
An IDPSO Algorithm-based Application Mapping

Method for Network-on-Chips

Van-Nam Dinha,b, Hung K. Nguyena, Minh-Trien Phama, Xuan-Tu Trana

a) SISLAB, VNU University of Engineering and Technology, 144 Xuan Thuy road, Cau Giay district, Hanoi, Vietnam
b) Department of Electronics and Communication, ICTU, TNU, Thai Nguyen, Vietnam.

Corresponding: tutx@vnu.edu.vn

Abstract—Application mapping is one of the most challenging

issues in designing Network-on-Chips, playing an important role

in maximizing the performance of NoC based systems. This

paper presents a novel method to map applications onto a

targeted NoC architecture using Improved Discrete Particle

Swarm Optimization (IDPSO) algorithm. The NOXIM platform

has been used to evaluate the efficiency of the proposed method

in terms of latency, throughput, and power energy. The obtained

results show that the proposed method can help the designers to

get better performance for NoC based systems. This information

is very useful for designers to decide how they should do in the

next steps of designing a real-time system.

Keywords—Application mapping; Network-on-Chip; Partical

Swarm Optimization; NOXIM.

I. INTRODUCTION

Nowadays, designers try to integrate more and more IP

(Intellectual Property) cores into a single system to meet the

increasingly demand of the applications. This makes the

system become much more complex and requires a new on-

chip communication solution. Network-on-Chip (NoC)

paradigm has become an emerging model for resolving this

issue [1]. However, it is not easy to implement the application

onto NoC architectures. Then, applications mapping is one of

the most vital research aspects that has been attracted by many

researchers in the world, especially for complex systems

design such as NoCs. Because application mapping techniques

will map the functions of an application to the network node,

so it can affect to the overall performance of the targeted

system.

Researching of application mapping on NoC with the

Particle Swarm Optimization (PSO) algorithm states that the

optimization problems can improve and even achieve better

results in comparing between before and after using this

algorithm [2]. There are many researches have proposed

application mapping techniques for the NoC based systems

such as [3][4][5][6][7].

In [3], the authors provided near-optimal solutions for

reducing the runtime significantly. The methodology is using a

linear programming (LP) approach followed by a mapping

heuristic and this paper achieved a significant decrease in

packet latency, but without caring of energy overhead. Dawei

Li et al. [4] proposed a model that combining between voltage

scaling techniques and frequency turning techniques for NoC

links to save overall system energy consumption by a directed

acyclic graph of application. In [5], a comparison between

three real applications is using to evaluate results. Authors

have used their experiments to develop a unified

communication-aware NoC-based MPSoC mapping and

scheduling algorithm. Marcus et al. [6] addressed the problem

of mapping topologically pre-selected sets IPs buy using

multi-objective evolutionary optimization. Paradip Kumar

Sahu et al. [7] presented a new strategy for Network-on-Chip

design by using the approach of Kernighan-Lin bi-partitioning

strategy to identify the closeness of cores based on the

analyzing their bandwidth requirements. These studies help

NoC researchers evaluate the system’s performances in terms

of latency (cycles), throughput (flits/cycle/IP), and power

energy (J) for comparing many algorithms with corresponding

to each scenario and application mapping.

In this study, we propose a novel method for mapping

applications onto a targeted NoC architecture using an

optimization algorithm named as Improved Discrete Particle

Swarm Optimization (IDPSO). Then, we also developed a

platform based on NOXIM simulator in order to evaluate the

system’s performance in terms of latency, throughput, and

power energy.

The remaining part of this paper is organized as follows.

Section 2 introduces briefly the conventional PSO algorithm

and then presents the Improved Discrete PSO. Section 3

describes our method to apply the IDPSO to the application

mapping for NoC-based systems. The experimental results

will be presented in Section 4. Finally, some conclusions and

remarks will be included in Section 5.

II. INTRODUCTION TO THE IMPROVED DISCRETE PSO

In 1995, Kennedy and Eberhart proposed a heuristic

optimization method as known as the Particle Swarm

Optimization (PSO) algorithm [8]. It derives from swarm

intelligence (philosophical aspects): fish schooling and bird

flocking. With this algorithm, the best solution of the problem

can be found quickly thanks to the experiences of each particle

and the communication among them in the whole swarm.

mailto:tutx@vnu.edu.vn

There are two main factors which can affect to the finding of

the best solution: (i) individual factor – the local best position

(local_best), found by each particle; and (ii) social factor – the

global best position (global_best), found by the entire swarm.

These are similar to the local and global optimization issues in

mapping an application to a target system-on-chip platform,

especially NoC-based systems. Therefore, the PSO algorithm

becomes a potential method in the application mapping of

such NoCs. In this section, we will introduce briefly the

discrete version of the PSO and its Improved version which is

can be used in the application mapping for NoC-based

systems.

In fact, the discrete version of PSO is proposed to deal with

the application mapping problems [9]. The process of this

DPSO algorithm is described as follows:

• Initialization

- Generating swarm with both randomly and

deterministically (deterministic initial phase).

- For each particle,

+) Evaluate fitness value of each particle

+) Set local best of each particle

Find the global_best beyond the entire local_best.

• Evolution

Do

- for each particle ip :

+) Identify bestglobal

iSS _ and
bestlocal

iSS
_

;

+) new

ip = modify ip by applying bestglobal

iSS _ with

probability 2s and bestglobal

iSS _ with probability 3s ;

+) Evaluate fitness of new

ip ;

+) If this fitness is better than old one, update

bestlocal_ for ip ;

- Find the bestglobal_ beyond the entire bestlocal_ ;

- Implement multiple stage DPSO;

while the loop condition is still true.

• Evolution of generations

Supposing that the position of a particle i at
thk generation

is  i

kn

i

k

i

k

i

k

i

k ppppp ,...,,, 321 and the corresponding

local_best and global_best are
i

kpbest and
i

kgbest . The

new position of
i

k

i

k pp 1,  is calculated as:

     i

i

k

i

k

i

k

i

k

i

k pgbestpspbestpsIsp **** 3211 

Where, a → b implies the swap sequence to transform a to b.

For example, if a = <1,2,3,4> and b = < 4,1,2,3>, then a → b

= <swap(1,4); swap (2,4); swap(3,4)>. The operator

ba means that the sequence of swap in a is followed by the

sequence of swap in b. The constants 321 ,, sss are inertia,

self-confidence, and swarm confidence values. The as *

means that the swap sequence a will be apply with the

probability of s (s = 0 → 1). The variable i is the sequence of

identity swap.
testlocal

iSS _
 and

bestglobal

iSS _
 are the swap sequences to align

particle
ip with its local best position and global best

position. These swaps will be applied with probability of

2s and 3s . However, these parameters are fixed (constants).

• Deterministic initial phase

In the exploration phase, if the local best position is found, the

whole swarm is guided to around this position in the

exploitation phase. However, because the searching space is

very huge, we can get stuck in local optimum in the

exploitation phase (note that if we have the n IP cores, then we

have n! possibilities). Therefore, we need to include a set of

seeds (n particles deterministically generated) to improve

quality of solution. The overall process can be described as

follows:

- Input: Core Graph (G) and Topology Graph (P)

- Output: Mapped Graph

Sorting the core graph, G, on

decreasing order of

Communication cost

Exist u є P

+ Mark all cores of G as unmapped

+ Best_cost = ∞

+ Bestmapping = Ø

+Particle_temp = findMap(G,P,u)

Return Particle_temp

begin

end

YES

NO

Figure 1: Flowchart of the Deterministic Initial phase.

Where: findMap(G,P,u) can be visualized as (see Error!

Reference source not found.):

• Inputs:

✓ Core Graph (G), Topology Graph (P).

✓ Cores to be mapped.

✓ Start_Pos (u): the first position of P to be mapped.

• Output: A new particle, Particle_temp.

Exits unmapped

core on G
Return Particle_temp

 21 , ccLet be the edge of G with highest requirement bandwidth

If Cost1 > Cost2 then core = c1 else core = c2

Particle_temp[Start_Pos] = core

Mark core as mapped.

Cost1 = Required Bandwidth (c1, ci)
   1cneighbourci

Cost2 = Required Bandwidth (c2, ci)   2cneighbourci

+ Let c = ci if cj is already mapped; else c = cj.

+ Positions = set of one-hop position from mapped position

+ Evaluate_Position(positions)

+ Min_position = Positions with minimum cost

+ If(#Min_position = 1),

Best_posn = Min_position,

 else

Best_posn = Predict_best(Min_positions)

+ Particle_temp[Best_posn] = c;

+ Mark c as mapped.

begin

end

Figure 2: Flow chart of FindMap Function.

Where, Predict_best is a function which finds out the better

position on P to be mapped a core C. If the number of

Min_positions of Predict_best is more than 2, we will select

the first one.

In this work, the Improved DPSO proposed in [10] is used to

map an application onto a targeted NoC architecture to get

more accurate and stable solution thanks to its cognitive and

social learning factors (s2, s3). The local factor s2 and the

social factor s3 are adjusting to change the velocity of each

particle.

III. APPLYING IDPSO TO THE NOC APPLICATION MAPPING

To map applications onto a targeted NoC architecture, we

proposed a method which is composed of two main parts as

shown in Figure 3. Firstly, we use the IDPSO algorithm for

finding the best implementation of the application onto the

targeted Network-on-Chip. Secondly, the obtained mapped

core graph will be sent to NOXIM configuration. NOXIM is

open NoC simulation platform which is used to simulate and

evaluate network parameters in NoC design [11], [12]. At the

second part, the core graph will be translated to network graph

and we will see the impact of the IDPSO algorithm on the

overall performance of the NoC-based system for the target

application.

In this work, the Dual Video Objective Plane Decoder

(DVOPD) benchmark has been used as the application which

needs to be mapped onto a 2-D mesh NoC architecture. Figure

4 presents the output of first part is the core graph of DVOPD

application with the IDPSO algorithm. Then, this core graph

will be converted to NoC graph according to the NOXIM. At

this stage, we are able to simulate and evaluate the system’s

performance in terms of delay, data transmission capability,

and power consumption. Figure 5 shows the implementation

flow for our proposed method.

Figure 3: Two main tasks for doing project.

Figure 4: The DVOPD core graph [2].

Scripts GNUPLOT

Scripts *.sh

start Pre-initial
PSO

implement
*.cg files NOXIM

config

System

implement
Test results

Final results
end

TRUE

FALSE

Figure 5: System’s step-by-step implementation.

A. Data acquisition

As we presented in the above section, the outputs of the

IDPSO algorithm for application mapping are core graphs

(*.cg) which includes the positions of cores in the network.

According to this core graphs, we apply them for doing in

NOXIM to appraise the method.

Table 1: Data collection of IDPSO algorithm

SBF DBF BW SAF DAF Hop

counts

SBF

1 2 70 3 2 1 17

2 3 362 2 1 1 18

3 4 362 1 9 1 19

4 5 362 9 17 1 19

4 15 49 9 10 1 20

5 6 357 17 18 1 21

6 7 353 18 19 1 22

7 8 300 19 11 1 23

8 9 313 11 20 2 23

8 10 500 11 12 1 24

9 10 313 20 12 1 25

10 9 94 12 20 1 26

11 9 16 28 20 1 26

11 6 16 28 18 3 26

11 12 16 28 26 2 26

11 32 540 28 29 1 27

12 13 157 26 25 1 28

13 14 16 25 27 2 29

14 11 16 27 28 1 30

15 5 27 10 17 2 31

16 17 70 5 6 1 31

Note:

SBF: Source Before IDPSO.

DBF: Destination Before IDPSO.

SAF: Source After IDPSO.

DAF: Destination After IDPSO.

BW: Bandwidth.

B. Scenarios and configuration

There are four scenarios in this research. All of these scenarios

are alternating between two factors that are PIR and packet

size; and we have evaluated the outputs based on Latency,

throughput and Power Energy of the system.

For the scenario 1, the main idea is changing the Packet

Injection Rate (PIR) into the Network, the Packet size in this

case will generate in random from (2 Flits in minimum to 10

Flits in maximum). The PIR will change from 0.01 to 0.1

(corresponding to 1% to 100% with 5% jumping in each step

of modulation).

For the scenario 2, we will do the simulation with keeping

the PIR (in this case we fixed PIR = 0.015) while changing

packet sizes {2, 4, 8, 16, 32, 64, 128, 256, 512 and 1028}

packets.

For scenario 3, we will reconfigure the system for doing

almost steps same to the scenario 1 but choosing the best case

of scenario 2 to decide the packet size (choose the best case).

For scenario 4, we will reconfigure the system for doing

almost steps same to scenario 2 but choosing the best case of

scenario 1 to decide the Packet Injection Rate (choose the best

case).

NOXIM has used for simulating and evaluating in this

study. Because it allows designers to simulate and evaluate the

NoC performance with different network configuration

parameters such as network size, buffer size, packet size

distribution, packet injection rate, traffic pattern, routing

algorithm, traffic time distribution in terms of throughput,

delay and power consumption. The obtained results with an

8x8 2D-Mesh NoC architecture is also presented and

discussed to demonstrate the NOXIM platform.

Table 2: The configuration of system

Features Description

Network configuration

Topology 8x8 MESH 2D

Control Flow Credit Based Mechanism

Routing Algorithm Deterministic XY algorithm

Switch technique

Wormhole switching

Communication pattern

HDL SystemC 2.3.1

Operating System Linux (Ubuntu 15.10)

Hardware Intel Core ™ i5 – 2540M

CPU @ 2.60Ghz,

Architecture i686.

IV. EXPERIMENTAL RESULTS

In this section, we would like to show and analyze the final

results in order to demonstrate that the performance of

Network on Chip system is improving after using IDPSO

according to each scenario.

As having mention before, we will focus on the results in

terms of latency (Cycles), throughput (Flits/cycle/IP) and

Power energy (J) to evaluate the system's performance.

Figure 6 depicts the final results of the scenario 1 and all

cases are combined and taking a comparison in Figure 7. In

the scenario 1, the significant points in which include the best

case are at 70% (for latency), 85% (for throughput) and 20%

(for Power Energy). However, the corresponding worst cases

are at 15%, 20% and 40%. The obvious results will be

depicted in Figure 7, which used the orange color and the

violet color are corresponding to the best and worst cases. In

general, almost cases in this scenario have optimized after

using IDPSO algorithm because of increasing throughput and

both latency and energy are reduced.

Figure 6: Final results for the scenario 1.

Figure 7: Summary of the Scenario 1.

Figure 8 shows the final results of the scenario 2 and all

cases also are combined and taking a comparison in Figure 9.

For the scenario 2, the worst cases at points which the Packet

size equal 2 and 4 packets. And, the best cases including of 32

and 128 points of packet size.

The scenario 2 has achieved same positive points as the

scenario 1 because almost cases which after using IDPSO for

application mapping are better than before using this

algorithm. That means the latency and power energy are

decreasing while throughput is increasing.

Figure 8: Final results for the scenario 2.

Figure 9: Summary of the Scenario 2.

After analyzing the final results of previous scenarios (S1

and S2), we have proposed the scenario 3 and scenario 4 for

extending cases of simulating system.

For the scenario 3, we reconfigure system’s parameters as

the scenario 1 but changing the packet size with the

deterministic point at 32 (packet size = 32). And in the

scenario 4, the alternative is to re-configure system’s

parameter with PIR = 0.085 (85%) instead of 0.01 (1%) as the

scenario 2.

Figure 10 and Figure 11 present the final results of the

scenario 3 and 4. All cases still improve the performance of

system. In the scenario 3, the worst cases of the scenario 1

such as at 15% (latency), 20% (throughput) and 40% (Power

Energy) are solved. So, one more advantage of IDPSO has

discovered here, which are suitable choosing of parameters

during configuration progress can lead to improve systems’

performance.

Figure 10: Final results for the scenario 3.

Same to the scenario 3, the worse cases in the scenario 2 (at

packet size equal 2 and 4 flits) have solved in the scenario 4

with improving system’s performance.

Figure 11: Final results for the scenario 4.

All cases in the scenarios that we have proposed in this

study derived very good results after using IDPSO algorithm

for DVOPD application. In detail, we can see the latency of

the system has been reduced and the throughput increases

while the total power and dynamic energy are decreased. All

results have positive signs that improving the performance of

the NoC system in terms of latency, throughput and power

consumption.

This methodology which was used in this study can help us

to solve two main things. The first thing is evaluating the

performance of NoC in application mapping with DVOPD

application based on IDPSO algorithm. Secondly, we also can

give more evidence for the reliability of using NOXIM

platform simulator.

According to these results, we can announce that the

methodology in this study is very useful for researchers who

want to use NOXIM to simulate their algorithms on NoC

design. There are many other methodologies for doing

application mapping research on NoC, but we believe that this

is the most one.

V. CONCLUSION

By reconfiguration of NOC system’s parameters, we can
simulate the various scenarios for demonstrating the results of
with IDPSO technique for application mapping issues. This
study focuses on evaluating a NoC performance in terms of
latency, throughput, and power energy.

There are two significant things that we have achieved in
this research. The first thing is we have applied the IDPSO
successfully to improve the system’s performance. In addition,
we have built a flexible system to map and evaluate NoC-based
system’s performance.

ACKNOWLEDGMENT

This work is supported by the research project No.
102.01-2013.17 (ReSoNoC) granted by Nafosted.

REFERENCES

[1] L. Benini and G. D. Micheli. Networks on Chip: A new
SoC Paradigm. IEEE Commut. vol. 35, no. 1, pp. 70-78,
Jan, 2002.

[2] Pradip Kumar Sahu, Santanu Chattopadhyay. A Survey
on Application Mapping Strategies for Network-on-
Chip Design. Journal System of Architecture 59, 2013,
pp. 60-76.

[3] Chen-Ling Chou, Radu Marculescu. Contention-Aware
Application Mapping for Network-on-Chip
Communication Architecture. In Proceedings of the
IEEE International Conference on Computer Design
(ICCD), 2008.

[4] Dawei Li, Jie Wu. Energy-efficient Contention-aware
Application Mapping and Scheduling on NoC-based
MPSoCs. Journal of Parallel and Distributed Computing,
vol. 96, Oct 2016, pp. 1-11.

[5] Heng Yu, Yajun Ha, Bharadwaj Veeralli.
Communication-Aware Application Mapping and
Scheduling for NoC-Based MPSoCs. In Proceedings of
IEEE International Symposium on Circuits and Systems
(ISCAS), 2010.

[6] Marcus Vinicius Carvalho da Silva, Nadia Nedjah, Luiza
de Macedo Mourelle. Optimal Application Mapping on
NoC Infrastructure using NSGA-II and MicroGA. In
Proceedings of the International Conference on
Intelligent Engineering Systems (INES), 16-18 April
2009.

[7] Paradip Kumar Sahu, Nisarg Shah, Kanchan Manna,
Santanu Chattopadhyay. A New Application Mapping
Algorithm for Mesh based Network-on-Chip Design. In
Proceedings of the Annual IEEE India Conference
(INDICON), 17-19 Dec. 2010.

[8] I. Kennedy and R. C Eberhart. Particle Swarm
Optimization. In Proceedings of the IEEE International

Conference on Neural Network, Nov.-Dec. 1995, pp.
1942-1948.

[9] P. K. Sahu, T. Shah and S. Chattopadhay. Application
Mapping onto Mesh-Based Network-on-Chip using
Discrete Particle Swarm Optimization. IEEE
Transaction on Very Large-Scale Integration (VLSI)
System, February 2014, vol. 22, no. 2.

[10] Viet-Huong Nguyen, Giang T.H. Dang, Minh-Trien
Pham. Applying Improved Discrete Particle Swarm
Optimization onto Mesh-based Network-on-Chip
Application Mapping. In Proceedings of the 6th

International Conference on Integrated Circuits, Design,
and Verification (ICDV), pp. 46-51, 10-11 August 2015,
Ho Chi Minh city, Vietnam.

[11] Vincenzo Catania, Andrea Mineo, Salvatore

Monteleone, Maurizio Palesi, and Davide Patti. Cycle-

Accurate Network on Chip Simulation with NOXIM.

ACM Transactions on Modeling and Computer

Simulation. Volume 27, Issue 1, November 2016.
[12] NOXIM: Open Source,

https://github.com/davidepatti/noxim

