estimated by the
standard SVD-PSA method, with the principal subspace esti-
mated by our GMNS-PSA method and build skymaps after RFI
mitigation. Again, the subspace corresponding to two principal
eigenvalues defines the RFI subspace (p = 2). As can be seen
from Figs. 11(d)–(f), SOIs are enhanced while RFIs are removed
(only the strongest RFI is circled in these figures). From those
figures, we can see that the imaging quality based on GMNS-
PSA is comparable with that of SVD-PSA. Again, our main
advantage is the fact that the cost is reduced by a factor of K2

compared to SVD-PSA.
While this experiment is based on a significant but still limited

number of antennas, our method is potential when massive data
like in the SKA project [7] need to be processed or when data
from some stations need to be fused.

VIII. CONCLUSION

In this paper, we have proposed a simple but efficient approach
for estimation and tracking of the signal and noise subspaces.
The different problems considered in this paper are quite com-
mon in many array processing applications and are known as
the most expensive tasks in source localization and separation to
the extent that many efficient spatial filtering methods have been
disregarded in real-life applications which use large antenna ar-
rays, e.g., RFI mitigation in radio astronomy [27], [28]9. Our
GMNS solution exploits the specific array processing model
together with a parallel computing architecture to reduce the
overall cost by a factor close to K2 , where K is the number
of parallel computing units, for large dimensional systems. At
the same time, it can be used to fuse data from a number of
data sources. Several algorithmic versions of the GMNS have
been developed and the performance was assessed via simulated
and real-life experiments. The performance results showed that
GMNS represents an excellent solution to deal with large size
arrays when distributed resources or parallel computing units
are available.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we need to show that the columns of
Vi belong to the noise subspace and the columns of V form a
vector basis of the noise subspace.

First, note that ṼH
i Ai = 0 leads to VH

i A = 0 because of
the zero-padding procedure. Hence, the columns of Vi belong
to the noise subspace.

To prove that the columns of V form a vector basis, let us
show that the noise matrix has (up to row permutation) a block
diagonal structure as illustrated in Fig. 12 with non-singular

9Due to their high computational cost, efficient subspace-based RFI mitiga-
tion methods are replaced in practice by a simple RFI or ’No RFI’ labeling
method.

Fig. 12. Block diagonal structure of matrix V.

d × d diagonal blocks, which guarantee its full column rank.
Indeed, according to the GPCS concept, the i-th d × d diagonal
block represents the entries of Vi corresponding to the d system
outputs not shared by the preceding subsystems (i.e., associated
to tuples 1, 2, . . . , i − 1). The block diagonal structure is then a
direct consequence of the zero-padding technique used to build
Vi from Ṽi .

Let us prove now that the d × d diagonal blocks are non-
singular. Indeed, if a given diagonal block matrix is singular,
then there exists a noise vector with at most p non-zero entries;
this is in contradiction with the assumption that any p rows of
matrix A are linearly independent, as assumed in Theorem 1.
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