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Abstract. Mechanical properties of tissues in terms of elasticity and
viscosity provide us useful information which may be used in detecting
tumors. Shear wave imaging (SWI) is a new method to quantify tissue
elasticity by estimating the parameters of the complex shear modulus
(CSM). The shear wave is generated by a vibrating needle at a certain
frequency. In fact, CSM is a function of the vibrating frequency. There-
fore, in this paper, a frequency dependent investigation of CSM will be
carried in order to evaluate the estimation performance. The Extended
Kalman Filter (EKF) is designed to estimate the CSM for both homo-
geneous and heterogeneous mediums. The root mean square (rms) error
is used to evaluate the quality of the CSM estimation. Several tests were
implemented to determine the range of vibrating frequency should be
used for the good estimation.

Keywords: Shear wave elasticity imaging · Complex shear modulus ·
Extended Kalman Filter · Vibration

1 Introduction

Mechanical properties of tissues in terms of elasticity and viscosity provide us use-
ful information which may be used in medical diagnosis, especially in detecting
tumors [1]. Among various elasticity imaging modalities, ultrasonic shear wave
elasticity imaging (SWEI), introduced in 1998 by Sarvazyan et al. [2], is used
for estimating the complex shear modulus (CSM) of biphasic hydro polymers
including soft biological tissues. As a consequence, SWEI can be coupled with tra-
ditional (e.g., structural) ultrasound imaging to provide additional information
in the diagnosis. In a recent survey on different state-of-art techniques of ultra-
sound elastography [3], Gennission et al. have confirmed that SWEI has significant
advantages over the other techniques in terms of reproducibility, quantification,
elasticity contrast, and automatic shear wave generation. These advantages lead
to new applications of SWEI, not only for diagnosis but also for treatment.
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With respect to CSM estimation, various methods have been developed as
briefly surveyed next. In 2004, by using the fact that propagation speed of shear
waves is related to the frequency of vibration, the elasticity and viscosity of the
medium Chen et al. proposed a method to estimate the shear elasticity and vis-
cosity of a homogeneous medium by measuring the shear wave speed dispersion
and, in turns, the CSM [4]. In 2007, Zheng et al. applied a linear Kalman filter
for the reconstruction of the harmonic motion of particle velocities at distinct
spatial locations. Their approach is to model displacement at the spatial points
of interest as a sinusoidal function of time. From estimated quantities, absolute
phase at a distinct spatial location can be found. By repeating the same proce-
dure for another location a phase difference is found. Shear wave speed and shear
wave dispersion curves are estimated over a frequency bandwidth and material
properties are obtained. The stochastic filtering approach helped the authors
to obtain optimal estimates of the temporal phase at the given spatial loca-
tion. A drawback of this method is that, the CSM reconstruction is not optimal
and is a post-processing procedure requiring several shear wave frequency mea-
surements [5]. In 2010, Orescanin et al. have conducted an experiment whereby
they modeled the nonlinear relationship between wave dynamics and material
parameters. They represented the CSM parameters of the present by a nonlinear
function of the CSM parameters in the past. So, they applied the Maximum Like-
lihood Ensemble Filter (MLEF), which is a stochastic filter capable of handling
nonlinear dynamical models and nonlinear observation operators, to estimate
the CSM of a homogeneous medium based on the Kelvin–Voigt model [6]. In
this study, they investigated the change of the wave number and attenuation
of the wave propagation of shear waves when the frequency and amplitude of
vibration were changed. This approach has been extented to a heterogeneous
medium [8].

Currently, for the problem of the CSM estimation, there are two key tasks.
First, estimating accurately both the elasticity and the viscosity. Second, the
CSM estimation can be performed in an online manner during data acquisi-
tion. In this paper, we applied the EKF to estimate the CSM. Moreover, we
investigated the impact of the frequency of vibration on the quality of the CSM
estimation for different type of soft tissues.

2 The Methods

2.1 Shear Wave Propagation and Generation

Shear wave is generated and measured as according to Fig. 1. A mechanical
actuator was adapted to hold a stainless-steel needle. The needle is 1.5 mm in
diameter and 13 cm long. It is controlled to vibrate along the z axis with fre-
quency from 100 Hz to 500 Hz. So the shear wave is propagated in tissue. The
Doppler ultrasound system was used to measure the particle velocity [6]. The
needle vibrates along the vertical (z) axis. Under an assumption of cylindrical
shear wave propagation along the radial axis, the particle velocity of shear wave
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Fig. 1. Generation and measurement shear wave.

v(r, t) is a spatial-temporal function of the radial distance r and time t, and is
given by

v(r, t) =
1√

r − r0
Ae−α(r−r0) cos[ωt − ks(r − r0) − φ], (1)

where A is the amplitude of source excitation, r0 is the needle position, and φ is
the initial temporal phase, α and ks are attenuation coefficient and wave number
at surveyed point. The particle velocities at every spatial location is measured
by using the Doppler acquisition.

2.2 The Impact of Frequency of the Vibration on the Shear Wave
Propagation

According to Eq. (1), the attenuation coefficient α has effect significantly on
the shear wave propagation. The more α is great, the more the particle veloc-
ity of shear wave is attenuated. Essentially, α and ks are imaginary and real
components of complex wave number k′

s.

k′
s = ks + iα. (2)

On the other hand, follow Kelvin–Voigt model, we have

cs =
√

μ

ρ
, (3)

μ = μ1 − iωη, (4)

where cs is shear wave speed, ρ is mass density of medium (tissue) at the surveyed
point, μ is the viscoelasticity, μ1 and η are the elasticity and viscosity of medium
at the surveyed point. Complex wave number k′

s is defined as:

k′
s =

2πf

cs
. (5)
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From Eqs. (2), (3), (4) and (5), and replace ω = 2πf , we have

k′
s = ks + iα = 2πf

√
ρ

μ1 − i(2πf)η
. (6)

According to Eq. (6), for every tissues (this means that the valued ranges of
the elasticity μ1 and viscosity η of medium are determined), the change of the
frequency of vibration lead to the change of the attenuation coefficient α, in
turns, the shear wave propagation.

2.3 Estimating the CSM Using the EKF

The CSM estimation is synonymous with estimating the elasticity μ1 and the
viscosity η. From Eq. (6), μ1 and η at each point are calculated follow formulas

μ1 =
ρω2(k2

s − α2)
(k2

s + α2)2
, (7)

η =
2ρωksα

(k2
s + α2)2

. (8)

So the problem of the CSM estimation becomes one of the wave number and
attenuation coefficient estimation. In this paper, we applied the EKF to estimate
the wave number and attenuation coefficient. At each point in space, we built a
system model which is used in the Extended Kalman problem. In discrete form,
Eq. (1) becomes

vn(r) =
1√

r − r0
Ae−α(r−r0) cos[ωnΔt − ks(r − r0) − φ], (9)

where n is the discrete time index and Δt is sampling cycle. Transforming
trigonometric Eq. (9), we receive

vn(r) = vn−1(r) cos(ωΔt) − 1√
r−r0

Ae−α(r−r0)

sin[ω(n − 1)Δt − ks(r − r0) − φ] sin(ωΔt).
(10)

To estimate the attenuation coefficient α and wave number ks using the EKF,
Eq. (10) is written in state equation form

xn = f(xn−1, pn−1). (11)

Equation (11) is equivalent to
⎡
⎣ vn

αn

ks(n)

⎤
⎦ =

⎡
⎣F (vn−1)

αn−1

ks(n−1)

⎤
⎦ , (12)

where xn =

⎡
⎣ vn

αn

ks(n)

⎤
⎦ is state vector at each point, the random variable pn is

process noise, F is a non-linear function, F describes the relation between vn−1
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and vn as shown in Eq. (10), αn−1 = αn and ks(n−1) = ks(n) because we assume
that α and ks would not be changed during the time of the experiment. By using
the Doppler acquisition, the measured particle velocities at every spatial location
are impacted by Gaussian noise wn(r). So the measured particle velocity is

v̂n = vn + wn. (13)

To use the EKF, Eq. (13) is written in measurement equation form of Kalman
problem

yn = h(xn, wn). (14)

Equation (14) is equivalent to

v̂n =
[
1 0 0

]
⎡
⎣ vn

αn

ks(n)

⎤
⎦ + wn, (15)

where yn = v̂n is measurement vector at each point. From Eqs. (11) and (14),
xn is estimated by using the EKF according to the algorithm in [7]. The result
is that the shear wave attenuation coefficient α and the wave number ks at each
point are estimated.

3 Results and Discussions

We built some simulation scenarios to test the proposed methods. First, we
created three type of soft tissues T1, T2 and T3 (like liver, breast, prostate).
Their CSM (μ1 and η) are (2000 Pa and 0.2 Pa.s), (18000 Pa and 0.5 Pa.s) and
(36000 Pa and 1 Pa.s), respectively. The above values, we refer to data table
which was shown in [1]. For every type of tissues, we investigated the impact
of the frequency of vibration on the attenuation coefficient follow Eq. (6). The
results are shown in Fig. 2, which indicates that the attenuation coefficient for
liver tissue, breast tissue and prostate tissue are nearly equal (approximates 20)
at frequencies 200 Hz, 400 Hz and 450 Hz, respectively. Next, we created three
heterogeneous mediums which simulate three above tissues. The details of the
mediums and tumors are shown in Table 1. The surveyed number of points are
43 (they are on a line, the distance between 2 points is 0.3 mm), the coordinate
of the vibration needle is 0 mm, r0 = 0.3 mm, the amplitude at zero location
A = 2 mm, the mass density of medium ρ = 1000 kg/m3, Δt = 0.06 ms, time
step’s number n = 500. the vibration frequency of the needle is changed from
100 Hz to 500 Hz (step 50 Hz).

We estimated the CSM using the EKF for all three above medium. For T1
tissue, Fig. 3 shows the estimated particle velocity and the noised particle veloc-
ity in time. The estimated particle velocity in time was filtered effectively. It is
as a sinusoidal function of time.

The estimated particle velocity in space is indicated in Fig. 4. It is
an attenuated-sinusoidal function and similar to the ideal particle velocity,
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Fig. 2. For some type of tissues, the relation between the attenuation coefficient α and
the frequency of vibration f .

Table 1. Parameters of tumors

Type of tissue μ1 (Pa) η (Pa.s) Location of tumor μ1 of tumor (Pa) η of tumor (Pa.s)

T1 4000 0.2 (10 to 20) 5000 0.4

T2 18000 0.5 (10 to 20) 20000 0.6

T3 36000 1 (10 to 20) 42000 1.1
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Fig. 3. Estimated particle velocity in time, with SNR = 20 dB, for T1 tissue.

while the noised particle velocity goes up and down in every short segment.
This can confirm that the particle velocity in space was estimated effectively.

Fig. 5 indicates the estimated wave number in space, while Fig. 6 shows the
estimated attenuation coefficient in space. The results are very good. Visually,
the wave number is estimated better than the attenuation coefficient.
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Fig. 4. Estimated particle velocity in space, with SNR = 20 dB, for T1 tissue.
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Fig. 5. Estimated wave number in space, for T1 tissue.

0 5 10 15 20 25 30 35 40 45
15

20

25

30

Spactial location

A
tte

nu
at

io
n 

[N
p 

m
−1

]

Ideal
Estimated

Fig. 6. Estimated attenuation coefficient in space, for T1 tissue.
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To evaluate the quality of the CSM estimation when the frequency of vibra-
tion is changed, we used the rms error. The rms error is defined as in Eq. (16).

rms =

√√√√√
N∑

i=1

(x̂i − xi)
2

N
, (16)

where x is ideal input, x̂ is the estimated value, N is the number of samples. For
T1 tissue, Fig. 7 shows the change of the rms error for the estimated wave number
and attenuation coefficient following the frequency of vibration. At frequency
200 Hz, the values of the rms error for both the wave number and attenuation
coefficient are least. This means that the quality of the CSM estimation is best.

Of course, we tried to build the parameters of the EKF, with which, the qual-
ity of the CSM estimation is best at 200 Hz for T1 tissue. However, we applied
this EKF to estimate the CSM for T2 and T3 tissues, the results illustrated that
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Fig. 7. The rms error for estimated wave number and attenuation coefficient, for T1
tissue.
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Fig. 8. The rms error for estimated wave number and attenuation coefficient, for T2
tissue.
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Fig. 9. The rms error for estimated wave number and attenuation coefficient, for T3
tissue.

the quality of the CSM estimation is best at 400 Hz (Fig. 8) and 450 Hz (Fig. 9)
for T2 and T3 tissues, respectively.

4 Conclusions

This paper was successful in investigating the frequency dependent on estimating
CSM for a heterogeneous medium. An effective EKF is designed to estimate the
CSM at each point of a line in tissues. By extending tens of points in a line,
we could estimate the CSM for a one-dimensional heterogeneous medium. Based
on simulated results, we can determine the range of vibrating frequency should
be used for the good estimation. In the future work, we will expand to a two-
dimensional heterogeneous medium (i.e. CSM imaging). The accuracy of the
CSM estimation would also be concerned, especially the viscosity of tissues.
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