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Abstract—Whole exome sequencing (WES) is a widely used 
technique in both medical studies and clinical practice. However, 
a number of studies show that the results produced by different 
WES analysis pipelines are not always homogeneous. To this end, 
we propose a method (called Genomedics) using a consensus 
approach to expand the list of variants by combining results 
called from six separate pipelines with sensitive options. To eval-
uate the performance of the proposed method, Gemomedics was 
compared to seven existing methods when they were tested on 
two datasets and F1-score was used as an indicator of accuracy. 
The results showed that Genomedics has the highest score among 
seven methods. We also applied Genomedics to analyze whole 
exomes from Multiple Myeloma and Dravet syndrome patients 
and found interesting results. The results demonstrate the prom-
ising applications of Genomedics in clinical studies. 

Keywords: genomedics, whole exome sequence, variant calling, 
clinical studies, application of WES. 

I.  INTRODUCTION 

The human genome consists of about 3 billion nucleotides. 
Each person has from 3 to 4 million of variants on the genome 
[1,2]. The exome is the part of the genome that encodes pro-
teins. It contributes approximately 1% of human genome  [3]. 
Using the next generation sequencing (NGS) technologies, 
whole exome and whole genome are sequenced with affordable 
cost allowing their applications for clinical studies [4]. 

Whole exome sequencing analysis has undeniable applica-
tion potential. Although human exome only contributes a very 
small percentage of human genome, most of our current 
knowledge about functional genetic variation is on this region 
[5]. It is estimated that the whole exome contributes about 85% 
of the disease-causing mutations in Mendelian disorders [6].  
Another advantage of whole exome sequencing is that its cost 
is significantly lower than the cost of whole genome sequenc-
ing. Therefore, whole exome sequencing is not only limited in 
clinical research but also is becoming a standard test to identify 
the underlying genetic cause of disease for a variety of indica-
tions in clinical diagnoses [4,7,8]. 

Analyzing whole human exomes from NGS data is a com-
plex problem. It consists of several main steps: mapping short 
reads on to the reference genome, calling variants, and annotat-
ing called variants. Different methods have been proposed for 

each step (e.g., BWA for mapping short reads [9], GATK for 
calling variants [10], and SNPeff for annotating variants [11]).  

It is well known that variants called from different methods 
can be discordant, therefore, popular methods are typically 
used together to call variants [1,12]. Software packages such 
as Seqmule [12] have been developed allowing users to call 
variants from a number of methods. Although these packages 
also combine variants called from different methods, they are 
not designed to evaluate the reliability of a variant based on 
the results from different methods. 

In this study, we introduce Genomedics to analyze and an-
notate whole human exomes. Genomedics employs the consen-
sus approach to combine results obtained from a number of 
pipelines with sensitive options. We examined the performance 
of Genomedics and other methods on the gold standard da-
tasets. Finally, we applied Genomedics to study epilepsy and 
multiple myeloma diseases. 

II. METHODS 

A. Variant calling methods 
Calling variants is a crucial step in the whole exome analy-

sis. This step involves various computational methods to de-
termine different variant types from the raw data. The variant 
types can be classified into short variants and structural vari-
ants. Short variants include single nucleotide variants and short 
insertions/deletions, called short indels. The structural variants 
include a wide range of variants that can affect the structure of 
genes, and consequently corresponding proteins. Among struc-
tural variant types, copy number of variations are the causes of 
a number of neuro-related diseases such as epilepsy, and au-
tisms [13]. 

To call variants from the raw data, short reads are mapped 
to the reference sequence to create alignments. A number of 
alignment methods have been proposed, and two popular 
methods are Burrows-Wheeler Aligner (BWA) [9] and 
Bowtie2 [14]. The BWA aligner uses Burrows-Wheeler 
Transformation (BWT) of the reference genome to efficiently 
align short sequencing reads. The BWA not only minimises 
the memory needed to store the reference, but also allows a 
matching strategy for the reads operating in the order of the 
read length. The Bowtie2 aligner is an ultrafast, memory-
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efficient alignment program for aligning short reads. Bowtie2 
extends previous Burrows-Wheeler techniques with a novel 
quality-aware backtracking algorithm that permits 
mismatches. The reference genome is indexed by using a 
scheme based on (BWT) and the  
full-text minute-space index (FM index). A Bowtie indexing 
for the human genome requires only few gigabytes of 
memories. Note that alignments obtained from BWA and 
Bowtie2 are then sorted, indexed by Samtools [15] and 
marked duplications by Picard software [16], and 
subsequently used for calling variants. 

A number of calling methods have been proposed to call 
single nucleotide variants and short  indels from alignments 
such as GATK  [17,18],  Platypus [10], and Freebayes [19]. 
GATK is a unified analytic framework to discover genotype 
variation among multiple samples. It consists of the following 
stages: (i) initial read mapping; (ii) local realignment around 
indels; (iii) base quality score recalibration; (iv) SNP 
discovery and genotyping to find all potential variants; and (v) 
separating true segregating variations from machine artifacts 
common to NGS technologies. The Platypus method  is a 
haplotype-based variant caller for next generation sequence 
data. This variant caller is able to efficiently and accurately 
detect variants from both whole genome and whole exome 
data. Platypus has been extensively examined in 
discovering somatic mutations in cancer studies from whole 
human exome data. The Freebayes caller detects haplotype-
based variants by applying a Bayesian statistical framework to 
model multiallelic loci on multiple individuals.  

The combination of an aligner (i.e, BWA or Bowtie2) with 
a variant caller (i.e., GATK, Platypus, or Freebayes) is called a  
pipeline. Thus, there are six  pipelines for calling single 
nucleotide variants and short indels: 1) BWA and GATK, 2) 
BWA and Platypus, 3) BWA and Freebayes, 4) Bowtie2 and 
GATK, 5) Bowtie2 and Platypus; and 6) Bowtie2 and 
Freebayes. These  pipelines can be conducted with different 
options. In this study, we used the default options or 
recommended options in the best practice of the software. 

Calling structure variants from whole genome data, 
especially from whole exome data is still a challenging 
problem. Determining copy number of variants from whole 
exome data plays an important role in clinical diagnoses and 
precision medicine. A number of methods have been proposed 
such as Conifer [20], XHMM [21], and Excavator [22]. 
However, an extensive evaluation of these tools with different 
parameter sets for properly calling structural variants is still 
required.  

B. Genomedics variant calling method 
A number of studies have shown the advantages and disad-

vantages of different pipelines. The most challenging problem 
is the discordance between variants called from different pipe-
lines [1,12]. Genomedics applies a simple consensus strategy to 
determine variants from different pipelines. Genomedics in-
cludes two main steps: 

• Use six pipelines with very sensitive options to call var-
iants. This strategy enables pipelines to discover as 
many variants as possible, thus, increases the sensitive 
of Genomedics. 

• Use to consensus approach to reduce the fall positive 
rate. Genomedics evaluates called variants from differ-
ent pipelines, and only considers variants as consensus 
variants if they are called by at least two pipelines.  

The full workflow of Genomedics is described in Figure 1. 
Note that Genomedics provides three different methods (i.e., 
Conifer, XHMM, and Excavator) to call copy number of varia-
tions from the whole exome data. 

 
Figure 1: The workflow of Genomedics to determine consen-

sus variants from different pipelines with high sensitive 
options. 

C. Genomedics annotations 
Variants called from Genomedics are then annotated. Each 

variant will be annotated with following essential information: 

• The type and impact of variants on genes and on pro-
teins are annotated by SNPeff [11]. 

• The deleterious level of variants are annotated by SIFT 
software [23]. Specifically, if the SIFT score of a vari-
ant is greater than 0.05, it is annotated as “Tolerated”, 
otherwise, it is annotated as “Damaging”.  
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• The minor allele frequency (MAF) of a variant is anno-
tated by two large databases, i.e., the Exome Aggrega-
tion Consortium (ExAC)/The Genome Aggregation Da-
tabase (gnomAD) [24] and  the 1000 Genome Project 
[1]. The ExAC database is a powerful resource to filter 
variants that are not disease-related mutations on severe 
pediatric diseases. The database from the 1000 human 
genome project (phase 3) consists of 2504 healthy indi-
viduals from 26 populations. The MAF from the 1000 
human genome project is used to filter variants that are 
not causing disease mutations. 

• The variants called from Genomedics are finally anno-
tated with the human gene mutation database [30]. Ge-
nomedics selects only variants with phenotypes anno-
tated as pathogenetics or likely pathogenetics.  

III. EXPERIMENTS  

A. Data 
The Genome in a Bottle (GIAB) Consortium hosted by 

NIST created the highly confident small variant (SNP and In-
del) calls for NA12878 sample. The data can be used as refer-
ence data to measure the performance of different whole ge-
nome/exomes analysis pipelines for single nucleotide variants 
and short indels [25].  We used the whole exomes of sample 
NA12878 sequenced from Garvan to examine Genomedics and 
different pipelines in this study. The sample NA12878 was 
sequenced in two separated runs (namely NIST7086 and 
NIST7035).  

B. Results 
We summarized the data coverage on bases with Phred 

quality score of at least 10. The data average coverage is 52X 
and 55X for NIST7086 and NIST7035, respectively. Figure 2 
shows the percentage of the whole exome covered at different 
depth coverage levels. For example, only 87.97% of the whole 
exome of NIST7035 are covered by at least one read. 

 We measure the precision and the sensitivity to calculate F-
score of Genomedics and other pipelines. The F-score is calcu-
lated as following:   ܨ௔ = ሺ1 + ܽଶሻ. .݊݋݅ݏ݅ܿ݁ݎ݌ .ଶܽݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ ݊݋݅ݏ݅ܿ݁ݎ݌ + ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ  

 Where ܽ is a positive real value. We can easily see that if  ܽ > 1 then the ܨ௔–score will emphasize on precision more than 
on sensitivity, and reversely, if ܽ < 1 then ܨ௔–score will em-
phasize on sensitivity more than on precision. In this work, we 
want to balance weights between the precision and the sensitiv-
ity, thus, we use ܨଵ − score as a main criteria to compare Ge-
nomedics and the six pipelines. 

 

Figure 2: The percentage of data coverage on targeted regions with 
different depth coverages 

The results on NIST7035 and NIST7036 are presented in 
Table 1 and Table 2, respectively. On both datasets, Genomed-
ics has the highest ܨଵ − score among the seven methods 
(93.3% on NIST7035 and 93.8% on NIST7036). It is slightly 
better than the combination of BWA and GATK. In addition, it 
is clearly better than the combination of Bowtie2 and Platypus.  
The results show that the sensitivity of Freebayes method is not 
high as other methods (i.e., only 81.4% and 77.1% on BWA 
and Bowtie2 alignments, respectively).  

We also measured the performance of the Genomedics on 
positions with the coverage depth of at least 4. The ܨଵ − score 
of Genomedics increases significantly to above 97% (both 
sensitivity and the precision are similar and equal to about 
97%). The performances of all methods are similar on both 
NIST7035 and NIST7086 datasets. 

 
TABLE 1: RESULTS FROM TNIST7035 DATASET. GENOMEDICS PERFORMS 

BETTER THAN  PIPELINES. 

 pipelines Precision Sensitivity F-Measure 

BWA + GATK 98.0 87.9 92.7 

BWA + Platypus 99.1 86.5 92.4 

BWA + Freebayes 98.6 81.4 89.2 

Bowtie2 + GATK 98.1 86.4 91.9 

Bowtie2 + Platypus 99.3 82.1 89.9 

Bowtie2 + Freebayes 99.4 77.1 86.9 

Genomedics 96.5 90.3 93.3 

Genomedics* 96.9 97.3 97.1 

*positions covered by less than 4 reads are excluded from analyses 
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TABLE 2: RESULTS FROM THE NIST7086 DATASET. GENOMEDICS PERFORMS 

BETTER THAN  PIPELINES.  

 pipelines Precision Sensitivity F-Measure 

BWA + GATK 98.3 88.5 93.1 

BWA + Platypus 99.1 87.8 93.1 

BWA + Freebayes 99.1 87.8 93.1 

Bowtie2 + GATK 98.0 87.8 92.6 

Bowtie2 + Platypus 99.3 83.3 90.6 

Bowtie2 + Freebayes 99.5 78.6 87.8 

Genomedics 97.0 90.8 93.8 

Genomedics* 97.4 97.2 97.3 

*positions covered by less than 4 reads are excluded from analyses 

 

IV. APPLICATION OF GENOMEDICS IN CLINICAL STUDIES 

A. Multiple Myeloma case study 
Multiple Myeloma is a type of blood cancer that forms in a 

type of white blood called a plasma cell. Multiple Myeloma 
relates to a large number of pathways and genes. A wide range 
of mutations have been reported, notably single nucleotide 
variants, short indels, copy number of variants, etc. [26]. In this 
paper, we used Genomedics to analyze the whole exomes se-
quenced from two multiple myeloma patients, named M1 and 
M2. For each patient, the DNA was extracted from peripheral 
blood and bone marrow. The whole exomes were sequenced 
using the MiSeq, and we obtained four exomes (see Table 3).  

TABLE 3: NGS DATA OBTAINED FROM TWO MULTIPLE MYELOMA PATIENTS, 
NAMED M1 AND M2. FOR EACH PATIENT, THE WHOLE EXOMES FROM BLOOD 

AND MARROW DNA WERE SEQUENCED. 

 
M1 bone 
marrow 

M1 blood 
M2 bone 
marrow 

M2 blood 

Mapped bases 
(millions) 

4012 3076 3895 3494 

Mapped bases 
on targeted 
regions 
(millions) 

2720 1961 2525 2241 

Coverage on 
targeted regions 

60X 43X 56X 49X 

 
We used Genomedics to call and annotated consensus vari-

ants for four exomes. We used a multiple Myeloma gene panel 
of 77 genes [27] to diagnose variants from the four exomes.  

Table 4 presents SNVs called from M1 samples. We found 
4 SNVs that appear in the marrow bone sample, but not blood 
sample. We found 2 frame-shift SNVs on TP53 gene; one mis-
sense SNV on IL6ST; and one missense SNV on RIPK4 gene. 
The show the damage of exome exacted from marrow bone in 
comparison to that from blood. 

 

 

TABLE 4: SINGLE NUCLEOTIDE VARIANTS AND SHORT INDELS FROM M1 

PATIENT. 

Chr Pos Gene Variant HGVS.p 

B
lo

od
 

M
ar

ro
w

 
bo

ne
 

17 7578221 TP53 frameshift p.Arg209fs 0/0 0/1 

17 7578221 TP53 frameshift p.Arg209fs 0/0 0/1 

5 55247795 IL6ST missense 
p.Tyr554Ph
e 

0/0 0/1 

21 43161219 RIPK4 missense 
p.Ala760Th
r 

0/0 0/1 

e, but not in the blood sample. 

 

TABLE 5 presents SNVs called from S2 samples. We found 4 
SNVs that appear in the marrow bone sample; 3 of that also 
appear in blood sample. The first two SNVs are predicted as 
splice acceptor variants on ATM gene. The third one is anno-
tated as a structural interaction variant on TRAF2 gene. The 
last variant (a missense variant) appears only in the marrow 
bone sample, but not in the blood sample. 

 

TABLE 5: SINGLE NUCLEOTIDE VARIANTS AND SHORT INDELS FROM M2 

PATIENT. 

Chr Pos Gene Variant HGVS.p 

B
lo

od
 

M
ar

ro
w

 
bo

ne
 

11 108121410 ATM 
Splice 
acceptor 

p.Arg209fs 0/1 0/1 

11 108121410 ATM 
Splice 
acceptor 

p.Arg209fs 0/1 0/1 

9 139793242 
TRAF
2 

Structural 
interaction 

p.Tyr554Phe 0/1 0/1 

1 115256529 NRAS 
Missense 
variant 

p.Gln61Arg 0/0 0/1 

 
Finally, we used Excavator on BWA alignment to call 

CNVs from M1 and M2 samples. The blood exomes played as 
the control to call CNVs from marrow bone exomes. Table 6 
presents the number of duplications and deletions detected 
from M1 and M2 marrow bone exomes. The CNVs are overlap 
to 20 and 15 multiple myeloma related genes on M1 and M2 
marrow bone exomes, respectively. 

 

TABLE 6: NUMBER OF DUPLICATIONS AND DELETIONS DETECTED FROM M1 

AND M2 MARROW BONE EXOMES. 

Sample #Duplications #Deletion 
#Related 

genes 
M1 marrow 
bone 

10 5 20 

M2 marrow 
bone 

8 2 15 
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B. Dravet case studies 
Dravet syndrome is a rare and severe type of epilepsy in in-

fants. The genetic causes of Dravet syndrome are due to muta-
tions in SCN1A and  several other genes, including but not 
limited to PCDH19, GABRG2, SCN1B, SCN9A, CHD2 
[28,29]. We also applied Genomedics to analyzed whole exo-
me of two boys diagnosed with the Dravet syndromes, named 
S1 and S2.  

Analyzing whole exome of S1 revealed a nucleotide dele-
tion (c.4503delA) on SCN1A gene (at position 166852600 on 
the chromosome 2) that is annotated as a frame-shift variant 
with high impact. The variant are not reported in the ExAC, 
1000 Genome Project databases. It is not reported in the Hu-
man Gene Mutation Database [30]. 

We also found a missense variant (c.4573C>T) on SCN1A 
gene (at position 166852531 on chromosome 2) on the S2 
sample. The variant was annotated as stop-gained variant with 
high impact. The variant is not reported in the ExAC, 1000 
Genome Project databases. However, it is reported as causing 
disease mutation in The Human Gene Mutation Database [30]. 
These two variants on SCN1A gene on both S1 and S2 samples 
were confirmed by the Sanger sequencing method. 

V. DISCUSSION 

 
Whole exome analysis is becoming more and more popular 

in clinical studies. Calling variants from whole exomes has 
been studied intensively, however, the results obtained from 
different variant callers are partly discordant. We have de-
scribed Genomedics as a simple and efficient method to ana-
lyze whole exomes. Genomedics not only combines results 
from different pipelines, but also annotates variants to assist 
diagnosing diseases. 

Since Genomedics combines six separate pipelines in one 
package, it is relatively computational expensive. However, 
considering the time and effort we spend on collecting and 
sequencing the samples, we think it is a reasonable trade-off to 
extensively work on searching for meaningful variants. In fact, 
we already applied Genomedics to analyze whole exomes from 
Multiple Myeloma and Dravet syndrome patients and found 
promising results. Currently, we are applying Genomedics to 
other large-scale clinical studies. 
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