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ABSTRACT

In this paper, we investigate the problem of limiting the spread
of epidemics on online social networks (OSNs) with the aim to
seek a set nodes of size at most k to remove from the networks
such that the number of saved nodes is maximal for cases where
we already know the set of infected nodes on the networks. The
problem is proved to be NP-hard and it is NP-hard to approximate
the problem with ratio n1−ϵ , for 0 < ϵ < 1. Besides, we also suggest
two algorithms to solve the problem. Experimental results show
that our propsed outperform baseline algorithms.
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1 INTRODUCTION

With billions of users, Online Social Networks (OSNs), such as
Facebook, Twitter and Google+, OSNs have provided an effective
platform for connection and communication among people. Unfor-
tunately, this feature can be used to spread the epidemics quickly on
OSNs. Epidemics can be bad factors on OSNs, such as: virus, rumors,
misinformation, etc. The field of preventing the spreading of epi-
demics has received a lot of research interests in recent years. One of
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the important works to against the spread of epidemics is detecting
the sources. Information about the content of the posts, comments,
shares may be collected to detect epidemic sources. Qazvinian et
al. [23] proposed an effective solution for detecting source based
on content, network and microblog-specific memes. Rumors are
identified through the use: temporal, structural, and linguistic [13].
Nguyen et al. found the solution for the problem of identifying the
set of at most k-suspected users from the set of victims who are
influenced by the misinformation [21]. Recently, for limitting of
epidemics propagation, a general strategy is to block accounts and
links that play an important role in process of influence of epidemics
[12, 25]. However, in reality, we can not exclude too many nodes
and links that play an important role in misinformation/rumors
difussion more effectively. In order to minimize the influence of
known misinformation sources, there were some heuristic methods
to remove edges was disigned [10, 11]. Khalil et al. [9] proposed
the problem of removing the set of edges to minimize the influ-
ence of the source of information in LT model. Recently, Zhang
et al. designed strategies to decontaminate the effects of harmful
sources by vaccinating nearby nodes that is equivalent to removing
the nodes from the graph [28, 29]. However, their algorithms are
not theoretically guaranteed. Zhang et al. [26] proposed placement
monitors strategy to prevent influence of misinformation source
to central nodes in OSNs under IC model. In essence, all of these
situations are equivalent to removing set of nodes to achieve their
purposes. Nevertheless, the above studies were conducted on IC,
LT. They are probability models, in which the exact computation
the influence from a set nodes in network is #P-hard. This leads to
the proposed algorithms have high complexity. Besides, they have
not mentioned for deadline in limiting the influence of the known
epidemic sources.

In fact, information is spread from one user to another through
each hop of the propagation on OSNs. The earlier we can prevent
the dispersion of misinformation, the smaller the damage cause.
Moreover, recent studies have revealed that the propagation often
fades quickly within only few hops from the sources. For example,
Cha et al. show that the length of typical chain is less than four [2]
and the influence on social networking occurs at the level of direct
friends [14].

Motivated by the phenomenon, we define the problem of Limit-
ing the Spread of Epidemics (LSE), which seeks to a set of nodes A
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has size at most k to remove from network to maximum the number
of saved nodes within the time constraints. The new aspects in our
model are: the influence is limited to within d ≥ 1 propagation
hops from the epidemic sources, and we formulate the problem in a
deterministic difussion model because the fact that user personal in-
formation may be obtained by surveys and data mining techniques
[20]. The main challenges of solving the problem came from, it is
proven to be NP-hard and it is NP-hard to approximate the LSE
problem with ratio n1−ϵ . In this paper, we investigate LSE problem
and develop the solutions. Our contributions are summarized as
follows:

• We introduced an information propagation model with a
time limit of propagation which extended Deterministic Lin-
ear Threshold model call Time Constriant Deterministic Lin-
ear Threshold (T-DLT) model. In this model, we formulated
Limiting the Spread of Epidemics (LSE) problem that seeks to
a set of nodes A has size at most k to remove from network
to maximum the number of saved nodes within the time
constraints. We showed that the problem is NP-hard and it
can not be approximate with ratio of n1−ϵ , 0 < ϵ < 1.

• For solutions, we first proposedGreedy algorithm that select
the node that has maximum incremental saved nodes. To
scalable for large-scale networks, we further proposed an
efficient heuristic algorithm called Fast and effective Limiting
Epidemics (FLE).

• Experiments were performed on real-world social traces of
Gnutella, Wikipedia Vote, Amazon and Google Web datasets
show that our purposed algorithms outperform other meth-
ods in terms of maximizing the objective function for each
network. FLE performance nearly close to Greedy algorithm
and scales up to networks of millions of links.

Outline of the paper. The rest of the paper is organized as follows.
We first discuss the related work in Section 2 and the propagation
models, problem definition in Section 3. Section 4 introduces some
hardness and complexity results. Section 5 presents our proposed
algorithms. The experimental results on several datasets are in
Section 6. Finally, we give some implications for future work and
conclusion in Section 7.

2 RELATEDWORK

Information diffusion models are the basis for the study epidemics
on OSNs. Domingos and Richardson were first studied information
and influence propagation problem on social networks [6]. They
designed strategies to spread information and analyzed them based
on a data mining technique. Kempe et al. [8] formulated Influence
Maximization (IM) problem based on two probabilistic models Inde-
pendent Cascade (IC) and Linear Threshold (LT) model and proposed
a greedy algorithm with a ratio of (1 − 1/e). This issue has become
a hot topic in the recent years. Later, many works about designed
efficiency algorithms for IM problem and its variants [3, 4, 7, 19].

To decontaminate the misinformation propagation, some au-
thors suggested selecting a set of nodes to inital good information
and spread it on the network [1, 22, 27]. However, in reality, once
the nodes were infected by misinformation, it is difficult to decon-
taminate them. The other studies seek to limit the effect of known
epidemics. Zhang et al. [26] proposed τ -MP problem that prevents

propagation from given misinformation sources to center nodes
with guaranteed threshold τ ∈ [0, 1] by placing ’monitors’. Note
that, placing the monitors at the set of nodes is equivalent to remov-
ing them from network. Under IC model, the problem was showed
#P-hard, they designed greedy strategies based on the cut-sets-2
technique. However, they did not show the runtime of the algorithm
in their experiments. Given a set of notes were infected in a network,
Zhang et al. [28] proposed a vaccination strategy for the k nodes so
that the number of infected nodes after propagation under IC mode
is minimal, vaccination at a node means that the node is immune
to source of the epidmics. They given some heuristic algorithms to
find solutions but they were not theoretically guaranteed.

In general, the above studies were aimed to preventing epidemics
outbreaks by removing nodes from the network in probability diffu-
sion models (IC and LT). However, the time constraint or deadline
was not cosidered. In fact, restricting the disease is very difficult
when it has erupted and restricting them sooner, the higher the
efficiency. In addition, algorithms for IC and LT have high compex-
ity because the the fact that exact computation of influence from
soures is difficult #P-Hard [3, 4]. Therefore, our works differrent
from their works when we find the set of nodes to remove from
the network considering two new factors (1) in a deterministic
difussion model, and (2) consider deadline of propagation in this
model.

3 MODEL AND PROBLEM DEFINITION

3.1 Difussion Model

The most well known models are LT and IC model model [8]. How-
ever, they are propability difussion models and exactly calculating
the influence from a given set of node in network is #P-hard [3, 4]
(a #P problem is at least as hard as the corresponding NP problem).
In this subsection, we describe our extension to the DLT model
[20] that incorporates time-constraint diffusion processes, which
we call T-DLT. This model can overcome the above disadvantage
of probability models, in which computation of influence from a
set of nodes can be done in polynomial time. The details of T-DLT
model are described as follows.

Graph notations. Let G = (V ,E,w) represents a social network
with a node set V and a directed edge set E, with |V | = n and
|E | =m. A node represents a user in the social network, while an
edge e = (u,v) in E represents the relationship between users u
and v respectively. We denote in-coming and out-coming neighbor
nodes of u are N+(u) and N−(u), d+(u) and d−(u) are in-degree
and out-degree of node u. Let I ⊂ V is the set of inital infected
nodes. Each directed edge (u,v) has a weight w(u,v) which de-
notes how much the node u is influenced by its neighbor v satisfy∑
u ∈N+(v)w(u,v) ≤ 1.
The states of nodes. The process of spreading epidemic from the

set I to other nodes on OSNs develops through discrete time steps
t = 1, 2, ..,d . Each node v ∈ V has two possible states are infected
and healthy.

Infected threshold. Each node v has a pre-fixed thresshold θv ∈
[0, 1]. This represents the weighted fraction of in-coming neighbors
of v that must become infected in order for v to become infected.

Difussion process. The diffusion process unfold deterministically
is discrete steps (propagation hops) t = 0, 1, 2, ..,d . Let It is set of
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infected nodes after step t , the propagation process is simulated as
follows:

• At round t = 0, all nodes in I are infected, i.e, I0 = I .
• At round t ≥ 1 a healthy node v is infected if the weighted
number of its in-coming infected neighbors reaches its in-
fected threshold, i.e.,∑

in-coming infected neighbor u

w(u,v) ≥ θv (1)

• Once a node becomes infected, it remains status in all subse-
quent rounds. The influence propagation stops when t = d .

In LT model [8], the threshold values θv are assigned uniformly at
random from the interval [0, 1] and are updated during the spread
process reflects our lack of knowledge of the users’ internal thresh-
olds. Therefore, this model belongs to the stochastic diffusionmodel.
Different from the LT model, in T-DLT model the infected thresh-
old θv of each nodes is given. In this case, the value of threshold
θ can be obtained by surveys or data mining techniques same as
deterministic linear threshold model (DLT) model [20].

Compare T-DLT and DLT models, the new aspect in our model
is that the influence is limited to the nodes from the inital infected
nodes within d hop of propagations, for d ≥ 1. In other words, the
difference of T-DLT is the propagation process ends after the d
propagation hops. The DLT model is a special case of T-DLT with
d = |V |.

3.2 Problem Definition

Denoted by fd (I ) is the set of infected nodes after d hops on G =
(V ,E) in T-DLT model, fd (I ,A) is the set of infected nodes after
remove set of nodes A ⊆ V \ I from G (i.e, the number of infected
nodes in the residual network). Now, the number of saved nodes
after removing A is:

hd (A) = | fd (I , ∅)| − | fd (I ,A)| (2)

In T-DLT model, we formulate a combinatorial optimization is
Limiting the Spread of Epidemics (LSE) problem which aims to seek
a set of size at most k nodes to remove from the network so that
the number of saved nodes is maximal.

Definition 3.1 (LSE problem). Given an undirected graph G =
(V ,E) represents a social network under T-DLT model. A set inital
infected nodes I ⊂ V and d is hop of constraint and a budged k > 0.
Find the set k nodes A ⊆ V \ I to remove from network so that the
number of saved nodes after d rounds hd (A) is maximal.

Denote Gd = (Vd ,Ed ) is a subgraph of G = (V ,E) with Vd is the
set of nodes whose distance between to each node in I at most d
and Ed is the set of edges on the paths from each node in I have
distance at most d and nd = |Vd |,md = |Ed |. We see that the
spread of epidemics only occurs on Gd . Hence, to simplify, instead
of considering all node in G, we only find the solution in Gd .

4 COMPLEXITY AND INAPPROXIMATION OF
LSE PROBLEM

In this section, we show the NP-hardness of LSE problem by re-
ducing it from the Set Cover problem. We further prove the inap-
proximability of LSE which is NP-hard to be approximated within
a ratio of n1−ϵ , (0 < ϵ < 1).

Theorem 4.1. LSE is NP-hard in T-DLT model.

Proof. To prove that LSE is NP-hard, we reduce the known
NP-complete is decision of Set Cover problem to it.
Set Cover (SC) problem.Given a positive integer t , a universal set
U = {e1, e2, ..., eM } and a collection subsets S = {S1, S2, ..., SN },
we can assume that t < M < N . The Set Cover problem asks to
whether or not there are t subsets whose union is U?
The SC problemwas proved NP-hard even when the sizes of subsets
are bounded by 3 and each element appears in exactly two subsets
[5]. To reduce SC problem to LSE, we first construct an instance
ILSE of LSE from an instance ISC of SC problem. We then we show
that if ISC has a solution S of size t , ILSE has a solution A, |A| ≤ k
such that hd (A) ≥ k +M and otherwise.
Construction. Given an instance ISC = {U,S, t} of the SC prob-
lem, we construct an instance ILSE = {G, I ,d,k} of LSE problem
as follows (fig. 1).

• The set of nodes and edges: for each Si ∈ S, we construct an
inital infected node si ∈ I and a vertex ui . We add a directed
edge (si ,ui ). For each element ej ∈ U we add a node vj and
add a directed edge (ui ,vj ) for each ej ∈ Si . For convenience,
we let B = {u1,u2, . . . ,uN },C = {v1,v2, . . . ,vM }.

• Infected thresholds andweights: we assignw(si ,ui ) = 1,w(ui ,vj ) =
1

d+(vj ) , θui = θvj = 1.

• Finally, we set k = t ,d = 2.

Figure 1: Reduce from MC problem to LSE problem.

Analysis. For the construction, we found that | fd (I , ∅)| = M + N .
If any in-coming neighbour node ui ∈ B of vj ∈ C is healthy nodes
then: ∑
in-coming infected neighbour u

w(u,vj ) ≤ 1 − 1/d+(vj ) < 1 = θvj

So vj is healthy node (not infected). Otherwise, all nodes in C are
healthy nodes.
(→) Suppose S′ is solution of instance ISC that means |S′| = t = k
and it cover t elements of U. If we chose set A contains node ui
corresponding to Si ∈ S′, (i.e, A = {ui |Si ∈ S′}), every node in
vj ∈ B adjacent to at least one node in A. By above analysis, all
nodes in C are healthy nodes. We have hd (A) = t +M = k +M .
(←) Otherwise, if ILSE has the solution A, |A| ≤ k with hd (I ,A) ≥
k+M . IfA contain t1 (1 ≤ t1 ≤ k) nodes inC ,hd (I ,A) ≤ k−t1+M <
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k +M . So A doesn’t contain any node inC . Hence, A ⊂ B. Combine
with hd (I ,A) ≥ k +M , all nodes in C are healthy nodes. Therefore,
every nodeui ∈ A adjacent to at least one node inC (above analysis).
Now with our construction we see that, S′ = {Si |ui ∈ A} is the
solution of I1. This complete the proof. �

Base on modifying the above reduction and gap-introduction
reduction [24], we further prove the inapproximability of the LSE
problem.

Theorem 4.2. It is NP-hard to approximate the LSE problem with
ratio n1−ϵ in T-DLT model for any constant 0 < ϵ < 1.

Proof. To prove this result, we user the gap-introduction re-
duction in [24] to prove the inapproximability of the LSE. Using a
polynomial time reduction from Set Cover to LSE, we show that
if there exists a polynomial time algorithm that approximates the
later problem within n1−ϵ , then there exists a polynomial time al-
gorithm to solve the former problem.
Contruction. Given an instance of the SC problem (as theorem 4.1
) ISC = (U,S, t), we construct an instance ILSE = (G, I ,d,k) by
reusing the construction in theorem 4.1 and add some vertices and
edges as illustrated in fig. 2.

Figure 2: Reduce from Set Cover to LSE.

• The set of nodes and edges: For each node vj ∈ C we add
n0 = Nq more nodes X = {x1,x2, ...,xn0 } for an arbitrarily
large constant q and add directed edge (vj ,xl ), l = 1..n0.

• Infected thresholds and weights: we assign w(vj ,xl ) = 1
M ;

θxl =
1
M , l = 1..n0.

Assume that ISC has a set cover S′ of size t , we select set A =
{ui |Si ∈ S′}. By the alanysis in theorem 4.1, all nodes in C are
healthy nodes. This leads to all nodes in X are also healthy nodes.
For this construction, we have: | fd (I , ∅)| = N +M+Nq , | fd (I ,A)| =
N − k so:

h(A) = | fd (I , ∅)| − | fd (I ,A)| = M + Nq + k > Nq

In the case ISC has no set cover of size t , it has at least a vertex
vj infected, This lead to all vertices in X are infected. Therefore
| fd (I ,A)| > N − k + Nq inferred h(A) = M + k < 2N .
Now, supposed thatwe have polynomial algorithmA which approx-
imates LSE problem within ratio n1−ϵ , we show that the solution of

SC problem can be found in polynomial time. For any instance ISC
we construct an instance ILSE as above construction in polynomial
time function ofm and n.
In the case ISC has a set cover size t , by our construction, the
optimal solution Aopt of ILSE has h(Aopt ) = Nq + M + k . The
algorithm A approximate the optimal solution within ratio n1−ϵ

(n = 2N +M + Nq is number of nodes of input graph), so it can
find a solution A(ILSE ).

h(A(ILSE )) ≥
1

n1−ϵ
h(Aopt ) >

1

n1−ϵ
(M + Nq + k)

=
nϵ

n
(M + Nq + k) >

(Nq + 2N +M)ϵ

Nq + 2N +M
Nq

>
Nq .ϵ

4Nq
Nq =

1

4
Nq .ϵ

We choose q large enough, so that q > ln(8N )
ϵ lnN then

h(A(ILSE )) > 2N

On the other hand, if ISC has no set cover of size t , then the optimal
set Aopt of ILSE has

h(A(ILSE )) < 2N

This implies the ISC has a set cover of size t if only ifh(A(ILSE )) <
2N . Hence, we can use A to decide the SC problem in polynomial
time i.e., P = NP . This contradicts the hypothesis that P � NP . �

5 PROPOSED ALGORITHMS

5.1 Greedy Algorithm

On the problems of information propagation, one can use Greedy
method to find a good enough solution. We first introduced a
straightforward greedy algorithm in algorithm 1. The algorithm
sequentially selects a node u into the selected set A that maximizes
the incremental saved nodes:

δ (A,u) = |hd (I ,A ∪ {u})| − |hd (A)| = | fd (I ,A)| − | fd (I ,A ∪ {u})|
(3)

Lemma 5.1. Given graph G = (V ,E) and number of propagation
hopsd , the objective functionhd (I ,A) can be computed withmO(md+

nd )

Proof. The number of infected nodes after removing any set of
nodes A fd (I ,A) can be computed by using a Breadth-First Search
(BFS) in graph Gd . The time taken is O(md + nd ). By equation
2, we infer hd (I ,A) can be done in O(md + nd ) + O(md + nd ) =
O(md + nd ). �

Theorem 5.2. The complexity of Greedy Algorithm isO(knd (md+

nd )).

Proof. The two loops in line 2 and line 4 contribute a factor
knd to the time complexity. From Lemma 5.1 and equation 3, com-
puting the number of incremental saved nodes (line 6) can be
done in O(md + nd ), the total time complexity of the algorithm is
O(knd (md + nd ). �

Based on theorem 1, in the worst case, k can be as large as n,
the algorithm 1 can take O(n2

d
(md + nd )). It is intractable for even

medium-size social networks. To overcome this, we introduce a
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Algorithm 1: Greedy algorithm

Data: Graph G = (V ,E,θ ), inital infected nodes I , propagation
hop d

Result: The selected nodes A
1. A ← ∅;
2. for i = 1 to k do

3. δmax ← 0

4. foreach v ∈ V \A do

5. if δ (A,u) > δmax then

6. δmax ← δ (A,u)
7. umax ← u

8. end

9. end

10. if δmax = 0 then
11. return S

12. else

13. A ← A ∪ {umax }
14. end

15. end

16. return A;

new heuristic algorithm based on evaluating the role of spreading
disease of each node. The new algortihm can find fast solutions
for medium and large-size social networks while still ensuring
performance against greedy algorithm in our experimental study.

5.2 Fast And Effective Limiting Epidemics
Algorithm

In the previous section, we introduced the greedy algorithm. How-
ever, the time complexity is quite high, due to the fact that calcu-
lating the number of incremental saved nodes usually results in
a long running time. From this point of view, in this section we
design a heuristic algortihms with low time complexity and highly
expected. We begin this section by defining the terminologies used
in our proposed solution as follows.

• t(u): the number smallest hop when u change from healthy
to infected state.

• a+(u) =
∑
It (u)−1∩N+(u)w(u,v) is total weight of of in-edges

from in-coming infected neighbors before hop t(u).
• α(u) =

∑
v ∈

⋃d
i=t (u)+1 Ii∩N−(u)w(v,u), i = t(u) + 1, ...,d is

total weight of out-edges from u to out-coming infected
neighbor nodes v at hop i .

• β(u): the number of out-neighbors nodes, which change from
infected to healthy state after removing node u from graph.

Intuitively, the number of incremental saved nodes δ (A,u) can be
approximated by β(u). Besides, in order to increase the efficiency of
proposed algorithm, we combine α(u)with β(u) to measure the role
of epidemic propagation of node u. The main idea of the algorithm
is to select the node in each step based on the evaluation of the α
and β functions. Initially, we initialized the selected nodes A = ∅
and set candidate nodes U is equal to Vd . In each step, we select
the node u so that β(u) is maximal on residual graph. In the case,
all candidate nodes have same β(.) value, which is equal to zero,

Algorithm 2: Fast Limit Epidemics (FLE) algorithm

Data: Graph G = (V ,E,θ ), set of initial infected nodes I ,
propagation hop d .

Result: set of nodes A
1. S ← ∅;
2. Calculate G ′ ← Gd (I );U ← Vd
3. for i = 1 to k do

4. Calculate α(u), β(u) on G ′ (Algorithm 3)

5. umax ← 0

6. if β(v) = 0,∀v ∈ U then

7. umax ← argmaxv ∈U α(v)
8. else

9. umax ← argmaxv ∈U β(v)
10. end

11. S ← S ∪ {umax }
12. U ← U \ {umax }
13. Remove umax and all edges that adjacent with umax from

G ′
14. end

15. return S ;

we choose node with the maximum α(.) value. The algorithm is
depicted in Algorithm 2.
The difficulty in performing algorithm 2 comes from the calculation
of α(.), β(.) function. In order to do this, we first used the idea
of Breath First Search (BFS) to calculate fd (I ) and incremental
update a+(.) function. Then, we used it to calculate the α(.), β(.)
according to their definition. The details of the algorithm are shown
in Algorithm 3 pseudo-code.

Theorem 5.3. The complexity of algorithm 2 is O(k(md + nd ))

Proof. To analyze the complexity of this algorithm, we first
needed to evaluate the complexity of algorithm 3. On algorithm 3,
we easily see that, calculating fd (I ) (line 5-19) is similar to the mech-
anism of BFS. Therefore, the complexity of this work is O(md +nd ).
For the calculating α(u) and β(u) pharse (line 21-31), this works
need to visit all nodes in fd (I ) and the set out-coming edge neigh-
bors, this work it take at most O(md + nd ). Therefore the com-
plexity of algorithm 3 is O(md + nd ). In algorithm 2, for each the
main loop (line 3-14), choosing u such that β(u) and α(u) maximal
can be done in linear time. Therefore, this task has complexity
O(md + nd ) +O(nd ) = O(md + nd ). In summary, the complexity
of algorithm 2 is O(k(md + nd )). �

6 EXPERIMENTS

In this section, we perform experiments on OSNs to show the effi-
ciency of our proposed algorithms in comparison to some baseline
mdethods which were used for some problems of information prop-
agations [8, 21, 26, 28]. We compare on three aspects: the solution
quality, the scalability and impact of propagation hops d for various
real social network datasets. The baseline algorithms used include:

• Random: Randomly select nodes within number of nodes k
among the Nd (S).
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Algorithm 3: fd (I ),a+(u), t(u),α(u), β(u),∀u ∈ Vd on G =
(V ,E)
Data: GraphG = (V ,E,θ ), set of infected nodes I , propagation

hop d
Result: fd (I ),a+(u), t(u),α(u), β(u),∀u ∈ G

1. t(u) ← +∞,a+(u) ← 0,α(u) ← 0, β(u) ← 0,∀u ∈ Vd
2. t(s) ← 0,∀s ∈ I

3. Queue Q ← ∅
4. \\ Calculate a+(u), t(u), fd (I )
5. while Q � ∅ do

6. u ← Q .pop()
7. fd (I ) ← u

8. if t(u) < d then

9. foreach v ∈ N−(u) do
10. if t(u) < t(v) then
11. a+(v) = a+(v) +w(u,v)
12. if (a+(v) ≥ θv ) and (t(u) + 1 < t(v)) then
13. t(v) ← t(u) + 1
14. Q .push(v)
15. end

16. end

17. end

18. end

19. end

20. \\ Calculate α(u), β(u)
21. foreach u ∈ fd (I ) do
22. α(u) ← 0; β(u) ← 0

23. foreach v ∈ N−(u) ∩ fd (I ) do
24. if t(u) < t(v) then
25. α(u) ← α(u) +w(u,v)
26. if a+(v) −w(u,v) < θv then

27. β(u) ← β(u) + 1
28. end

29. end

30. end

31. end

32. return A;

• Max Degree (Maxdeg): The heuristic algorithm base central-
ity measure. We select nodes with highest degree among the
Vd and we keep on adding highest-degree nodes until the
number of selected nodes is equal to k .

We conducted the experiments using a Intel(R) Core(TM) i5-6200U
CPU@ 2.30 GHz (up to 2.40 GHz) machine with 4.0 GB of 1066Mhz
main memory, and implemented the algorithms in C++.

6.1 Datasets

We ran our experiments on multiple real datasets. In addition to
trying to pick datasets of various sizes, we also chose from different
domains, in which the LSE problem is especially applicable. Table 1
shows datasets we used.
Gnutella. The snapshot of the Gnutella peer-to-peer file sharing
network in August 2002. Nodes represent hosts in the Gnutella

Table 1: Datasets

Network #Nodes #Edges Type Avg. Deg

Gnutella [17] 6,301 20,777 Directed 3.29
Wikipedia vote [16] 7,115 103,689 Directed 14.57
Amazon [15] 262,111 1,234,877 Directed 4.71
Google Web [18] 875,713 5,105,039 Directed 5.83

network topology and edges represent connections between the
Gnutella hosts [17]. It contains 20,777 links among 6,301 hosts.
Wiki Vote. The network contains all the Wikipedia voting data
from the inception of Wikipedia till January 2008. Nodes in the
network represent wikipedia users and a directed edge from node i
to node j represents that user i voted on user j [16].
Amazon. Network was collected by crawling Amazon website. It
is based on Customers Who Bought This Item Also Bought feature
of the Amazon website. If a product i is frequently co-purchased
with product j, the graph contains a directed edge from i to j. The
data was collected in March 02 2003 [15].
Google Web. Nodes represent web pages and directed edges rep-
resent hyperlinks between them. The data was released in 2002 by
Google as a part of Google Programming Contest [18].

6.2 Experimental Settings

The edge weights. They assign the weights of edges according to
previous studies [4, 7–9]. Accordingly, the weight of the edge (u,v)
is calculated as follows:

w(u,v) =
1

d+(v)
(4)

where d+(v) denotes the in-degree of node v .
Infected thresshold and propagation hops. In fact, we see that
with each user, the more infected they are, the more likely they
are infected. Therefore, we choose the infected threshold in the set
{0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9}. Cha et al. [2] showed that
information mostly propagates within 2 to 5 hops so we choose
d = 2, 3, 4, 5, 6.
In all experiments, we choose we choose a set inital infected nodes
that contain 1% of set of nodes for each network.

6.3 Experiment Results

Solution Quality.We evaluate the performance of algorithms in
three cases: (1) the number of selected nodes k changes from 10
to 100 and d = 5,θ = 0.5 (fig. 3), (2) the threshold θ changes, d
and k = 50 are fixed (fig. 4), (3) the number of propagation hops
d changes and θ and k are fixed (fig. 5). Under all circumstances,
Greedy and FLE yielded more desirable results than the remaining
algorithms. The number of saved nodes is up to 48.5 times higher in
comparison with Maxdeg and Random algorithm in Gnutella and
Wiki Vote. Comparing Greedy and FLE, we found that, Greedy has
1.02 to 1.5 time better performance in Gnutella network. However,
the gap between them is narrowed when k,θ increase. Specifically,
when k ≥ 50,θ ≥ 0.4, their performance is almost the same. Figure
3 (b) and fig. 4 (b), fig. 5 (a) reveal that the Greedy and FLE achieve
nearly the same level of performance in terms of number of saved
nodes forWiki Vote dataset.WhileGreedy cannot finish onAmazon
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Figure 3: Comparising number of saved nodes and time

running of algorithms FLE,Greedy,Maxdeg,Random on LSE

prblem when k varies and d = 5,θ = 0.5.

and Google Web after 12h and was forced to terminate, FLE is still
better with the remaining algorithms.
Scalability. The running times of all algorithms is also presented
in fig. 3, 4, 5. As expected, the running time for Greedy is extremely
higher than other algorithms, taking up to 4.5 min for Gnutella
and 20.2 min for Wkiki Vote. FLE is 4,820 to 6,879 times faster than
Greedy in Gnutella and FLE is 5,839 to 14,490 times faster than
Greedy inWiki Vote. This is becauseGreedy has aO(ndk(md+nd ))
complexity while FLE takes in O(k(md + nd )). For Amazon and
Google Web, Greedy algorithm cannot finish within 12h as above
mentioned while FLE finish in 0.45 s and 7.8 s. This proves that FLE
still works well for million-scale networks.
Impact of d . We also explore the behavior of different methods
when the number of propagation hops d is varied from 2 to 6 in
Gnutella. The results are shown in fig. 5 (the result for other d
values are consistent with that of d = 5). With Greedy and FLE,
the number of saved nodes increases when d increases. Specifically,
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Figure 4: Comparising number of saved nodes and time

running of algorithms FLE,Greedy,Maxdeg,Random on LSE

prblem when θ varies and k = 50,d = 5.

it increased rapidly when d = 2; 3 and slowler when d = 4; 5.
This proves that to limit the epidemics, we need to stop as soon as
possible (i.e, d small).
Impact of θ .We investigate the effects of θ , when θ changes,kandd
are fixed. We consider d = 5,k = 50 the results as show in fig. 4;
however, the result is quite similar for other case. For Amazon
and Google Web, the number of saved nodes decreasing when θ
continues decreasing. For Gnutella and Wiki Vote the number of
saved nodes increasing when θ increases from 0.10 to 0.30 and
decreasing when θ increases from 0.30 to 0.90. In general, we can
conclude the fact that the larger the θ , the spread of the epidemics
more difficult. From fig. 4 we can see that for Gnutella andWiki Vote
data, Greedy and FLE give large number of saved nodes compared
to the other methods when θ is varied from 0.10 to 0.90. This is,
again, in conformity with the earlier results of fig. 3 and supports
the superiority of the proposed algorithms.
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Figure 5: The number of saved nodes hd (A) when d varies

and k = 50,θ = 0.5 on Gnutella

7 CONCLUSION

In this paper, we investigate a new NP-hard problem of seeking a
set of nodes has size at most k to remove from network to maximum
the number of saved nodes within the time constraints for given
infected nodes. We prove the inapproximability result and provide
the greedy method to solve the problem. In addition, due to the high
runtime complexity of this greedy algorithm, a much more efficient
heuristic algorithm called FLE is also proposed. The result of the
experiment shows that the suggested algorithms are better than the
baseline algorithmsMaxdeg and Random. Besides, the performance
of FLE is nearly close toGreedy algorithm and scales up to networks
of millions of links. In the future, we will improve FLE algorithm
to achieve performance closer to the optimal solution.
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