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Abstract -
This paper addresses the problem of crack detection

which is essential for health monitoring of built infrastruc-
ture. Our approach includes two stages, data collection us-
ing unmanned aerial vehicles (UAVs) and crack detection
using histogram analysis. For the data collection, a 3D
model of the structure is first created by using laser scan-
ners. Based on the model, geometric properties are extracted
to generate way points necessary for navigating the UAV
to take images of the structure. Then, our next step is to
stick together those obtained images from the overlapped
field of view. The resulting image is then clustered by his-
togram analysis and peak detection. Potential cracks are
finally identified by using locally adaptive thresholds. The
whole process is automatically carried out so that the inspec-
tion time is significantly improved while safety hazards can
be minimised. A prototypical system has been developed for
evaluation and experimental results are included.
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1 Introduction

Crack detection is essential in health monitoring of in-
frastructure. Road sections containing a high density of
cracks at the surface should be periodically maintained to
ensure the safe operation of vehicles. Crack type, size and
the level of severity need to be identified for this task. In
concrete bridges, cracking caused by natural processes is
inevitable and may result in malfunctioning of the entire
bridge, or even collapse. It opens access for water, deicing
salts and other corrosive chemicals to penetrate through
the bridge deck and over time causes damages to inter-
nal bridge structures. Early identification of cracks is thus
vitally important to maintain the service life of bridges.

To automatically detect cracks, both colour and geome-
try information need to be acquired with sufficient quality
using unmanned ground vehicles [10, 20] or a group of
mobile robots [26]. However, complexity and roughness
remain challenges for surface inspection using this ap-
proach. Recently, unmanned aerial vehicles (UAVs) have
been developed as an alternative owing to their flexibil-

ity in the operation space and ability to carry specialised
sensory equipment. In [6], a micro air vehicle system was
employed to scan buildings using a high resolution cam-
era. Images taken within a restricted location were then
stitched with sufficient quality for crack and damage de-
tection. An advanced UAV system was developed to eval-
uate the state of historical monuments [8] whose captured
images revealed after processing some damages in several
monuments. In [14], a control system for navigating the
UAV in unknown 3D environments was used to monitor
and maintain bridges. UAVs were also used to inspect and
monitor oil-gas pipelines, roads, power generation grids
and other essential infrastructure [21].

For surface detection, computer-vision based tech-
niques are widely used to detect cracks due to its robust-
ness and cost efficiency [11]. These techniques in general
can be categorised into the wavelet transform, minimal
path selection, machine learning, edge detection and in-
tensity thresholding. For example, a separable 2D contin-
uous wavelet transform is employed in [25], using com-
plex coefficient maps for crack segmentation. An im-
provement of the wavelet-based pavement distress detec-
tion can be achieved by combining the Wavelet-Radon
transform and dynamic neural network thresholding [15].
These techniques however do not consider the geomet-
ric characteristics (orientation, continuity and connected-
ness) of the cracks and may wrongly detect the candidates
with low continuity or high curvature.

Owing to the ability to effectively identify high-level
geometric information, the minimal path principle can be
applied in surface crack detection. In [16], the free-form
anisotropy is able to handle almost all crack characteris-
tics in a segmentation step. An improvement of the mini-
mal path technique is presented in [9], having the capabil-
ity to detect cracks without prior knowledge of endpoints.
A fully unsupervised approach is proposed in [3], where
a refined artefact filtering step is introduced to estimate
the width of the crack. However, the main drawback of
the minimal path approach is high computation time in-
volved.

With the explosive development of image data, ma-
chine learning-based methods [17, 23] have been effec-
tively used for surface crack detection. In [17], a multi-
level pattern recognition system is developed to address
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image blocks containing cracks and then evaluate their
geometry such as length and width. Random structured
forests are used in [13] and [23] to extract information for
crack descriptors from the image background. Neverthe-
less, these methods are greatly dependent on the training
data, which is labour-intensive with manual labelling in
the training and validation steps.

For determining potential cracks from bridge decks,
edge detection techniques is commonly used [2, 12].
Four edge-detection algorithms are surveyed in [1], where
the Haar Wavelet method is identified as most reli-
able, compared to the gradient-based (Sobel and Canny)
and frequency-based (fast Fourier Transformation) algo-
rithms. These methods, however, only perform well under
uniform illumination and low noise conditions.

In crack regions that are consistently darker than their
surrounding areas, intensity-thresholding methods [18]
are more appropriate due to their compactness. A
Bayesian classification technique together with a morpho-
logical opening operation and thresholding is applied to
segment and classify defects from underground concrete
pipes into various classes such as cracks, holes, later-
als and joints [24]. A two-step method is proposed in
[7] where a locally adaptive thresholding is used together
with a median filter and a multi-scale line filter to em-
phasise the line structure and detect crack candidates. As
thresholding is noise sensitive, it is often used with other
techniques such as morphological or linear filtering to im-
prove robustness.

In this paper, we propose a system to inspect built in-
frastructure for automatic crack detection. A 3D model
of the object is first created and its geometric features are
extracted to generate a path for UAV navigation. While
following the planned path, the UAV takes images of the
suspected surfaces. Those images are then stitched and
processed based on histogram analysis. For this task, we
develop a peak detection algorithm for image clustering
and a locally adjustable thresholding technique for crack
detection. A number of experiments have been carried
out and the detection results are promising to apply in real
time applications.

2 Data Collection Using UAV
The goal of data collection is to acquire adequate ge-

ometric and surface information of the object to be used
in post processing for detecting potential cracks, and also
for navigation of the UAV itself [19].

2.1 Point cloud 3D modelling

In this step, laser scanners are used to acquire range
information from different positions of the structure to be
inspected and represent them as point clouds. Those point

clouds are then merged one by one in a process called reg-
istration to create a 3D model. In the registration, overlap-
ping points corresponding to the same part of the structure
appearing among the point clouds are first identified. Let
Pa and Pb be the point clouds recorded at positions a and
b. The overlapping points are determined by:

‖(xa
i − a) − (xb

j − b)‖< τ, (1)

where xa
i ∈ Pa and xb

i ∈ Pb are overlapping points, con-
sidered in a close neighbourhood, and τ is a pre-defined
distance threshold. The alignment of point clouds is then
obtained by applying an iterative closest point algorithm
to find a transformation that minimises the distances be-
tween them.

2.2 Geometric feature extraction

Planar surfaces are often the main target to be inspected
so they need to be extracted from the point cloud. Given
a plane’s equation (ax + by + cz + d = 0), then M =

[a, b, c, d]T is the parameter vector to be identified. For
this, a random sample consensus (RANSAC) algorithm
is applied with some augmentations, including a noise
filter to remove sparse outliers, voxelisation to equalise
the point density, and clustering to trim out the isolated
groups before applying RANSAC.

After detecting the surfaces, their boundaries are deter-
mined by using a convex hull algorithm. The remaining
point cloud P is then clustered into small groups as obsta-
cles to be considered in path planning. Here, for a given
positive constant ε > 0, a cluster is defined as a set of
points:

C = {pi ∈ P | min‖pi − p j ‖> ε }, (2)

for any other point not belonging to the cluster, i.e., p j <
C.

2.3 Path planning for colour image acquisition

Given surfaces to be inspected, a list of waypoints
needs to be created to navigate the UAV. There are two
types of waypoints, one corresponds to shooting points
for taking images and the others serve as intermediate
points for path following and avoiding obstacles. They are
generated by first splitting the operating environment into
voxels. A status of free or occupation is then defined for
each voxel to indicate the existence or not of obstacles in
that voxel. The shooting points are then computed based
on intrinsic parameters such as camera focal length, sur-
face area and minimum resolution. An A-star algorithm is
finally applied to find the shortest path between shooting
points. In each step, the cost to move from one voxel to
another in the neighbourhood is computed as:

C(k , l ,m) = a1k2 + a2l2 + a3m2 , (3)
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where coordinates k , l ,m ∈ {−1, 0, 1} indicate the neigh-
bour position, and the coefficients a1, a2 and a3 assign a
particular weight to each direction.

The generated waypoints are used as references for mo-
tion control of the UAV. Typically, the controller are built
in the flight operating system so that the control task can
be simplified. To collect images of sufficient quality, a
gimbal is used to eliminate vibration and adds more de-
gree of freedoms to the system to shoot images perpen-
dicularly to the inspected surface.
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Figure 1: Crack detection flowchart.

3 Thresholding-Based Crack Detection

A crack detection algorithm is developed to process the
collected data based on analysing their histogram infor-
mation. Its flowchart including image stitching, pattern
removal and crack detection steps is shown in Fig. 1.

3.1 Image stitching

Each image taken by the UAV only covers a small
area of the inspected surface. Stitching them to create
a panoramic image is thus essential for crack detection.
This stage requires a certain level of overlapping between
consecutive images and corresponding features. An in-
variant feature based approach [4] is employed, consisting
of scale-invariant feature transform (SIFT) feature extrac-
tion, homography computation and image matching ver-
ification. If the surface to be inspected is homogeneous,
manual patterns can be added to enhance the stitching per-
formance and removed afterwards.

3.2 Stitching pattern removal

Before processing the stitched image, it is important to
remove the patterns used in stitching to enhance the detec-
tion accuracy. A stitched image typically consists of three
elements, namely crack area, stitching patterns and blank
area caused by alignment drifts. Since their luminance
varies in accordance with the sunlight condition, our peak
detection algorithm [5] is first employed to detect domi-
nant peaks corresponding to these elements. The thresh-
olds t1 and t2 to segment the surfaces to be inspected are
calculated as the intensity average:

t1 =
ib + iw

2
t2 =

iw + ip

2
,

(4)

where ib, iw and ip are the intensity value of peaks corre-
sponding to the blank areas, the surface and stitching pat-
terns, respectively. The stitching patterns are then identi-
fied based on the histogram as follows:

Igr (x , y) = β if
[

Ir (x , y) < t1
Ir (x , y) > t2 ,

(5)

where Igr (x , y) and Ir (x , y) are respectively the grey in-
tensity and the red channel intensity of the stitched image
at point P(x , y), and β is the intensity value chosen to
distinguish the pattern with other parts of the image. As
the intensity at crack structures is typically smaller than
at non-defect areas of inspected surfaces, here β is set to
255 for adequately filtering out those features without in-
formation loss.

3.3 Crack detection

In an outdoor environment subject to varying lighting
conditions, the global thresholding method [5] is extended
to be able to extract all crack candidates with large vari-
ation of intensities. The approach proposed here, is first
to take the advantage of the automatic peak detection for
pre-processing the image to retain only the background
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Figure 2: The 3DR Solo drone with remote controller and
ground control station.

and line-like objects, and then to apply locally-adjusted
thresholds [22] to identify potential cracks. Differing
from the global approach, here the threshold is computed
for each pixel based on the grey intensities of its neigh-
bours. Let us consider (xi , yi), i = 1, 2, ..., N2, in the
neighbourhood of pixel P(x , y) determined by using an
N × N- window and m(x , y) and s(x , y) respectively as
the mean and standard deviation in that window:

m(x , y) =
1

N2

N2∑
i=1

Igr (xi , yi), (6)

s(x , y) =

√√√
1

N2

N2∑
i=1

(m(x , y) − Igr (xi , yi))2. (7)

The threshold for pixel P(x , y) is then computed as:

T(x , y) = m(x , y)
[
1 + k

(
s(x , y)

R
− 1

)]
, (8)

where R is the dynamic range of standard deviations and
k is a tunable parameter used to adjust the influence of
standard deviation. Each pixel P(x , y) is then evaluated
against its threshold T(x , y). A pixel P(x , y) is considered
as belonging to a crack if its grey intensity Igr (x , y) is
higher than the computed local threshold, or lying in the
background otherwise.

3.4 Experiments

Experiments have been conducted to evaluate the pro-
posed approach. The UAV used is a quadcopter, the 3DR
Solo drone shown in Fig.2. It is equipped with three pro-
cessors, two are Cortex M4 168 MHz running Pixhawk
firmware for low-level control and the other is an ARM
Cortex A9 running Arducopter flight operating system.
The camera used is Hero 4 with the focal length of 34.4
mm and resolution of 12 megapixels, attached to a three-
axis gimbal with one degree-of-freedom for controlling

Figure 3: Collecting data of the bridge.
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Figure 4: Flight path to collecting data of the bridge.

its yaw angle. The programming is carried out through
the ground control station called Mission Planner and up-
loaded to the UAV.

3.4.1 Data collection results

Figures 3 and 4 show a practical path used to col-
lect data of a bridge. There are mismatches between the
planned and real paths which are inevitable due to locali-
sation errors caused the built-in global positioning system.
Nevertheless, in our experiments, the number of satellites
detected ranging from 9 to 11 causing the error less than
1.5 m which is relatively small. For data collection, this
error can be compensated by reducing the UAV’s speed
while increasing the number of shooting points. It is also
noted that although the planned path shown in Fig. 4 is
rather ideal and does not consider the dynamic constraints
of the UAV, which is beyond the scope of this study, the
path tracking error remains however in an acceptable tol-
erance for the inspection purpose.

3.4.2 Crack detection results

To evaluate the crack detection algorithm, an wooden
wall was set up from nine panels, each having the size of
600 mm × 900 mm × 3 mm. Those panels were hanged
on a frame and joined together using twisted ties as shown
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Figure 5: Flight path used to inspect the artificial wall.
in Fig. 6a. Eighteen patterns were manually stuck on top
of the panels for image stitching. The pink colour was
chosen for the patterns due to its large difference from the
colour of wooden panels. Two cracks were deliberately
formed by a manual impact applied on two panels, one at
the middle and one at the bottom right. The UAV was pro-
grammed to follow pre-defined waypoints to take images
of the surface, as shown in Fig. 5. The values of R and k
in (8) are chosen to be 128 and 0.5, respectively.

Figure 6b shows the stitched image. It can be seen that
there are almost no distortions compared to the original
wall. However, missing pixels caused by alignment drifts
still appear. This issue can be resolved by employing gain
compensation and multi-band blending techniques. Fig-
ure 6c shows the result of filtered stitching patterns. They
are all well isolated from the stitched image demonstrat-
ing the effectiveness of the proposed automatic peak de-
tection algorithm.

Figure 7a presents the crack detection results using the
global thresholding method [5]. It can be seen that there
are two crack candidates appearing along with horizontal
and vertical lines of the tiled wooden panels. However,
the middle crack is not well detected due to the variation
in the grey intensity. If the threshold is increased to better
capture the crack image, then parts of the wall that are ex-
posed to the sunlight are not adequately filtered as shown
in Fig. 7b. This problem can be solved using the locally
adjusted thresholding method as shown in Fig. 7c.

4 Conclusion

In this work, we have developed an automatic crack
detection system for infrastructure monitoring. By using
UAVs, the system is capable of inspection of poorly ac-
cessible structures such as dams, culverts or bridges. A
number of sensors have been integrated into the system
allowing it to acquire geometric and colour information
of the inspected surfaces. For data processing, we have
developed computer vision based algorithms to create 3D
models of the structure, extract features, plan navigation
paths, stitch images and detect potential cracks. A number
of experiments have been conducted with all cracks de-

tected in real time. Future work will focus on further im-
provements of the recognition algorithms to better iden-
tify crack properties such as the length, width and orien-
tation.
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Figure 6: Image stitching and segmentation:
(a) UAV taking photos of the artificial wall (b) Stitched
image, (c) Segmented patterns and blank areas.
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Figure 7: Crack detection result: (a) Global thresholding
at T = 125, (b) Global thresholding at T = 155, (c) Lo-
cally apaptive thresholding.
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