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a b s t r a c t

In a ferroelectric-gate thin film transistor memory (FGT) type structure, the gate-insulator layer is
extremely important for inducing the charge when accumulating or depleting. We concentrated on the
application of low-temperature PZT films crystallized at 450, 500 and 550 �C, instead of at conventional
high temperatures (�600 �C). Investigation of the crystalline structure and electrical properties indicated
that the PZT film, crystallized at 500 �C, was suitable for FGT fabrication because of a high (111) orien-
tation, large remnant polarization of 38 mC/cm2 on SiO2/Si substrate and 17.8 mC/cm2 on glass, and low
leakage current of 10�6 A/cm2. In sequence, we successfully fabricated FGT with all processes below
500 �C on a glass substrate, whose operation exhibits a memory window of 4 V, ON/OFF current ratio of
105, field-effect mobility of 0.092 cm2 V�1 s�1, and retention time of 1 h.
© 2016 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The search for low-temperature (�500 �C) production processes
of electronic devices has increased in recent years due to the
promising possibility of lowcost and light production of high-density
integrated circuits on flexible substrates (polymers or metal foils),
instead of traditional silicon substrates [1e3]. For instance, when
embedding a ferroelectric memory device on silicon-based CMOS
integrated circuits, the temperature processing is required to be
lower than 450 �C [4]. A ferroelectric-gate field-effect transistor
(denoted as FGT), which uses ferroelectric material as the gate-
insulator layer and an oxide-semiconductor material as a channel
layer, is of extensive interest for nonvolatile memory applications
because it possesses a simple memory-cell structure and low-power
consumption in principle [5e7]. Unfortunately, the difficulty of
lowering temperature processing of the FGT is lodged in the
ferroelectric-gate insulator layer. As it is well known, when the FGT
uses an organic ferroelectric-gate insulator layer, all processing
temperatures could be reduced as low as 200 �C. However, the
operation of such an FGT requires a high writing/reading voltage
(>10 V) to polarize the insulating layer, which leads to high power
consumption. Moreover, the performance of organic FGTs is very
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sensitive to the fabrication process [8,9]. Accordingly, from the point-
of-view of power consumption and high reproducibility, an inorganic
ferroelectric-gate insulator layer is superior to an organic one.

Among inorganic ferroelectric materials, lead zirconate titanate
(PZT) is the primary option for fabricating FGTs on non-based sili-
con substrates. PZT satisfies the constraint on processing temper-
ature (�600 �C), which is lower compared to other inorganic
ferroelectrics such as strontium bismuth tantalate (�700 �C) [10],
and bismuth lathanum titanate (�650 �C) [11]. Many works have
reported a success of growing high-quality PZT films below 500 �C
from chemical vapor deposition, including tailoring precursor so-
lution [12e14], seeding the film [15,16], hydrothermal annealing
[17,18], and better lattice matching [19].

At this time, we are not aware of any reports on the fabrication
of FGTs using inorganic ferroelectric materials processed at or
below 500 �C. The reason for this lies not only on the temperature
process of the ferroelectric-gate insulator layer, but depends on the
oxide-semiconductor channel layer. Previously, a high-quality PZT
film deposited by a solution process at a temperature �500 �C has
been achieved [20]. Alternatively, using the solution-processed ITO
channel at 450 �C, a clear operation of a FGT has been demon-
strated. However, a 600 �C PZT film was used in this case and the
FGT was fabricated on a single-crystal STO (111) substrate [21].
Therefore, in this study, a combination of the two processes
mentioned above has been proposed in order to realize a FGT with
National University, Hanoi. This is an open access article under the CC BY license
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Fig. 2. XRD patterns for the PZT films crystallized at 450, 500 and 550 �C on SiO2/Si
substrates.
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all processes below 500 �C and fabricated on SiO2 (500 nm)/Si
substrate or glass.

2. Experimental

A preliminary experiment was performed to find the optimum
condition for preparing high-quality, low-temperature PZT films.
First, a 100-nm-thick Pt film followed by a10-nm-thick Ti film was
deposited on SiO2 (500 nm)/Si and glass substrates by using rf
sputtering at temperature of 100 �C. Second, a ferroelectric-gate
PZT film with 160-nm thickness was deposited after a solegel
coating of an alkoxide-based 8.0wt% Pb1.2Zr0.4Ti0.6O3 precursor
solution (Mitsubishi Materials) and then crystallized at 450, 500
and 550 �C for 30 min in a pure-air atmosphere using a rapid
thermal annealing furnace (RTA, ULVAC-Mila5000). To evaluate the
electrical properties of the PZT films, we prepared Pt/PZT/Pt
capacitor structure with area of 100 � 100 mm2 as shown in
Fig. 1(a). Fig. 1(b) shows the FGT structure with a flat-gate electrode
fabricated on the SiO2 (500 nm)/Si substrate. In this step, the source
and drain regions were patterned after a conventional photoli-
thography process, rf sputter deposition of 50-nm-thick Pt film, and
lift-off process. Using this technique, the gap of the FGT was pre-
cisely created that was 5 mm in length. Third, the channel layer was
formed from a 20-nm-thick ITO film, which was deposited by a
solegel coating of a carboxylate-based ITO precursor solution
(5.0 wt% SnO2 doped; Kojundo Kagaku) and crystallized at 450 �C
for 20 min in air. After that, the ITO layer was etched by an
inductively coupled plasma (ICP) method with the assistance of
photolithography in order to pattern the channel with a width of
60 mm. Fig. 1(c) shows the FGT structure with a patterned gate of
50 mm in length, which is different with the flat-gate structure of
Fig. 1(b) and fabricated on glass.

The shape of the gate, the source-drain and the channel areas of
the patterned-gate FGT on the glass substrate were observed by an
optical microscope. The crystalline property of the PZT films on the
Pt/Ti/SiO2/Si substrates was confirmed by X-ray diffraction. The
electrical properties of the PZT films, such as polarization-voltage
(P-V) and leakage current-voltage (I-V) characteristics, were
measured at a frequency of 1 kHz by using the SawyereTower
method. The transfer (ID-VGS) and output (ID-VDS) characteristics of
the fabricated FGTs were measured by means of a semiconductor
parametric analyzer (Agilent 4155C).

3. Results and discussion

The crystalline structure of the PZT films formed on Pt/TiO2/
SiO2/Si substrates at various annealing temperatures of 450, 500
and 550 �C is shown in Fig. 2. Well crystallized, preferentially ori-
ented (111)-PZT films are found on the three samples. It is likely
Fig. 1. Schematic drawing: (a) Pt/PZT/Pt capacitor structure, (b) flat-gate FGT fabricat
that the high (111) texture of the PZT films partly originates from
the Pt seed layer, which has a face-centered cubic structure also
with a high degree of (111) texture. Furthermore, in our previous
research, a new route was found to obtain high-quality PZT films
even at 450 �C, under a strict process of nitrogen gas control or
carbon retained before annealing, in order to avoid the formation of
the pyrochlore phase, which usually leads to a high temperature of
perovskite phase formation [20]. From Fig. 2, one can see that the
(111) peak intensity of the PZT films increases with annealing
temperature. This is reasonable considering an earlier report;
where a highly crystallized PZT film is usually obtained when the
annealing temperature is approaches 600 �C [22].

Fig. 3(a) shows the polarization-voltage (P-V) hysteresis loops of
the PZT films formed on Pt/TiO2/SiO2/Si substrates at various
annealing temperatures of 450, 500 and 550 �C, which were
measured by applying a sinewave voltagewith amplitude changing
from �10 V to 10 V. The hysteresis loops have a well-saturated
behavior and an obvious squareness, which are consistent with
the highly (111)-oriented PZT films, as indicated from Fig. 2. For all
cases, the remnant polarization (Pr) and twice coercive voltages
(2Ec) are approximated from each loop at different annealing
temperatures. For instance, the 500 �C PZT film had a Pr and 2Ec of
about 38 mC/cm2 and 2 V, respectively. These values match with the
ones reported previously [20], and are comparable to those from
other works, of which the crystallization temperature of PZT film is
600 �C or higher [21,22]. Fig. 3 (b) shows the dependence of the
leakage current on the applied voltage for the PZT films corre-
sponding to the hysteresis loops shown in Fig. 3(a), which were
measured from 0 to 10 V. It is interesting that at an applied voltage
of >3 V, the leakage current of the 500 �C PZT film is lower than that
of the 450 and 550 �C PZT films. In particular, the leakage current is
ed on SiO2/Si substrate and (c) patterned-gate FGT fabricated on glass substrate.



Fig. 3. Electrical properties of the PZT films crystallized at 450, 500 and 550 �C: (a) polarization-voltage hysteresis loops and (b) leakage current-voltage characteristics.
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determined to be about 10�6 A/cm2, even at an applied voltage of
10 V, which is one or two orders of magnitude lower than the other
samples. According to the result, it is supposed that the 500 �C PZT
film is mostly acceptable for ferroelectric memory application.

Fig. 4 shows the transfer characteristics of FGTs with a flat gate
fabricated on SiO2/Si substrates, with the PZT gate insulator crys-
tallized at 450, 500 and 550 �C. These flat-gate FGTs have a channel
length of 5 mm and channel width of 60 mm. In the measurement,
the gate voltage (VGS) was gradually swept from �7 V to 7 V with a
step of 0.1 V, and the bias voltage between the drain and source
(VDS) was kept at a constant 1.5 V. It is clear that the transfer
characteristics imply a memory functionality with a counterclock-
wise hysteresis loop, typical n-type transistor, whose the ON/OFF
current ratiowas in range of 106e107, and thememorywindowwas
almost 2 V for all cases, which are equal to the 2Vc estimated from
Fig. 3. That is, a well-formed interface between the ITO channel
layer and PZT gate-insulator layer might be achieved using the low
temperature processes. It can be seen from this figure that higher
ON current saturation is correlated with higher annealing tem-
peratures. Unfortunately, the OFF current also increases when the
annealing temperature increases. Therefore, considering the results
obtained in Figs. 3 and 4, the 500 �C PZT film is expected to be the
best selection for FGT fabrication on glass, because it has the lowest
leakage current and better transfer characteristics as compared to
the other cases.

Fig. 5 shows an optical microscope image of the FGT patterned
on glass. Note that cross-section view of the FGT structure on glass
is schematically drawn in Fig. 1(c). For this patterned-gate FGT
fabrication, all processes have temperatures equal or lower than
Fig. 4. Transfer characteristics of flat-gate FGTs fabricated on SiO2/Si substrates, whose
PZT gate insulator crystallized at 450, 500 and 550 �C.
500 �C. According to this image, one can determine that the channel
length is 5 mm, the channel width is 60 mm, and the gate length is
50 mm. Fig. 6(a) and (b) show hysteresis loops and leakage current
characteristics of the 500 �C PZT film measured directly on the FGT
area, for which the source and drain areas were simultaneously
connected to ground while the gate was connected to the pulsed
voltage before forming the channel layer. The PZT film has a large
coercive voltage of 4 V, which is favorable for the wide memory
margin requirement and a remnant polarization of 17.8 mC/cm2 at
an applied voltage of 8 V, which is large enough for clarifying the
ON- and OFF-state of the memory. Here, we calculate the capaci-
tance per unit area unit of the gate insulator Cox ¼ P/V, and find
Cox ¼ 2.2 mCV�1 cm�2. From Fig. 6(b), a low leakage current density
of <10�5 A/cm2 at an applied voltage of 8 V is achieved, which
supports that the 500 �C PZT film deposited on glass still remains an
adequate ferroelectric for FGT fabrication.

Fig. 7 points out the operation of the low-temperature FGT on
glass. From Fig. 7(a), the transfer characteristic of FGT clearly
describes a memory function with memory window of 4 V and
ON/OFF current ratio of 5 orders of magnitude. Once again, the
2Ec of P-V loop shown in Fig. 6(a) and the memory window
shown in Fig. 7(a) are similar from each other. In addition, one
can obtain from Fig. 7(a) that the gate leakage current is on the
order of nA, which supports a low power consumption in the
stand-by state. Fig. 7(b) shows the output characteristics of the
FGT fabricated on glass, when the VDS was continuously scanned
from 1 to 8 V and the VGS was varied from 1 to 8 V with an in-
cremental step of 1 V. It can be seen that the drain current has a
Fig. 5. Optical microscope image of the FGT patterned on a glass substrate whose
channel length is 5 mm, channel width is 60 mm, and gate length is 50 mm.



Fig. 6. Electrical properties of the PZT film crystallized at 500 �C on glass substrate: (a) polarization-voltage hysteresis loops and (b) leakage current-voltage characteristic.

Fig. 7. (a) Transfer, gate leak and (b) output characteristics of FGT with a patterned gate fabricated on glass, whose channel length, channel width and gate length are 5 mm, 60 mm
and 50 mm, respectively.

Fig. 8. Retention characteristics of the FGT patterned on glass substrate, in which a
square pulse of ±6 V with a frequency of 1 kHz was used for data writing.
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hard saturation, reaching a magnitude of 0.15 mA with
VGS¼VDS¼ 8 V. Although the saturated ON drain current (ID) is
not very high as compared to the other cases [23,24], it will
promote further investigations to obtain a higher level without
any amplifiers by processing the ITO/PZT interface or by
improving the PZT film quality. The field-effect mobility (mFE) is
calculated from the saturation region of Fig. 7(b) by using the
formula: mFE ¼ ID½ðWDS=2LDSÞCox$ðVGS � VTÞ2��1, where
ID ¼ 0.15 mA, the LDS ¼ 5 mm,WDS ¼ 60 mm, Cox ¼ 2.2 mCV�1 cm�2,
VGS ¼ 8 V, VT ¼ 1.5 V. Using these parameters, we estimated mFE to
be 0.092 cm2 V�1 s�1. This value is much lower than the other
reports on the high-temperature FGT [23,24], but it is almost
comparable to an amorphous silicon TFT [25].

Fig. 8 shows the retention characteristics of the FGT fabricated
on glass substrate. In this measurement, the ON and OFF states
were, in turn, written by using a square pulse with amplitudes
ofþ6 V and�6 V at a frequency of 1 kHz. The stored memory states
were kept at room temperature and they were read out by using
VDS ¼ 1.5 V and VG ¼ 6 V at each waiting time of 104 s. One can see
from Fig. 8 that the ON/OFF current ratio is almost unchanged even
after 1 h, but degraded quickly after longer time storage. Although
the obtained retention time of a solution-process FGT with all
processes below 500 �C is much shorter than the commercial
requirement of about 10 years for non-volatile memory devices, it
supports a promising future research to improve the retention
characteristics from the viewpoint of low temperature processes
for a better formation of ITO/PZT interface, comparing with the
conventional Si-based ferroelectric memories [26e29]. Further
investigation on the ITO/PZT interface would be analyzed, and La-
based materials might be used as a capping layer in order to
prevent diffusion of Pb from the PZT film to the ITO film, which will
improve the retention characteristics [30,31].
4. Conclusions

We have investigated the crystalline and electrical properties of
PZT films processed at 450, 500 and 550 �C. It is found that although
the crystalline quality of 500 �C PZT film is worse than that of
550 �C PZT film, it has the lowest leakage current of 10�6 A/cm2 and
a better transfer characteristic when fabricating FGT on
SiO2(500 nm)/Si substrate. Using the 500 �C processed PZT film, the
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FGT with channel length of 5 mm, channel width of 60 mm, and gate
length of 50 mmwas successfully fabricated on glass. As a result, for
the first time, we verify that the memory window, ON/OFF current
ratio, field-effect mobility and the retention time of the FGT were
4 V, 105, 0.092 cm2 V�1 s�1, and 1 h, respectively.
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