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Abstract. We consider a vehicle routingproblem which seeks to minimize cost subject to service
level constraints on several groups of.deliveries. This problem captures some essential challenges
faced by a logistics provider which ‘operates transportation services for a limited number of partners
and should respect contractualiebligations on service levels. The problem also generalizes several
important classes of vehi¢leyrouting problems with profits. To solve it, we propose a compact
mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with
population management, which relies on problem-tailored solution representation, crossover and
local search operatorsyas well as an adaptive penalization mechanism establishing a good balance
between service levels and costs. Our computational experiments show that the proposed heuristic
returns very high-quality solutions for this difficult problem, matches all optimal solutions found
for smallvand medium-scale benchmark instances, and improves upon existing algorithms for two
important special cases: the vehicle routing problem with private fleet and common carrier, and the
capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal

solutions for all three problems.

Keywords. Routing, collaborative logistics, service level constraints, integer programming, genetic

algorithms.



1. Introduction

In a recent industrial application, the authors have been confronted with a complex variant of
the vehicle routing problem (VRP) which received, until now, only limited attention in the academic
literature. We take the viewpoint of a third-party logistics provider (3PL), which operates long-haul
transportation services for a number of business partners. The company operates on a planning
horizon and delivers products to various delivery locations as requested by the partners.a few days
in advance. A strict delivery deadline, in the form of a last possible delivery day; s set for each
transportation request. The company has established agreements with each{partner specifying,
among others, a minimum level of on-time deliveries for its group of requests.

The efficient management of collaborative logistics has stimulated & rich set of studies over the
years [34, 42, 55]. In our case, even in the presence of precise information on delivery requests,
the company faces the following optimization challenge: because of limited available resources, i.e.,
fleet size and vehicle capacity, all services cannot be realistically fulfilled. It is necessary to select a
subset of deliveries and determine cost-efficient vehicle routesiin such a way that the overall activity
is profitable and that the agreements with the partners are respected. A natural strategy of the
company consists in attempting to fulfill the gervice levels on a rolling horizon with some safety
margin, hence ensuring overall satisfactiongef contractual clauses on a larger time period (e.g., one
month of activity). As such, the firm seeks to balance quality of service and operational costs,
subject to a minimum threshold en, quality of service for some groups of requests. These group
requirements create linking constraints between the service selection decisions, which need to be
carefully considered during‘routing 6ptimization.

We now introduce & simple and deterministic variant of the VRP which captures some essential
decisions in this sittiation.yThe study of this simplified problem will help to identify key properties
and methods. The VRP/with service levels (VRP-SL) can be formulated as follows. Let G = (V, )
be a complete, undirected graph with |V| = n 4+ 1 nodes. The node vy € V represents a depot,
where a'fleet of m identical vehicles is based. Each other node v; for i € {1,...,n} represents a
customer, associated with a demand ¢;, a profit p;, and a service weight s; which represents its
relative importance in the group service level constraint.

The set of customers is distributed into K subsets: V—{vo} = Uj—; g Vk, such that VNV = @
for any k # k’. Each subset represents the deliveries of one partner and is associated with a requested

service level a. Any edge (i,7) € £ represents a possible trip between a node v; € V and a node



vj € V with a distance cost d;;. The goal of the VRP-SL is to find up to m vehicle routes starting
and ending at the depot, such that
— each customer is serviced at most one time,

— the total demand quantity of any route does not exceed a vehicle capacity @,

the service level of each group k£ is attained, i.e., the total service weight of the deliveries to

this group reaches ax -, oy, si, and

the sum of travel costs and lost profits is minimized.

This problem belongs to the wide class of vehicle routing problems with profits, which also
includes the team orienteering problem (TOP), the profitable VRP (VRPP),.the VRP with private
fleet and common carrier (VRPPFCC) and the capacitated profitable teur*problem (CPTP).
Interestingly, as highlighted in Section 2, this problem fills a gap in the literature, since most known
multi-vehicle problems with customer selections either aim to maximize service levels subject to
distance constraints (TOP) or seek a weighted optimization of distance and service levels, through
penalties for outsourcing or lost profits (VRPPFCC and  GPTR)~"To this date, very few works on
deterministic settings [58, 68, 43] have addressed multisvehicle routing optimization subject to a
service level (SL) constraint. Finally, the VRP-SL is finally a natural extension of the generalized
VRP (GVRP, see [29, 5, 10, 31]), which also models & rich set of VRP applications.

To address the VRP-SL, we introduceta compact ILP formulation and a branch-and-price
algorithm which can solve to optimalityismall- and medium-scale instances, as well as a hybrid
population metaheuristic inspiréd byithe Unified Hybrid Genetic Search (UHGS) framework of
[62, 64]. Previous application$-of WHGS have led to efficient algorithms for several VRPs, including
the GVRP, TOP, VRPP.and VRPPFCC, among others [64, 66]. However, UHGS relies heavily on
the fact that problem objectives and constraints are either cumulated on or separately applied to
each route, henceé allowing to optimize customer-selection decisions independently via a dedicated
route evaluation operator. This decomposition does not apply to the VRP-SL without a Lagrangian
relaxation of the'group constraints, which would make it impossible to find the optimal solution in
some casespand impede the overall method performance. Because of these characteristics, we had
to revise most of the operators of the method while keeping the general principles. We thus use a
two-chromosome solution representation, which contains a service level chromosome and a giant-tour
chromosome. We derive a new crossover, use dedicated local search moves as well as a penalization
strategy to represent, optimize and inherit customer-selection decisions. The contributions of this

article are the following:



1. We introduce the VRP-SL, a rich VRP connected with important applications in collaborative
logistics, generalizing many classes of routing problems with profits.

2. We propose a compact mathematical formulation for the problem, a branch-and-price algorithm,
as well as an efficient hybrid genetic search (HGS) which exploits problem-tailored selection
representation, crossover, local searches, and penalty management operators to find a good
balance between service levels and costs.

3. We conduct extensive computational experiments to evaluate the performance of'theproposed
methods on new benchmark instances for the VRP-SL as well as classical benchmark instances
for the VRPPFCC and CPTP. The proposed HGS finds all known optimal solutions for the
considered problems, outperforms previous methods for the VRPPFCC and/CPTP, and generates
solutions of consistent quality on large instances. Several solutions of the VRPPFCC and CPTP
are also proven optimal for the first time by the branch-and-pricesalgorithm.

The remaining parts of the article are organized as follows:, “Seéction 2 reviews the related

literature. Section 3 presents some mathematical formulationsifer the problem. Sections 4 and 5

describe the branch-and-price and the hybrid genetic algorithm, respectively. Section 6 reports the

experimental analyses, and Section 7 concludes.

2. Related literature and subproblems

Vehicle routing problems with profits are the subject of an extensive literature, surveyed in
[3, 23, 59, 63]. Generally, one seeks to jointly minimize cost and maximize customer’s service levels,
two objectives which are conflicting when the profits do not render all deliveries profitable, or in the
presence of additional vehicle constraints (e.g., distance or capacity limits). The related literature can
thus be classified aceording to three fundamental solution techniques for this bi-objective problem:
I) Weighted sum —minimizing a weighted difference of costs and service levels;
IT) Constraints on cost/distance — maximizing service levels subject to distance constraints
(independently for each route);

ITT) Constraints on service levels — minimizing distance subject to service level constraints.
Table 1 presents an overview of these main classes of methods, for the single and multi-vehicle
routing problems with profits (variants of the TSP and VRP, respectively). Objectives I and II are the
subjects of a vast literature, which includes a very large variety of exact methods and metaheuristics.
The TOP, in particular, seeks the maximization of service levels subject to distance constraints, and
has been studied in dozens of articles in the past decade (see [1, 2, 13, 19, 22, 37, 38, 40, 44, 54, 60, 66],

among others). In contrast, a larger methodological gap remains for objective III, which aims to
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minimize travel cost subject to service level constraints. The multi-vehicle case of this objective has
been mostly studied in the context of hot strip mill scheduling for steel production [68, 69]. More
recently, [43] investigated a special case with one group of customers (all of them) and one service
level constraint, usually referred to as the prize-collecting VRP (PCVRP). The authors proposed
a self-adaptive VNS and reported computational experiments on new instances. These instances,
however, are now unavailable. The VRP-SL generalizes this problem by introducing multiple groups
and associating profits to deliveries. By doing so, the problem remains concise and simpleito define,
but generalizes many VRP classes:

The PCTSP and PCVRP correspond to VRP-SL instances with a single.group.

— The CPTP, PTP and VRPPFCC all correspond to instances with 0% servicerlevels.

The CVRP corresponds to instances with 100% service levels.
— The generalized VRP (GVRP) can be reduced to the VRP-SIi by-dmposing a small service level
for each group, hence forcing at least one delivery.
— Any instance of the periodic vehicle routing problem (PVRP)usuch that, for each customer i, any
combination of f; different days in a set D; of available days is feasible, can be transformed into
a VRP-SL instance with ). |D;| customers. This/issdone by duplicating each customer 7 into
as many vertices as possible visit days, defining a“group for the resulting visits with a service
level a; = f;/|D;], and setting a large cost M-for the edges that link two vertices from different
days. This reduction follows the“same principles as the reduction from PVRP instances with
frequency f; = 1 into GVRP/instances, discussed in [5], but is more general as it allows to deal
with frequency values greaterthan 1.
Finally, since the name prize-collecting VRP is not consistently used in the literature and far
from self-explanatory, we/opted for the name VRP with service levels (VRP-SL) for the proposed

problem with several/groups, which is clearer and more distinctive.

3. Mathématical Formulations

Compactifermulation. We first propose a mixed integer linear formulation of the VRP-SL. Our
mathematical model is based on the two-commodity flow formulation of [7], which has already
been extended to several closely related VRP variants in [30, 31]. The graph G is first extended
into G = (V,€) by adding a new vertex v, 1, representing a copy of the depot. We thus define
V=YU{vpu}, V =V \ {vo,vns1}, € = EU{(vi,vn+1),vi € V'}, and d p41 = dp; for all v; € V.
For each edge (v, v;) € &, we define a binary variable x;j, set to 1 if and only if a vehicle travels on

this edge, as well as two flow variables f;; and f;;. When a vehicle travels from v; to vj;, the flow f;;



represents the current load in the vehicle, and the flow f;; represents the residual capacity of the
vehicle (fj; = @ — fi;). Finally, y; is a binary variable which is set to 1 if and only if v; € V\ {vo} is
serviced. The VRP-SL can be formulated as:

Minimize Z dijrij + Z pi(1 —vi) (1)

(vi,v]-)eg UiEV\{vo}
Subject to Z Sivi > Qg Z S kEe{l,.. /K} (2)
v; €V v; €V
Z Tik + Z Tkj = ka Vg € V! (3)
v €EV,i<k v EV,i>k
> (i — fif) = 2qiwi v; €V (4)
UjGV
S foi= Y awi (5)
v; eV’ v, €V’
D furr=2Q (6)
’UjGV/
fig + fii = Qui (vi,v5) €€ (7)
z;; €40, 1 (vi,vj) € € (8)
Ume 0,1} v; € V\{vo} (9)
fij > 07 f]‘i >0 (Ui,v]‘) c E (10)
z<m,z€eN (11)

The objective of Equationy(1) aims to minimize the sum of transportation costs and lost profits.
With this objective, the,optimal solution value is always non-negative (no negative terms). Moreover,
the optimal CVRP solution is a feasible solution of this model, with a cost greater or equal to
the VRP-SL ¢ptimum: Constraints (2) impose the service levels for each group. Constraints (3)
ensure that eachyvertex of V \ {vp} is visited at most once. These constraints also connect the path
variables (z;) to the customer selection variables (y;) in order to evaluate the profits. Constraints
(4)—(7) define a feasible two-commodity flow between the source vg and the sink v,,11. Specifically,
Constraints (4) state that the inflow minus the outflow at each vertex v; € V' is equal to 2g; if v;
is used, and 0 otherwise. The outflow at the source vertex vy, computed in Constraint (5), is
set to the total demand of the vertices that are serviced in the solution, and the outflow at the

sink v,,41, calculated in Constraint (6), corresponds to the total capacity of the vehicle fleet. Finally,



Constraints (7) establish the link between the flows f;; and fj;, and Constraint (11) sets a bound
on the number of vehicles.
The linear relaxation of the VRP-SL can be strengthened via some simple valid inequalities. If

s; is integer for all v; € V' \ {vg}, then the service level constraints (2) can be transformed into:

Z Siyi > [ak Z si-‘ ke{l,...,K}. (12)

v EVy v, €V,

Moreover, the following flow inequalities from [7, Equation 64] are used:
fij = qjxij and fj; > qiwij i,J # vo and 4, §F Vpy1. (13)

The first inequality explicitly forces f;; to contain the delivery quantity g;for the next customer,
and the second inequality forces the residual capacity fj; to be.greater than the delivery quantity ¢;
of the previous customer. Finally, for each group k € {1;. %, K'}} we define Zj as the minimum

load quantity which allows to satisfy the service level gonstraint:

Zj = min Qi Y
yi€{0,1} ’U;k *“\

Z 5iYi = o, Z 8i (14)
UZ'EV]C v; €V
These values can be evaluated in pseudo-polynomial time. Then, the following capacity cut is valid

for each group k:

Z
> xijzﬂéw ke{l,...,K}. (15)
viEVk,’UjGV\Vk
Note that we alsojinvestigated in preliminary experiments a similar formulation based on one-
commodity flows [27] for directed graphs, hence associating two variables z;; and z;; for each
edge (v;,vj). ‘Althongh both formulations should produce similar bounds [41], the suggested two-

commodity flow formulation of the VRP-SL led to overall better results in our context, possibly due

to the'smaller number of binary variables.

Set Partitioning Formulation. We now present a set-partitioning based formulation of the VRP-
SL, which corresponds to a Dantzig-Wolfe decomposition of the model of Equations (1)—(11). Similar

formulations have been successfully used in the VRP literature in the past years to obtain stronger



linear relaxations [6, 17, 26, 47]. The drawback of this formulation comes from its exponential
number of variables, which must be tackled using a column generation algorithm.

Let 2 be the set of all feasible routes for the problem. A route r € Q) is a closed walk starting
and ending at the depot, visiting a set of customers only once and respecting the vehicle’s capacity
(this definition will be extended afterwards to allow visiting a customer more than once). Then for
each route, we define a binary variable A, indicating whether the route r is used in the solution.

The resulting formulation is as follows:

Minimize Z CrAr + Z pi(1— ) (16)

ref) v eV’
Subject to Z 8iYi > Z Si ke {ly.. K} (17)
v; €V V; €V
Zag)\r =y v; eV (18)
reQ
Z A <m (19)
reQ
Ar € {0,1} r el (20)
yi € {0,1} v, €V (21)

The objective function (16) minimizes the _total cost of the active routes plus the lost profits.
Constraints (17) are the same as Constraints (2). In Constraints (18), a} (boolean) represents the
number of times route r visits ctistomer % Then each constraint forces one of the routes which visits
customer 7 to be active if variable g;/1s set to 1. Constraints (19) limit the number of active routes

to the number of available vehicles.

4. Branch-and-price algorithm

The set partitioning formulation has an exponential number of variables. To circumvent this
issue, we use & column generation algorithm which starts with no variables and solves a pricing
sub-problem to generate new ones. For the formulation presented in the last section, the pricing
sub-problem is an Elementary Shortest Path Problem with Resource Constraints (ESPPRC). Ideally,
one would want to price only elementary routes, but since the ESPPRC is known to be strongly
NP-hard [21], we solve a pseudo-polynomial relaxation, the Shortest Path Problem with Resource
Constraints (SPPRC) [16], allowing the routes to visit a given customer more than once. For both

problems, the objective is to find a route with negative reduced cost. Given the dual variables j;

10



and 7y associated to Constraints (18) and (19), a constant b; representing the number of times route
1 traverses edge (v, v;) and setting Sy = 7, the original reduced cost of a route and its reformulation

as a function of the edges are stated in Equations (22) and (23):

Cr=0Cp — 7 — Z a:ﬁz (22)
i€V’
_ . Bi + B;
(’Ui,vj)eg

When relaxing the ESPPRC into the SPPRC, the bounds obtained by”celumn- generation
deteriorate in most cases. Some alternative relaxations have thus been ptoposed to find a better
balance between efficiency and solution quality [16, 33, 46]. We use the ng-route relaxation [8],
which has been successfully applied to multiple VRP variants in the'lastyyears. For each vertex i, a
set NG; C V' is defined to represent the “memory” of i. ThesenNG; sets usually contain a subset
of vertices closest from i. The pricing sub-problem is solved. by a forward dynamic programing
algorithm, which maintains a memory of past visits toprohibit,some vertices, but uses the NG; sets
to reduce this memory size and thus the size of theystate space. During the algorithm, each path P
has an associated label £(P) containing the lastycustomer visited v(P), the total reduced cost ¢(P),
the current load ¢(P) and the customers4which have been visited and remembered I1(P). When
extending a path from customer v(P) to.customer v;, the extension is only allowed if j ¢ II(P), and

the label for the new path P’ can béiobtained as:
E(P/) | (Uj7E(P) +Eij7 Q(P) + qu7H(P) N NGJ U {UJ}) (24)

Lastly, we use a dominange rule to fathom labels which cannot lead to an optimal solution. A label

L(P;) dominates.a label/ L(P) if
{v(PD) = v(P2)} AE(P) < e(Po)} A{a(Pr) < q(P2)} AIL(P) C TI(P,)}

Other techniques can be used to further improve the overall column generation efficiency. We
use two approaches. The first one is a simple heuristic pricing. This algorithm stores only the label
with best reduced cost for each customer v; and load ¢ during the dynamic programming. The
second approach is dual stabilization [50]. We use a parameter « € [0, 1], as shown in Equations
(25)—(26), to avoid a large variation in the values of the dual variables between two iterations of the

column generation. Our algorithm starts with a = 0.9 and reduces the value of a by 0.1 each time

11



the pricing sub-problem returns an invalid route.

y=ay"+ (1 —a)” (25)

Bi=apF 14+ (1-a)sf Vo, € V' (26)

Finally, to improve the bounds obtained by the column generation algorithm, we embedded
it into a branch-and-bound (B&B) procedure. At each node of the branch-and-bound, tree, the
column generation algorithm is called to obtain the solution of the linear relaxation, taking into
account possible fixed variables due to branching. This algorithm frameworkyis usually called
branch-and-price (B&P). A key difference with classic B&B algorithms relates to the fact that it is
not possible, in our context, to branch on the A, variables, since a fixing of A= 0 would result in
repricing the variable. To overcome this difficulty, the B&P branclies on the“original x;; variables as
well as the y; variables, choosing at each node on the tree the most fractional variable to branch,
but always giving priority to y; variables. Fixing a y; variableis straightforward. The z;; variables,
however, are not explicitly present in the formulation, and*thus we add Equation (27) to the set
partitioning formulation for each fixed edge. In thissequation, bfj represents the number of times

route r traverses edge (v;,v;), and Z;; is the value which should be fixed for x;;.
Z bngT = Tjj (27)
reQ

The presence of Equation (27)%ntroduces a new dual variable p;; which must be considered when

computing the reduced costsy thus ¢hanging Equation (23) into Equation (28).

B N ICEL (28)

(’Ui ,’l)j)eg

This combination of techniques leads to an efficient exact method, whose performance will be

analyzed in Section 6.

5. Population-based metaheuristic

The VRP-SL is known to be NP-hard as it generalizes the CVRP, and even sophisticated exact
approaches can only solve small- and medium-scale problem instances within a reasonable CPU
time. To fill this methodological gap and to solve the larger instances which arise in practice, we

introduce a dedicated hybrid genetic search with advanced diversity control.

12



5.1. General structure of the method

The method, illustrated in Algorithm 1, uses the same resolution strategy as the unified hybrid
genetic search (UHGS) of [62, 64]. Starting from an initial population, it iteratively selects two
parents to generate an offspring individual via a crossover operator. This offspring is improved by
means of a local search procedure and inserted in the population. This sequence of operations is
performed until the termination of the method, once Itny successive iterations without improvement

have been performed.

Algorithm 1 Hybrid Genetic Search (HGS) for the VRP-SL

1: Initialize the population with random solutions
2: while not [ty consecutive iterations without improvement of the best selution do
3:  Select two parents P; and P,
Generate an offspring C by applying the crossover on P; and~Ps
Educate C' using local search
Insert C into the population
if C is not feasible then
With 50% probability, repair C' and insert it into.the population

if It;y iterations elapsed since the last diversification then
10: Diversify the population
11: return best feasible solution

The method exploits penalized infeasibléssolutions in the population, which is divided into
two sub-populations of feasible and,infeasible individuals. Whenever one sub-population reaches
a maximum size, a number oflindividuals are eliminated to retain the best solutions. A repair
procedure is also applied on‘infeasiblé solutions to restore feasibility and generate additional feasible
individuals. Finally, the approach uses an adaptive diversity management, which has been shown to
be particularly sugCessfuliwhen solving VRPs [62]. Parents and survivors selections are driven by
two criteria, cost~and,diversity contribution, rather than solely on cost as in traditional GAs, and
additional diversification phases are implemented after every It iterations without improvement
to provide new/solution characteristics to the population.

Finally, the proposed algorithm also significantly differs from UHGS in the definition of its basic
building blocks: solution representation, crossover, local search moves, distance measure between

individuals, and penalties allowed. These components are described below.

5.2. Solution Representation and Evaluation

In the proposed HGS, each individual in the population is represented by two chromosomes: a

service level chromosome, which gives the current service level of each group k € {1,..., K}, and the
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giant-tour chromosome, which provides a permutation of visits for the serviced customers, without
occurrences of the depot. This solution representation is illustrated in Figure 1. It is incomplete in
the sense that some additional information, the locations of the visits to the depot, is needed to
perform cost evaluations. Still, this information can be quickly recovered by means of a dynamic-
programming algorithm, called Split, which optimally subdivides the giant-tour chromosome into
separate routes. In the proposed HGS, the Split algorithm strictly respects the sequenge. of visits,

e., it cannot select or exclude customer visits and modify the service levels. This i§ the,classical
context of application of the algorithm of [9] and [52], which reduces the splitting problem into the
search of a shortest path in an acyclic graph in which each arc represents a.possible’route, i.e., a
sequence of consecutive visits in the giant tour, connected to the depot. The readéris referred to [52]

and [61] for a detailed description of the Split algorithm as well as an efficient) @(n) implementation.

SERVICE-LEVEL

CHROMOSOME:

[0.75[0.66 | 0.5 |

GIANT-TOUR

CHROMOSOME: COMPLETE SOLUTION:

15 410773 ol 0] [0(1070e] [Se2e]
REMOVAL

of depot visits

Figure 1: Solution representation and decoding*via the Split algorithm. To compute the service levels, three groups
are considered in the example: Vi= {142,3,4}, V, = {5,6,7,8,9,10} and Vs = {11,12}. For all 4, s; = 1.

We now describe thé cost furction used for route and solution evaluations. As observed in our
computational experiments and in [65], the exploration of penalized infeasible solutions during the
search has a significantly/positive impact on solution quality. Thus, the cost ¢(r) of a route r involves
the distance, the total profit associated to the customers which are visited, and a possible excess of
load in a route multiplied by a penalty factor w®. Let ¢ (r) Zw ! dr (i) r(i41)s P2 (r) ZZ 14r(3)
and ¢ () = Z —1 Pr(i) be, respectively, the total distance, load and profit collected in route r, then

the route cost is defined as:

(r) = ¢"(r) — ¢"(r) + w? max{0,¢°(r) - Q}. (29)

We also explore infeasible solutions with respect to service level constraints. These linking

constraints involve the whole solution, and thus the penalty is defined at the level of the solution
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evaluation rather than the route cost. The penalized cost ¢“°T(S) of a solution S, described as a

set of routes r € S, can thus be evaluated as:

K
¢7T(S) = dp + > o(r) + Y wy max(ag — ¢7(S),0), (30)
res k=1
with ¢"(S) = > s/ > s ke{l,...,K}. (31
v EVENS v, €V

In this equation, ¢p = Y1 | p; is the total profit of all customers (a constant), ¢%(9)is the weight
ratio of group k in solution .S, and w,‘? for k € {1,..., K} are the penalty coefficients associated to
service level violations. These penalty coefficients are automatically adjusted by.the method during

the search, as explained in Section 5.4.

5.8. Generation of New Individuals

Each new solution is generated by a successive application of the Selection, Crossover, and

Education operators, followed by a possible Repair.

Selection and Crossover. To generate a new solutionjuthe algorithm first selects two parents P;
and P, in the population via a binary tournament, based on the biased fitness measure described in
Section 5.4. A new offspring solution C' is then obtained by crossover of P; and P». For this purpose,
we propose an adapted order crossover (AOX), which extends the well-known order crossover with
the ability to transmit customer selection and visit sequence decision from both parents. This
crossover operator is illustrated in Figure 2.

In a first step, the crossover inherits the service level information from both parents. This is
done by crossing the service level chromosomes of both parents using an extended intermediate
recombination [48])i.€., ajtarget weight ratio o] (C) is randomly chosen between ay(Py) and ag(P)
for each group k, where ay(P) is the weight ratio of group £ in individual P.

Then{ in a seeond step, the giant-tour chromosome of the child C' is initialized with the longest
size amongybeth parent and inherits, as in the order crossover (OX), a fragment of P;.

In\thethird and final step, the giant-tour chromosome of C' is completed by sweeping circularly
the deliveries of P» and inheriting them, starting one index after the end of the fragment from P;.
Each insertion of a visit ¢ of a group k is done under the condition that ¢ does not already exist in C|
and that the target service level a{(C) has not yet been reached. To complete the representation,

the service level chromosome of the child is finally derived from the giant-tour chromosome.
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Parent P1 Parent P2

SERVICE-LEVEL SERVICE-LEVEL
CHROMOSOME: CHROMOSOME:
[08]02]
GIANT-TOUR GIANT-TOUR
CHROMOSOME: CHROMOSOME:
|1/2]3]4]6]| |1]3]5]8]9]10|

INHERITED

FRAGMENT

Y

Step 1: Inherita

target customer level m
Step 2: Inherit visits [
from parent P1 [

>[3la] [ |

Step 3: Complete with
visits from parent P2

|1]5]3]4|9 10| €=

Figure 2: AOX crossover — In this example, V1 = {1,2,3,4,5}, V2 = {6, 7,839¢10} and s; = 1 for all 4. The fragment
[3,4] is first inherited from the first parent, then the visits aredmsertedifrom the second parent, starting one index
after the inherited fragment (visit to 9) and terminating when the service levels defined in Step 1 have been attained.

Education. The goal of the crossover operator was to\generate new solutions which inherit common
characteristics from both parents while introducing a significant level of randomness. As such, the
crossover operator is not the main forceswhich drives solution improvement, this role being assumed
by a subsequent local search-based education procedure.

The local search (LS) is applied on’the complete solution representation, including the visits
to the depot. Therefore,(the,Split algorithm has to be run beforechand. The LS uses the same
classical vehicle routing neighborhoods as in [62]: 2-OpT, 2-OPT*, SWAP, RELOCATE as well as
generalized SwWARand~RELOCATE involving two consecutive nodes, and limited to moves between
close services/ These ¢lassical neighborhoods only involve services which are present in the current
solution. /T0"alse optimize the decision subset related to customer selections in the LS, we include
three additional neighborhoods:

—\RBEMOVE: If u is a visited customer, then remove u from the solution.

— ADD: If u is a visited customer and v is a non-visited customer, add v after .

— REPLACE: If u is a visited customer and v is a non-visited customer, replace u by v.

All neighborhoods are explored in a random order with a first improvement move acceptance policy.

The LS stops when no improving move can be found in the entire neighborhood, and the resulting
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solution is converted back into a giant-tour and service level individual representation, which is

inserted in the population.

Repair. Finally, it is possible for a solution to remain infeasible after education. When this situation
happens, a Repair operator is applied with 50% chance. As in [62], this operator simply consists in
running the local search with higher penalty values, first by a factor of 10, and then 100, with the

aim of converging towards a feasible solution.

5.4. Population Management

The population is formed of two sub-populations, designed to host féasibleyand infeasible
individuals, respectively. The algorithm starts by generating 4 x p randem initial solutions. Each
sub-population is then managed to contain at least p and at most, i + A\ individuals. Whenever a
population reaches its maximum size, A individuals are eliminatedsté produce the next generation.
This is done by iteratively selecting out either a clone solation, 'with a distance of 0 to another
solution, or the worst solution according to a biased fitness function ¢""*(S) when there are no more
clones. The biased fitness measure evaluates every solution S based on its cost ¢“°5T (Equation 30)
and its contribution to the sub-population diversity; defined as:

ZszeNP(S) 6(5, S2)

)
nCLOSE

P(S) = (32)

where Np(S) is the set of the n?%"indiyiduals in the sub-population P closest to S with respect
to a distance measure 0(S7,,82)a/Our distance measure counts the percentage of common edges
between two solutions. Let E(S;) and E(S2) be the set of edges used in the solutions S; and Ss,

then the distance is expressed as:

[E(S1) N E(Sy)]

251:52) = 1 = S OB,

(33)

Finally, let "™ be a parameter controlling how elitist ¢®'*5(S) is, and let R(S, P, f) be an
application which returns the rank of an individual S in the sub-population P relatively to a

measute f. Then, the biased fitness of S in P is evaluated as in UHGS [64]:

ELITE
n

O (S) = R(S, P + (1= “p ) RS P.9™). (34)
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Each distance measure can be evaluated in O(n) time. As such, when a new individual enters
the population, its distance from every other solution can be computed in O(n|P|) time, and the

computational complexity of updating the biased fitness measures is O(n|P| + |P|log|P]).

Adaptive Penalty Coefficients. The exploration of infeasible solutions contributes positively to
the search if the ratio of feasible solutions is adequately controlled. To that extent, the penalty
parameters are adapted to achieve a ratio of feasible solutions within a predefined interval([¢M™, £MAX].

We rely on 1 + K penalty parameters for the VRP-SL: one for the capacity comStraints;yand K
penalties for the service level constraints, one for each group. Let &€ be the ratio of feasible
individuals with respect to a constraint ¢, measured among the last 100 individuals generated by
local search. In order to drive the search towards feasible solutions, every 100%iterations we update

the penalty coefficient of constraint ¢ using the following rule:

w® x 1.2 if g L g,
W= Wt x 0.85  JfLESNEMAX (35)
w* otherwise.

Initially, all penalty parameters are set.to 10."We aim to obtain around 25% feasible solutions
after LS. Since all constraints need to be respected to obtain a globally feasible solution, we used

EMIN — 0.155F and EMAX — 0.35 K to achieve this goal.

Diversification procedure. Finally, after each consecutive [ty iterations without improvement of
the best solution, we apply the same diversification procedure as in [62] to only keep the best p/3
individuals in each subpopulation and reintroduce new random initial solutions. This procedure
complements the.biased fitness function so as to avoid a premature convergence of the method due

to the strong/ntensifigation of the LS.

6. Experimental Analyses

This section aims to 1) introduce a set of instances for the VRP-SL derived from classical vehicle
routing instances, 2) evaluate the performance of the proposed methods on the VRP-SL instances,
3) evaluate the performance of the metaheuristic and the branch-and-price on classical problems
generalized by the VRP-SL, namely the VRPPFCC and CPTP, and finally 4) examine the impact
of some key parameters and design choices. All algorithms were coded in C/C++. The exact

algorithms were run on a single thread of a 3.07-GHz Intel Xeon CPU, and the metaheuristic was
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run on a single thread of a 3.4-GHz Intel Core i7 CPU. We used CPLEX 12.7 for the resolution of

the compact formulation and for the linear programs in the B&P algorithm.

Benchmark instances for the VRP-SL. To compensate for the unavailability of benchmark
instances for the VRP-SL, we derived two sets of instances from classical CVRP and prize-collecting
VRP test sets:

— The first set (S1) has been generated from a subset of 26 instances from [4], and includes, between
31 and 80 vertices. The profit of each client has been set to h x ¢;, where h is‘a'xrandom variable
uniformly generated in the interval [0.75,2.25].

The second set (S2) has been derived from the 10 capacitated profitable teur instances of [1],
with 51 to 200 vertices. The capacity of the vehicles has been set to 500; and the number of

vehicles has been set to «
o Zkzl(Qll\%HN + Q%IAX)
2Q ’

(36)

where Q"™ is the subset of services of group k withesmallest delivery quantity which allows to

satisfy the service level requirements, and Q}'**uis the sum of demands of all customers of this

group. The original profits were multiplied(by a factor of 0.5 to obtain a good balance between
profits and distance.

For each instance, we considered five configurations for the assignment of visits to groups:
{1, 2R, 2C, 5R, 5C}. The first number corresponds to the number of groups, and the second letter,
when applicable, corresponds-te, their distribution: random (R) or clustered (C). In all cases, the
service levels for each group have been randomly selected in {0.45,0.55,0.65,0.75,0.85,0.95, 1}, and
the weight of each customer, reflecting its importance for the service level constraint, coincides
with the demand quamtity(s; = ¢;). Overall, this leads to 26 x 5 = 130 instances of set S1, and
10 x5 = 50 instances of set S2. For each instance, the distance values between customers are rounded
to the nearest integer. For the sake of brevity, the results presented in the paper are aggregated per

group of five instances. All instances and detailed results are available in the electronic companion

of this paper, also available at https://wl.cirrelt.ca/~vidalt/en/VRP-resources.html.

6.1. Exact solutions and lower bounds

The two exact methods have been tested on each VRP-SL instance using a single core with a
time limit of two hours. Since the VRP-SL instances were designed to be challenging for both exact

and heuristic approaches, only a subset of the problems could be solved to optimality. To speed up
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the resolution, we used the best integer solution found by the metaheuristic as a warm start for
both exact methods, hence limiting the size of the branch-and-bound tree.

Table 2 presents average results for each group of instances. The first columns list the character-
istics of each group, followed by the minimal number of visits nyyw required to satisfy service level
constraints, the value LBg of the lower bound and the processing time Ty at the root node, the
value LB of the best overall lower bound, the number of nodes in the search tree, the finalintegrality
gap and the total CPU time. For each instance, the best lower bound is highlighted inyboldface.
We do not indicate the best upper bound found by each method, since no improvement was found

over the initial value obtained by the metaheuristic.
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Figure 3: Instances of set S1 currently solved to/0ptimality using the compact formulation “x”, via branch-and-price
“o”, or still open “”, as a function /of the number of visits n and the minimum number of deliveries nyy needed to
satisfy the service level constraint.

As illustrated by the experiments, the branch-and-price algorithm outperformed the compact
formulation-based‘method 'on most instances. More precisely, it performed better on all instances of
the set S1 with the exteption of Bl and B2. For the set S2, the compact formulation performed
better for the first'five groups of instances and worse for the remaining ones. As expected, the
branch-and-price algorithm is very effective when the solution includes short routes, while the
compagct formulation performs better on instances with few vehicles. The total number of instances
solved fo optimality for configurations {1, 2R, 2C, 5R, 5C} were {10, 9, 9, 9, 8} for the compact
formulation and {15, 9, 9, 8, 9} for the branch-and-price algorithm. These results show that the
exact methods’ performances are rather insensitive to the distribution of nodes in V', as well as the
number of groups K. However, the complexity generally increases with n, m and ny, as visualized

in Figure 3.

21



6.2. Performance of the hybrid genetic algorithm

In this subsection, we report the results obtained with the proposed HGS on the VRP-SL instances.
For each instance, the algorithm was run ten times with different seeds, using the same parameter
setting and termination criterion as in [62] for the CVRP, that is ("™ u, X) = (10,25, 40),
Ttyax = 2 x 10* and Itpy = 0.4 X Ttyax. Moreover, to accelerate the convergence, the parameters
governing the population size have been halved when dealing with problem instances containing 200
or more services. Table 3 reports, for each group of instances, the worst, average and best,solution
quality of HGS over 10 runs (Wor-10, Avg-10 and Best-10), the percentage gap hétween the average
solutions and the best ones found (Gappks), the percentage gap between the-average solutions and
the best lower bounds found by the exact methods (Gaprp), the averagen CPU time in seconds, the
best known solutions (BKS) and lower bounds (BKLB).

In the absence of results from previously published heuristics, weseonsider three main indicators
of method performance: its ability to reach known optimalsolutions; the stability of the solution
quality over several runs, illustrated by the gap between the average solution quality and the BKS,
and the deviation from the lower bounds produced by the mathematical programming algorithms.
As observed in our experiments, HGS finds all of the /70pknown optimal solutions on all test runs.
The method also returns solutions of consistent\high quality: it found for 25/36 groups of instances
the value of the best known solution on all runs of all instances. The percentage gaps between the
average and best known solutions are close to zero (0.01% overall), and the instances with fewer
groups appear to be generally easier to'solve. The gaps to the lower bounds are also small (1.38% in
average), and thus the solutiéns of HGS are guaranteed to be close to the optima. This gap is more
likely to be due to the quality ef the lower bounds, since over all 2h-runs of the exact approaches
not a single best solution/of the metaheuristic was improved. Finally, the average CPU time never

exceeds 93 secondsythe worst case being observed on problem pl6 with 199 services.

6.3. Comparative analyses on key subproblems
As discussed in Section 2, the VRP-SL generalizes several important problem classes. Two such
problemsuin particular, the VRPPFCC and CPTP, have been the focus of a wide literature, opening

the way to some comparative performance analyses.

Experiments on the VRPPFCC. We rely on the two sets of instances from [12]. Set CE includes
up to 199 customers, while Set G includes larger instances with up to 483 customers. For these
instances, the convention is to compute all distances with double precision and report the final

solution with two digits. Our heuristic method is compared to the two best current metaheuristics
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Inst | n m | Wor-10 Avg-10 Best-10 Gappks Gaprs T(s) | BKS BKLB
Al 31 5 707.4 707.40 707.4 0.00 0.00 9.06 707.4 7074
A2 32 6 658.2 658.20 658.2 0.00 0.32 8.72 658.2 656.1
A3 | 35 5 666.2 666.20 666.2 0.00 0.00 9.70 666.2 666.2
A4 | 36 6 805.0 805.00 805.0 0.00 0.00 9.51 805.0 805.0
A5 | 38 5 669.4 669.40 669.4 0.00 0.23 10.18 | 669.4 667.9
A6 | 43 6 789.6 789.60 789.6 0.00 0.13 12.78 4 789.6 788.6
A7 | 44 7 1023.0 1023.00 1023.0 0.00 0.22 13.90 [11023.0¢ 1020.8
A8 | 47 7 948.2 948.20 948.2 0.00 0.44 12.99 | 94872 944.0
A9 | 53 7 1073.2 1073.20 1073.2 0.00 0.68 18.49 | 1073.2  1066.0

Al10 | 59 9 1234.8 1234.50 1234.4 0.01 0.67 2121 12344  1226.3

All 61 8 1124.8 1124.10 1124.0 0.01 1.08 20.69 | 1124.0 1112.1

Al12 62 10 1132.6 1132.44 11324 0.00 0.36 19.54 | 11324  1128.3

Al3 | 64 9 1101.8 1101.70 1101.6 0.01 1.04 22.64 | 1101.6  1090.4

Al4 | 79 10 1526.2 1525.30 1525.2 0.01 1.11 32.05 | 1525.2  1508.6
B1 30 5 584.8 584.80 584.8 0.00 0.57 9.53 584.8 581.5
B2 | 34 5 748.2 748.20 748.2 0.00 1.10 8.34 748.2 740.0
B3 | 38 5 497.2 497.20 497.2 0.00 3.98 10.24 | 497.2 478.2
B4 | 42 6 666.2 666.20 666.2 0.00 0.46 12.00 | 666.2 663.2
B5 | 44 5 625.0 625.00 625.0 0.00 1.66 11.71 625.0 614.8
B6 | 49 7 668.8 668.80 668.8 0.00 1.77 14.25 | 668.8 657.2
B7 | 50 7 956.2 956.20 956.2 0.00 2.38 15.13 | 956.2 934.0
B8 | 55 7 637.4 637.40 637.4 0.00 3.97 18.26 | 6374 613.1
B9 | 56 9 1378.2 1376.72 1376.2 0.04 2.03 22.17 | 1376.2 13494

B10 | 63 9 812.0 812.00 812.0 0.00 2.33 20.20 | 812.0 793.5

B11 66 10 951.8 951.56 951.4 0.02 1.65 24.15 | 9514 936.1

B12 10 1092.6 1091.94 1091.4 0.05 2.13 28.92 | 1091.4  1069.1
p03 | 100 — 555.0 55500 555.0 0.00 0.10 22.67 | 555.0 554.4
p06 | 50 - 387.0 387.00 387.0 0.00 0.00 10.74 | 387.0 387.0
p07 | 75 - 919.6 519.60 519.6 0.00 0.00 17.51 | 519.6 519.6
p08 | 100 -~ 544.8 544.80 544.8 0.00 0.09 22.50 | 544.8 544.3
p09 | 150 / — 695.6 695.60 695.6 0.00 1.50 46.12 | 695.6 685.3
pl0 | 199 4 810.8 810.44 810.2 0.03 1.36 86.30 | 810.2 799.6
pl3 /120 . 640.8 640.20 639.8 0.06 8.70 44.05 | 639.8 588.9
pld | 100 K+ 588.0 588.00 588.0 0.00 3.43 27.04 | 588.0 568.5
pl5 7200 — 588.8 588.80 588.8 0.00 2.93 26.78 | 588.8 572.1
pl6é | 199 — 805.0 804.24 803.8 0.05 1.29 92.85 | 803.8 794.0

All 0.01 1.38 22.58

Table 3: Performance of the HGS on the VRP-SL instance sets
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in the literature: the UGHS proposed by [66], which uses an ezhaustive solution representation
(with all visits) with a route-evaluation operator in charge of customer selections, and the recent
AVNS of [32]. To the best of our knowledge there are no known exact results for this problem in
the literature. The results of our methods are displayed in Table 4. The column BKS reports the
best known solutions found in the literature before this paper. Avg-10 and Best-10 represent the
average and best solutions found by the metaheuristic over ten runs. For each instance, the best
heuristic method in highlighted in boldface. For the branch-and-price results, columns$ LBy and LB
follow the same convention as Table 2.

In these experiments, the proposed metaheuristic appears to outperform, previous methods in
terms of solution quality, with an average gap of 0.141%, in comparison;to 0.445% for UHGS with
the exhaustive solution representation, and 0.345% for AVNS. During these tests, eight new best
known solutions (BKS) have been found, as underlined in the table. Finally, the average CPU time
is markedly faster than previous approaches which were run on processors of a similar generation,
with 340 seconds on average, compared to 1584 and 4656 seconds for the other methods. The
proposed branch-and-price algorithm is the first in the literature to report optimal VRPPFCC
solutions for three instances: CE-01, CE-06 and G-17%0n the other hand, on six instances, the
algorithm was not able to solve the root node within a time limit of two hours. This is due to
their size (up to 480 customers), which can be c¢onsidered very large for the current exact methods.
Finally, the average integrality gap calculated over the tractable instances was 0.667%, confirming

the good performance of the approach:

FExperiments on the CPTP.For this problem, we compare the proposed HGS with the previous
two best methods in the literature, the UHGS with exhaustive solution representation and the
multi-start ILS of [66]. We also compare the proposed branch-and-price algorithm with the exact
approach of [1]; whieh_generated, to this date, the best bounds for the CPTP. In that work, the
authors propoesed a/branch-and-price algorithm using a ¢g-route relaxation, and reported detailed
results with and without a primal heuristic. We rely on the ten test cases of [2], each case being used
to produce 12 instances with a different fleet size and vehicle capacity, for a total of 120 instances.
Tables\5 and 6 present a summary of our computational experiments on these instances, using the
same conventions as previously. Each line in the table corresponds to an average measure over a
group of 12 instances.

These instances are generally smaller, with 50 to 199 service locations, and thus the performance

differences between state-of-the-art heuristics are less marked. Still, we observe that the proposed
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UGHS — [66] ILS — [66] This paper — HGS
Instance  n | Avg-10 Best-10  T(s) | Avg-10 Best-10  T(s) | Avg-10 Best-10 T(s) BKS
p03 100 | 254.07 254.07 215.82 | 253.99 254.07 191.63 | 254.07 254.07 12.32 | 254.07
p06 50| 129.13 129.13 30.78 | 129.09 129.11 23.35|129.13 129.13 7.18 | 129.13
p07 75| 192,51 192.56 103.94 | 192.37 192.56 85.80 | 192.52 192.56 8.36 4,192.56
p08 100 | 254.07 254.07 216.28 | 253.93 254.07 191.49 | 253.90 254.07 12.17. | 254.07
p09 150 | 319.61 319.72 295.34 | 319.23 319.72 289.75 | 319.67 319.72 18.44) | 319:72
pl0 199 | 387.87 388.41 303.55 | 386.67 387.73 309.23 | 388.79 388.85( 19.90 | 388.41
pl3 120 | 180.20 180.39 23598 | 178.33 180.32 255.97 | 180.08 180.32 15.15/| 180.39
pl4 100 | 246.24 246.24 116.26 | 246.23 246.24 111.83 | 246.24 246.24 10.78 | 246.24
pl5 150 | 327.99 328.36 295.02 | 326.91 327.81 289.85 | 328.28.-328.37 15.24 | 328.36
pl6 199 | 393.09 393.75 303.88 | 392.21 393.32 309.74 | 394.083 394.04 21.16 | 393.75
Avg. Gap(%) 0.029  0.000 0.172  0.014 0:012,,  -0.002
Avg. T(s) 211.68 205.86 14.07
CPU Xe 3.07GHz Xe 3.07GHz Intel i7 3.4GHz
Table 5: Performance of HGS on the CPTP, _benchmark instances
B&P1 — [1] B&P2 — [1] This paper — B&P
Instance n UB LB T(s) UB LB T(s) | UBg UB LB T(s) | BKUB
p03 100 | 256.90 254.07 1135.31 | 256.82 147.01 1135.38 | 258.17 255.36 254.07 1116.00 | 256.82
p06 50| 129.75 129.13 625.08 | 129.64 118.09 602.38 | 131.77 129.39 129.13 287.89 | 129.64
p07 75| 193.18 “192.56  622.38 | 193.11 163.49 613.92 | 194.21 192.82 192.56 285.06 | 193.11
p08 100 | 25689 ,254.07 1134.31 | 256.82 147.01 1135.00 | 258.17 255.36 254.07 1116.05 | 256.82
p09 150 |/324:25°,316.33 1163.69 | 324.20 160.90 1163.85 | 323.66 320.83 319.72 1123.65 | 324.20
pl0 1991 392.03) “377.01 1117.77 | 391.66 176.43 1117.77 | 392.07 390.43 388.85 596.37 | 391.66
pl3 A20 |'191.74 167.78 1916.08 | 191.70 116.06 1916.77 | 186.72 183.93 180.32 1216.18 | 191.70
pl4l 100 | 265.47 237.02 1110.31 | 255.41 116.24 1110.31 | 248.67 247.20 246.24 556.22 | 255.40
pl5 “150.4331.98 324.19 893.54 | 331.93 190.18 893.77 | 332.36 330.67 328.37 603.52 | 331.93
pl6w,199 | 398.57 379.03 1118.46 | 398.27 178.90 1118.38 | 398.58 396.47 394.04 941.83 | 398.27
Avérage 273.07  263.12 1083.69 | 272.96 151.43 1080.75 | 272.44 270.25 268.74  784.28 | 272.96
CPU Xe 2.26GHz Xe 2.26GHz Intel i7 3.4GHz

Table 6: Performance of the proposed branch-and-price algorithm on the CPTP benchmark instances
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HGS obtains average solutions of similar or better quality (0.012% gap compared to 0.029% and
0.172% gap) in a fraction of the CPU time of previous algorithms (14 seconds in average, compared
to 211 or 205 seconds). Three previous BKS were improved, leading to an average gap of —0.002%
for the best solution quality of 10 runs. For the branch-and-price algorithm, we set the time limit
to 3600 seconds in order to make a fair comparison with [1]. The proposed B&P found similar or
better solutions for all instances tested. It improved the bounds for 37 instances, with an average
improvement of 0.629%, and proved optimality for 103 instances, including ten néw optimality

certificates.

6.4. Sensitivity analyses

Finally, this section reports additional sensitivity analyses on the impact of key components
of the proposed HGS. For this purpose, we compare the results of the stamdard method described
in Section 5 against several alternative configurations obtained by modifying one operator, design

choice, or group of parameters:

EOX - An edge-recombination crossover (EOX) issused. As described in [67], this crossover
maintains, for each vertex ¢, an adjacencylist of non-visited vertices adjacent to i in
at least one parent. After a random choice for the first vertex, EOX iteratively inserts
the adjacent vertex with the shortest adjacency list. Ties are broken randomly, and a
random vertex is chosen/whenever the adjacency list is empty. As in our adaptation of
OX, target service levels are inherited for the groups from the parents, and any vertex
belonging to a group.for/which the target service level has already been attained is
eliminated from the adjacency lists.

No SL - Service levels/are not used to filter service insertions in the crossover.
No INF — All penalty coefficients are set to a large value to avoid infeasibility.
No DIV - Individual diversity contributions are not counted in the biased fitness.
No Rep'— The Repair operator is not applied.

Pop | “wSmaller population: (¢, u, \) = (4,12, 20).
Pop’t - Larger population: (u€, u, \) = (16,50, 80).
Feas 1 — 50% feasible solutions as a target: (&MN, M%) = (0.4ﬁ,0.6ﬁ).

Feas 11 — 75% feasible solutions as a target: (&MN, £MAY) = (0.65ﬁ, 0.8514+K).
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Each of these algorithm configurations was run 10 times on every benchmark instance for the
VRP-SL, VRPPFCC and CPTP. Table 7 presents the average percentage gap, best percentage gap

and time of each method for each set of instances.

VRP-SL Set S1 VRP-SL Set S2 VRPPFCC CPTP
Best-10 Aveg-10 T(s) |Best-10 Avg-10 T(s) |Best-10 Avg-10 T(s) |Best-10 Avg-10 T(s)
Standard 0.00 0.01 16.01| 0.00 0.01 39.66| 0.06 0.21 340.00| 0.00 0.02 _14.07
EOX 0.02 0.05 19.98] 0.03 0.10 66.61] 1.69 2.04 225.45| 0.02 0.06,. 20.39
No SL 0.00 0.01 16.70| 0.00 0.02 41.68| 0.07 0.20 360.61| 0.02 0.04 15.22
No INF 0.05 0.12 15.05| 0.07 0.14 40.84| 0.15 0.38 344.67| 0.02 0.05 12770
No DIV 0.01 0.05 13.62] 0.01 0.08 29.04| 0.12 0.37 155.33| 0.02 017 . 11.68
No Repair| 0.00 0.02 12.51| 0.01 0.03 34.85| 0.05 0.20 337.18| ~0:00 0.02  12.40

Pop | 0.00 0.01 12.99| 0.00 0.02 31.16| 0.05 0.23  343.941,,0.00 0.03 11.24
Pop t 0.00 0.01 26.48| 0.00 0.02 60.53] 0.12 0.26 545.01| 0:000 0.01 25.14
Feas 1 0.00 0.01 15.12| 0.00 0.02 40.01} 0.10 0.26  348.12| 0.01 0.03 14.06
Feas 1 0.01 0.04 14.93| 0.01 0.05 40.61 0.16 0.37 380.057 0.01 0.05 14.23

Table 7: Sensitivity Analysis on the componentstof the'HGS

From these experiments, it appears that the propesed-method is a sort of “local optimum” in
terms of design choice and parameter settings, in the sensethat any change of its main operators
and parameters impacts negatively the method¢performance. Still, some design choices have a much
larger impact than others. In particular, using the EOX crossover operator strongly deteriorates the
method performance for VRPPFCC instancesywhile speeding-up the resolution. Such a speed-up
may be a symptom of premature Convergence due, in this case, to the crossover. Both diversity
management and infeasible-solation management contribute significantly to the performance of the
method (configurations No INF and No DIV). This confirms the earlier observations of [62, 65].
Still, although the management of infeasible solutions is critical, deactivating the repair operator or
changing the target leyel of feasible solutions has little impact (configurations No Rep, Feas 1 and
Feas 11). The control of the service levels in the crossover has a beneficial effect on performance
for the CRTP (configuration No SL). Finally, HGS is relatively insensible to reasonable changes of
population size (configurations Pop | and Pop 1).

7. Conclusions

In this article, we have introduced the VRP-SL, an important VRP variant arising in collaborative
logistics operations, which aims to take into account the requirements of various partners via service
level constraints on groups of deliveries. To establish a basis for further research, we introduced a

first set of benchmark instances, a compact mathematical formulation, a branch-and-price algorithm
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and a first effective hybrid genetic search. The service level constraints tend to make the selection
of services more complex, and thus new problem-tailored search operators, solution representation,
crossover, LS moves, and penalty management strategies were introduced in HGS. Thanks to these
elements, the proposed heuristic finds all known optimal solutions for the VRP-SL, and outperforms
previous algorithms for two important special cases, the VRPPFCC and the CPTP, which have
been intensively studied in past literature. Finally, the proposed branch-and-price algorithm was
able to produce tight bounds for all problems and new optimality certificates for{63 instances,
outperforming the existing exact approaches.

The research perspectives are numerous. First, the new algorithms can.still'be improved via
the addition of new families of cuts, better relaxations, new neighborhoods and other heuristic
strategies. Moreover, the VRP-SL is only a simplification of an intricate real-life application, and
the assumptions about the time constraints, the dynamics and stochasticity of the problem were
voluntarily simplified to allow for reproducibility. Guaranteeing, in,a stochastic and on-line context,
the satisfaction of contractual service levels for prize-collécting problems is an important challenge,
as the violation of such obligations can lead to large penalties or lost contracts. To circumvent this
risk while mitigating the cost of robustness, it is possible,to search for robust solutions on a larger
planning horizon, and consider alternative transpertation modes as a recourse. These aspects, and

the interactions between them, will be considered in future works.
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