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ABSTRACT ARTICLE HISTORY
This work presents an analytical approach to investigate the mechanical and Received 2 August 2017
thermal buckling of functionally graded materials sandwich truncated conical Accepted 26 October 2017

shells resting on Pasternak elastic foundations, subjected to thermal load and KEYWORDS
axial compressive load. Shells are reinforced by closely spaced stringers and Elastic foundations:
rings, in which the material properties of shells and stiffeners are graded in the first-order shear deformation

thickness direction following a general sigmoid law distribution and a general theory; reinforced FGM
power law distribution. Four models of coated shell-stiffener arrangements stiffeners; sandwich
are investigated. The change of spacing between stringers in the meridional truncated conical shell with

direction also is taken into account. Two cases on uniform temperature rise and FGM layers; thermal buckling
linear temperature distribution through the thickness of shell are considered.
Using the first-order shear deformation theory, Lekhnitskii smeared stiffener
technique and the adjacent equilibrium criterion, the linearization stability
equations have been established. Approximate solution satisfies simply
supported boundary conditions and Galerkin method is applied to obtain
closed-form expression for determining the critical compression buckling
load and thermal buckling load in cases uniform temperature rise and linear
temperature distribution across the shell thickness. The effects of temper-
ature, foundation, core layer, coating layer, stiffeners, material properties,
dimensional parameters and semi-vertex angle on buckling behaviors of shell
are shown.

Introduction

Due to the high strength and thermal resistance, functionally graded material (FGM) conical shells were
applied to many modern technique fields such as military aircraft propulsion system, and rocketry,
underwater vehicles, missiles, tanks, pressure vessels, buildings of modern power plants, and other
applications [1]. Therefore, the static and dynamic problems of FGM structures containing conical shells
always attract the attention of many scientists. Chung and Chang [2] analyzed an elastic, rectangular,
and simply supported FGM plate with medium thickness subjected to linear temperature change in
the z-direction. Young’s modulus and Poisson ratio of the FGM plates are assumed to remain constant
throughout the entire plate. However, the coefficient of thermal expansion of the FGM plate varies con-
tinuously throughout the thickness direction in relation to the volume fraction of constituents defined
by power-law, sigmoid, or exponential functions. The series solutions for the power-law FGM (P-FGM),
sigmoid FGM (S-FGM), or exponential FGM (E-FGM) plates subjected to thermal loading are obtained
based on the classical plate theory and Fourier series expansion. The analytical solutions for P-, S-, and
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E-FGM plates are verified by numerical results obtained with the finite element technique. Fazzolari [3]
presented analysis of free vibration of functionally graded plates with temperature-dependent materials
in thermal environment. In this study, two different volume fractions are considered: (i) P-FGM and
(ii) S-FGM. The analysis is performed using advanced hierarchical higher-order equivalent single-layer
plate theories developed using the method of power series expansion of displacement components. The
modal characteristics of the P- and S-FGM plates are investigated while subjected to a temperature
gradient. The governing equations are derived in their strong form using the principle of the virtual
displacements and are solved in an exact sense using the Navier-type closed form solution. Lee et al.
[4] presented a refined higher-order shear and normal deformation theory for E-, P-, and S-FGM
plates on elastic foundation. In this study, the displacement field of the four-variable plate theory is
modified by considering a thickness stretching effect. The number of unknown functions involved in
the present theory is only five, as opposed to six or even greater numbers in the case of other shear and
normal deformation theories. The present theory accounts for both shear deformation and thickness
stretching effects by a parabolic variation of all displacements across the thickness, and satisfies the
stress-free boundary conditions on the upper and lower surfaces of the plate. The equations of motion
are derived from minimum total potential energy principle. Analytical solutions for the bending analysis
are obtained for simply supported plates. It is assumed that the elastic medium is modeled as Pasternak
elastic foundation. Naj et al. [5] studied thermal and mechanical instability of FGM truncated conical
shells using the first-order shell theory. Bich et al. [6] investigated buckling of un-stiffened FGM conical
panels under mechanical loads. Bagherizadeh et al. [7] investigated the mechanical buckling of FGM
cylindrical shell that is embedded in an outer elastic medium and subjected to combined axial and
radial compressive loads. A linear thermal buckling analysis of truncated hybrid FGM conical shells
based on the classical shell theory using Sanders nonlinear kinematics equations was analyzed by Torabi
et al. [8]. A linear buckling analysis for nanocomposite conical shells reinforced with single walled
carbon nanotubes subjected to lateral pressure is presented by Jam and Kiani [9]. Free vibration analysis
of open conical panels made of through-the-thickness FGMs is analyzed by Akbari et al. [10]. Tung
[11] presented an analytical approach to investigate the nonlinear stability of clamped FGM shallow
spherical shells and circular plates resting on elastic foundations, subjected to uniform external pressure
and exposed to thermal environments. Sofiyev [12-14] investigated the linear stability and vibration
of unstiffened FGM truncated conical shells with different boundary conditions. The same author [15]
presented the buckling of FGM truncated conical shells subjected to axial compressive load and resting
on Winkler-Pasternak foundations. Quan and Duc [16] presented analytical solutions for the nonlinear
static and dynamic stability of imperfect eccentrically stiffened FGM (ES-FGM) higher-order shear
deformable double curved shallow shell on elastic foundations in thermal environments. Mirzavand
et al. [17] studied dynamic thermal post-buckling behavior of functionally graded cylindrical shells
with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and
applied actuator voltage. Mahapatra et al. [18] reported the geometrically nonlinear thermomechanical
transverse deflection responses of the functionally graded curved structure under the influence of
nonlinear thermal field. Sofiyev and Kuruoglu [19] studied the nonlinear buckling behavior of FGM
truncated conical shells surrounded by an elastic medium based on the classical shell theory and
applying Galerkin method. Sofiyev and Kuruoglu [20] obtained a closed form of the solution for critical
combined loads (combined effects of the axial load and lateral pressure or the axial load and hydrostatic
pressure) of FGM truncated conical shell in the framework of the shear deformation theory. Tornabene
and Viola [21] investigated static analysis of functionally graded doubly curved shells and panels of
revolution applying the generalized differential quadrature method. Tornabene et al. [22] studied stress
and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-
order equivalent single layer theory. Viola et al. [23] studied the static analysis of functionally graded
conical shells and panels. In this study, a two-dimensional unconstrained third-order shear deformation
theory is used for the evaluation of tangential and normal stresses in moderately thick functionally
graded truncated conical shells and panels subjected to meridian, circumferential and normal uniform
loadings. Nejad et al. [24] used the first-order shear deformation theory (FSDT) and multilayer method, a
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semi-analytical solution has been performed for the purpose of elastic analysis of rotating thick truncated
conical shells made of FGMs under nonuniform pressure. Based on the Donnell-Mushtari thin shell
theory and the stiffeners smeared technique, Mecitoglu [25] studied the vibration characteristics of a
stiffened truncated conical shell by the collocation method. The minimum weight design of axially
loaded simply supported stiffened conical shells with natural frequency constraints is considered by
Rao and Reddy [26]. The influence of placing the stiffeners inside as well as outside the conical shell
on the optimum design is studied. The expressions for the critical axial (buckling) load and natural
frequency of vibration of conical shell also are derived. Bagherizadeh et al. [27] presented the thermal
buckling analysis of FG cylindrical shell on a Pasternak-type elastic foundation. Akbari et al. [28]
studied thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports.
Bifurcation behavior of heated conical shell made of a through-the-thickness FGM is investigated
in the present research. Mirzaei and Kiani [29] studied thermal buckling of temperature dependent
FG-carbon nanotubes reinforced composite conical shells. In this research, linear thermal buckling of
a composite conical shell made from a polymeric matrix and reinforced with carbon nanotube fibers
is investigated. Sabzikar Boroujerdy et al. [30] based on the Donnell theory of shells combined with
the von Karman type of geometrical nonlinearity, three coupled equilibrium equations for a through-
the-thickness functionally graded cylindrical shell embedded in a two parameter Pasternak elastic
foundation are obtained. Thermal bifurcation behavior of cross-ply laminated composite cylindrical
shells embedded with shape memory alloy fibers is investigated by Asadi et al. [31]. Castro et al. [32]
studied linear buckling predictions of un-stiffened laminated composite cylinders and cones under
various loading and boundary conditions using semi-analytical models. Castro et al. [33] presented
semi-analytical model to predict the non-linear behavior of unstiffened cylinders and cones considering
initial geometric imperfections and various loads and boundary conditions is presented.

As can be seen, the above introduced works mainly related to unstiffened FGM structures. However,
in practice, plates and shells including conical shells, usually reinforced by stiffeners system to provide
the benefit of added load carrying capability with a relatively small additional weight. Thus, the study on
static and dynamic behavior of these structures are significant practical problem. Najafizadeh et al. [34],
with the linearized stability equations in terms of displacements studied buckling of FGM cylindrical
shell reinforced by rings and stringers under axial compression. The stiffeners and skin, in their work,
are assumed to be made of FGMs and its properties vary continuously through the thickness direction.
The nonlinear buckling of the shells reinforced by stiffeners in thermal environment was considered by
Duc and Quan [35] for the imperfect ES-FGM double curved thin shallow shells on elastic foundations.
The nonlinear dynamic behavior of eccentrically stiffened functionally graded circular cylindrical thin
shells under external pressure and surrounded by an elastic medium was studied by Dung and Nam
[36]. Dung and Hoa [37] investigated the nonlinear buckling and post-buckling of functionally graded
stiffened thin circular cylindrical shells surrounded by elastic foundations in thermal environments and
under torsional load by analytical approach. Duc [38] presented an analytical investigation on nonlinear
thermal dynamic behavior of imperfect functionally graded circular cylindrical shells eccentrically
reinforced by outside stiffeners and surrounded by elastic foundations using the Reddy’s third-order
shear deformation shell theory in thermal environment. Material properties are graded in the thickness
direction according to sigmoid power law distribution (S-FGM) in terms of the volume fractions of
constituents with metal-ceramic-metal layers. Duc et al. [39] studied nonlinear dynamic analysis and
vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded by elastic foundations
in thermal environments.

For ES-FGM conical shells, studies on their buckling and vibration are still limited and they should
be further studied. This may be attributed to the inherent complexity of governing equations of conical
shell, as well as variable coeflicient partial differential equations. Dung et al. [40] studied linear buckling
of FGM thin truncated conical shells reinforced by homogeneous eccentrically stringers and rings
subjected to axial compressive load and uniform external pressure load based on the smeared stiffeners
technique and the classical shell theory. Dung et al. [41] investigated an analytical solution for buckling
of an eccentrically stiffened sandwich truncated conical shell. In this study, the shell consists of two FGM
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coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an
external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of
shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution.
Two models of coated shell-stiffener arrangements are investigated. Duc and Cong [42] investigated
nonlinear thermal stability of ES-FGM truncated conical surrounded on elastic foundations based on
the classical shell theory. Duc et al. [43] investigated the linear stability analysis of ES-FGM conical shell
panels reinforced by mechanical and thermal loads on elastic foundations. The FGM conical shell is
in thermal environment and both the panel and the stiffeners are deformed under temperature. The
material properties of both the panels and stiffeners are assumed to be temperature-dependent.

As can be observed, the studies in Dung et al. [40, 41], Duc and Cong [42], and Duc et al. [43] were
performed using the classical shell theory, so obtained results only are suitable for thin-walled conical
shells. However, for thicker conical shells, it is necessary to use higher-order theories. Recently, there
are some investigations on buckling of truncated conical shells using the FSDT [9, 10, 24, 32], but these
structures are unstiffened conical shells.

Nowadays, in the world, the sandwich structures have become more popular, known as one of the
principal elements of structure in aircraft, satellites, submarines, water-borne ballistic missiles, or in
civil engineering. Their mechanical properties vary smoothly and continuously in preferred directions,
that enable sandwich FGMs to avoid interface problems, as well as unexpected stress concentrations.
However, the sandwich structures also have the mentionable properties, especially thermal and sound
insulation. Sandwich structures find an increasing use in aerospace, naval, transportation, and other
industries, in which stiff and lightweight structural components are required. Various theoretical models
have been developed in the recent years to discuss the static and dynamic behavior of these structures.
There are significant studies on the stability and vibration of layered FGM shells. Liew et al. [44]
analyzed the nonlinear vibration of a three-layer coating-FGM-substrate based on the FSDT with the
geometric nonlinearity in von Karman sense. Alibeigloo and Liew [45] investigated the free vibration
of sandwich cylindrical panel with FGM core using the three-dimensional theory of elasticity. The
state space technique was used to obtain natural frequencies analytically in this work. Li and Batra
[46] considered the buckling of a simply supported three-layer circular cylindrical shell under the axial
compressive load. The inner and outer layers of the shell are comprised of the same homogenous and
isotropic material, and the middle layer is made of FGM. Sofiyev and Kuruoglu [47] solved the problem
on vibration and buckling of the cylindrical shell with FGM coatings in an elastic medium. Sofiyev [48]
studied the vibration and buckling of sandwich cylindrical shells covered by different types of coatings,
such as functionally graded, metal, and ceramic coatings and subjected to a uniform hydrostatic pressure
using the FSDT. Najafov et al. [49] considered the linear and nonlinear vibrations of a truncated conical
shell. Both internal and external surfaces are covered by functionally graded coatings. The theoretical
formulation is based on the von Karman-Donnell-type nonlinear kinematics. The basic equations are
reduced to the ordinary differential equation depending on time with geometric nonlinearity using
the Superposition and Galerkin methods. Soyev et al. [50] examined the stability of thin three-layered
truncated conical shells containing a functionally graded (FG) layer subjected to non-uniform lateral
pressure. Deniz [51] investigated response of a FG coated truncated conical shell subjected to an axial
load by means of non-linear equations governing the finite deformations of the shell. Sofiyev [52] studied
dynamic buckling of truncated conical shells with functionally graded coatings subjected to a time
dependent axial load in the large deformation. The method of solution utilizes Superposition principle
and Galerkin procedure. Temperature-dependent buckling analysis of sandwich truncated conical shells
with FG facesheets was studied by Seidi et al. [53]. In this study, an improved high-order theory is
presented for temperature-dependent buckling analysis of sandwich conical shell with thin functionally
graded (FG) facesheets and homogenous soft core. Duc [54] studied the nonlinear dynamic response
of higher-order shear deformable sandwich functionally graded circular cylindrical shells with outer
surface-bonded piezoelectric actuator on elastic foundations subjected to thermo-electromechanical and
damping loads. The sigmoid FGM shells are made of the metal-ceramic-metal layers with temperature-
dependent material properties. The governing equations are established based on Reddy’s third-order
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shear deformation theory using the stress function, the Galerkin method and the fourth-order Runge-
Kutta method. Duc and Quan considered nonlinear dynamic analysis of imperfect FGM double curved
thin [55] and thick [56] shallow shells with temperature-dependent properties on elastic foundations
also using Galerkin method.

To the best of the authors’ knowledge, there is no analytical approach on the stability of FGM sandwich
truncated conical shells subjected to thermal load and axial compressive load.

The new contribution of this article is to use the FSDT for investigating the stability of FGM sandwich
truncated conical shells subjected to thermal load and axial compressive load. Shells are reinforced by
closely spaced FGM stringers and rings. The material properties of shells and stiffeners are assumed
to be graded in the thickness direction according to a general sigmoid law distribution and a general
power law in terms of the volume fractions of the constituents. The change of spacing between stringers
in the meridional direction are taken into account. Four models of coated shell-stiffener arrangements
are investigated. The general formula for force and moment resultants of ES-FGM truncated conical
shells are established correctly by the Lekhnitskii smeared stiffeners technique. By using the adjacent
equilibrium criterion, the linearization stability equations are established. As a result of that, five
variable coefficient partial differential equations are solved by Galerkin method. Two cases of uniform
temperature rise and linear temperature distribution through the thickness of shell are considered. The
closed-form expression for determining the critical buckling load, thermal buckling load and thermo-
mechanical buckling load are obtained. The effects of various parameters such as the temperature, the
foundation, the core layer, the coating layer, the stiffener, the semi-vertex angle, the volume fraction
index of materials, and the dimensional parameters on stability of shell are analyzed.

FGM sandwich truncated conical shell model

Consider a FGM sandwich truncated conical shell of thickness & and semi-vertex angle f. The geometry
of shell is shown in Figure 1, where L is the length, H is the height of the truncated conical shell, and R
is its small base radius. The truncated cone is referred to a curvilinear coordinate system (x, 6, z) with
origin is located in the middle surface of the shell, x is in the generatrix direction measured from the

Stringer

Figure 1. Geometry of eccentrically stiffened truncated conical shell surrounded by an elastic foundation.
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vertex of conical shell, 8 is in the circumferential direction and the axis z being perpendicular to the axis
x, lies in the outwards normal direction of the cone. Also, xy indicates the distance from the vertex to
small base of the shell. Assume that the shell consists of two coating layers and one core layer.
Furthermore, assume that the conical shell is stiffened eccentrically by closely spaced FGM longitu-
dinal stringers and rings. To guarantee the continuity between the stiffener and shell, the stiffener side
is taken to be pure-metal if it is located at metal-rich shell side and is pure-ceramic if it is located at
ceramic-rich shell side. In this study, four models with eight cases are investigated, in which the material
properties of shell and stiffeners are graded in the thickness direction with a general model of power law

and general model of sigmoid law distribution as follows.

General model of sigmoid law

First model [1, 2, 4, 38] (FGM-Ceramic core-FGM conical shell, Figure 2a)

Case 1: FGM-Ceramic core-FGM conical shell and inside FGM stiffener.

Case 2: FGM-Ceramic core-FGM conical shell and outside FGM stiffener.
Second model (FGM-Metal core-FGM conical shell, Figure 2b)

Case 3: FGM-Metal core-FGM conical shell and inside FGM stiffener.

Case 4: FGM—-Metal core-FGM conical shell and outside FGM stiffener.

General model of power law

Third model [1, 2, 4, 35] (Ceramic-FGM core-Metal conical shell, Figure 2¢)

Case 5: Ceramic-FGM core—Metal conical shell and inside FGM stiffener.
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Figure 2. Four models of FGM sandwich truncated conical shell (h = 2h¢ + hco).
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Case 6: Ceramic-FGM core—Metal conical shell and outside FGM stiffener.
Fourth model (Metal-FGM core-Ceramic conical shell, Figure 2d)

Case 7: Metal-FGM core—Ceramic conical shell and inside FGM stiffener.

Case 8: Metal-FGM core—Ceramic conical shell and outside FGM stiffener.

Theoretical formulation of FGM truncated conical shell

According to the Timoshenko-Mindlin assumption, the displacements at distance z from the middle
surface of the shell, are represented in displacement components u, v, w of a point in the middle surface
in the direction x, 0, and z, respectively [57]

Ux = U+ 2¢x, Up =V + 29, Uy = W 1

in which ¢y, ¢ are the rotations of a transverse normal about the 6 and x-axis, respectively.
The strain-displacement relationship at the middle surface of the shell based on the FSDT taking into
account the von Karman geometrical nonlinearity is given by [1, 58, 59]

+ i Ly pa——
Exm = U W, Eom = v -+ —co w
m = xS e tm = Gin B T 2x2sin2 B0
(2)
% 1 1
Yx0m = - ug — — +vx+ X WWos Vxzm = Wx + D> Vozm = —Wy + o
xsin B X xsin B xsin B
1 1 1 1 1
kx = ¢x,x, k@ = . ¢9,0 + —¢x kx@ =3 ¢0,x + .—¢x,0 — =g (3)
xsin B X 2 xsin B8 X

where ¢, and €g,,, are the normal strains and yg,, is the shear strain at the middle surface of the shell,
and Yxzm» Yozm are the transverse shear strains; and k; are the change of curvatures and twist, respectively.
The normal and shear strains at distance z from the middle surface of shell are of the form

&x = Exm + Zkx, 89 = €om + zko, Vxo = Vxom + 22Kkx0> Yz = VYxems> Yoz = Vozm (4)

The stress—strain relations including temperature effects based on Hooke law is given by:
For the FGM conical shell

E EgoagpAT(z
o = T (o, veg) — BOHATE) fqiy 7,
1—v2 1—v
E Egqoq,AT (2)
h sh sh®sh
oy = g9 + vey) — ——8— 5
0 =10 et ved 1—v ©®
Egn Esh h Egn
oh — S ,O'Sh — Josh —
X0 2(1+v) Vx0>Oyxz 2(1+v) Vxzm> O, 2(1+ ‘)) Yozm
For longitudinal stringers and rings, respectively
oy = Esex — Esas AT (2) ,05 = Ereg — Evar AT (2) 6)

where AT(z) denotes the change of environment temperature from thermal stress free initial state.
Subscripts s and r denote longitudinal stringers and rings, respectively. The force and moment resultants
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are expressed in terms of the stress components through the thickness as

=

h
2

2 sh st sh st .
Ni=/ o; dz+ N7, Mithzai dz+M;, (i=x0)
- 2

h
2

)

[SIE

h h h
Ny = / . ajgdz, My = /zh xaﬁgdz, Q, = g /‘zh U,f?dz, Qp = 2 /‘Zh crg}z‘dz
2 2 2 2
where N$', M:" are force resultants and moment resultants of stiffeners, respectively. In this article, it is
assumed that the thermal stress of stiffeners is negligible, therefore, we can ignore it.

Setting Eqgs. (2)-(6) into Eq. (7) and using Lekhnitskii smeared stiffener technique, and taking into
account the change of spacing between stringers in the meridional direction, after integrating the above
stress—strain equations and their moments through the thickness of the shell, the expressions for force
and moment resultants, and transverse force resultants of an ES-FGM conical shell are given by

Eib
Ny = |:A11 + ﬁ] Exm + A1280m + [B11 + c1 (0)] kx + Bizko + P,

ds (x)
Ey,b 8
No = A12&xm + |:A22 4+ r] €om + Biokx + (Baz + ¢2) kg + P4 ®)
r
Nx9 = A66Vx9m + 2366kx9
ESSbs
My = [B11 + ¢1 (X)] &xm + B12&gm + | D11 + ) ky 4+ D12ko + v,
S
Es b 9
My = Biotam + (Brs + ©2) gm + Dioke + [Dzz 42 ] ko + @y )
T
Myo = BesVxom + 2Deckyo
1

Qx = AsaVxom = Asa (Wx + ¢2)» Qo = AssVozm = Ass |:xsin,3 wo + ¢9] (10)

where the coefficients E;, Ejs, Eir, c1(x), ¢2, ds(X), dr, b, by, ns, nr, Ajj, Bjj, Dij, @a, Py, are defined in
Appendix A and b, and b, are the width of stringer and ring, respectively.
The reaction-deflection relation of Pasternak foundation model is expressed by

3w 1w 1 9w
(11)

=Kw-K|—+-—+——-+——
="M (3x2 T TR sin? B 962
in which K; (N/m?) is the Winkler foundation stiffness and K, (N/m) is the shear subgrade modulus of
the Pasternak foundation model.

The nonlinear equilibrium equations of truncated conical shells surrounded by elastic foundation
according to FSDT, are of the form [42, 57-59]

1
xNx,x + ._Nx0,9 +Ny—Ng=0 (123)
sin 8
1
_N9,0 + xNxe,x + 2Nx9 =0 (12b)

sin 8
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2 2
XMy xx + 2My 5 + Si_Mxe,xG + ———Mypo +

1
Mp g9 — Mpx — Ny cot
np xsing 0T xsin2p 0 b — No cotf

1 1 1
+ I:xNxW,x + ——Nyw W,9:| + — I:ng Wx+ ——Np W,9i|
sin x sinf xsin B 9

B
= xKiw — xK; (82—W + Tow, 1 82—W> (12¢)
9x2  x9x  x%sin?p 962
(xsin BMy) , + Myp 9 — Mg sin B — xsin BQ, = 0 (12d)
(xsin BMyg) , + Mg g + Myg sin B — xsin Qg = 0 (12e)

Linearization stability equations

The stability equations of conical shell are derived using the adjacent equilibrium criterion. Based on
this criterion, each of the displacement components on the primary equilibrium path are perturbed
infinitesimally to establish a new equilibrium configuration. The components of displacement field at
the new adjacent equilibrium configuration may be written as [57]

u=tug+u, v=vo+v, W=wo+Ww, Ox=0d0+dx1, Po = Pgo+ do1 (13)

Similarly, the force and moment resultants of a neighboring state may be related to the state of
equilibrium as [57]

Ny = Nxo + Nx1,  Ng = Ngo + Ng1,  Nxy = Nxgo + Nig1, Qx = QxO + Qxl
Qo = Qo+ Qo1, My = Mxo + My, My = Mgo+ Mo1, M = Mygo + Mxor

where terms with 0 subscripts correspond to the ug, v, wo displacements and those with 1 subscripts
represents the portions of increments of force and moment resultants that are linear in u, v}, and wy.
The substitution of Eqs. (13) and (14) into Eqgs. (12a)-(12e) and note that the terms in the resulting
equations with subscript 0 satisfy the equilibrium equations and therefore drop out of the equations,
and the nonlinear terms with the subscript 1 are ignored because they are small compared to the linear
terms, the remaining terms form the stability equations as follows [42, 57]:

(14)

1
XNx1,x + ——=Nyg1,6 + Nx1 — No1 =0 (15a)
sin 8
1
——Ny1,9 + xNyo1,x + 2Nyo1 =0 (15b)
sin 8
2 2 1
XM xx + 2Max + ——— Moo + ———Mao10 + ——5 - Mo1,90 — M1«
sin 8 xsin B8 x sin® B
1 1 1
— Nprcot B+ | xNxowix + ——=Nwow19 | + — | Nvowi,x + ———=Naow1,9
sin 8 x sin B xsin B 9
K 4 K 82W1 + 18W1 + 1 82W1 (15 )
—xKyw; 4+ x —_— - — | = c
e \ o2 T x ax | xZsin2B 962
xsin BMy x + sin BM,1 + Mxg19 — Mp; sin B — xsin BQx; =0 (15d)

xsin BMyg1,x + 2sin BMye1 + Mo1,9 — xsin Qg1 =0 (15e)
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where the force and moment resultants for the subscript 1 are defined by

Eqb
Ny = |:A11 + ﬁ] Exm1 + A1280m1 + [B11 + ¢1 (%)] kx1 + Bi2ke1

ds (x)
Eib 16
No1 = A126xm1 + [Azz + dr r:| €om1 + Bi2kx1 + (Baz2 + ¢2) ko1 (16)
r
Nyg1 = A667/x0m1 + 2366kx01
ESsbs
My = [Bi1 + c1 (0)] &xm1 + B126om1 + | D11 + ) kx1 + D12ko1
S
Esb 17
Mp1 = B12&xm1 + (B2 + ¢2) €6m1 + D12k + |:D22 + dr r] ko1 (17)
T

Myg1 = BesVxom1 + 2Dgskxo1

Qa1 = AsaVazmt = Ass (Wix +dx1)> Qo1 = AssVozm = Ass |: wie + ¢01:| (18)

1
xsin B8
and the linear form of the strains and curvatures and twist in terms of the displacement components are
of the form

1 Uy w 1 V1
Exml = Ulxs E0ml = ; Vi + —+ — cotB, Voml = ] urg — — + Vix
xsin B8 X x xsin B8 X
(19)
1
Vxzml = Wix + Oxl>  Yozml = - wie + Po1
xsin B
1 1 1 1 1
ki = Gx1ps kot = ———do10 + —bx1,  kno1 = = | Po1x + ———Px10 — —Po1 (20)
xsin x 2 xsin X

Setting Egs. (16)-(18) into the Egs. (15a)-(15e), taking into account Egs. (19) and (20), we obtain
a system of the linearization stability equations in terms of displacement components uy, v, w; and
Px1, Po1 as follows:

Ay = Siq (u1) + S12 (v1) + S13 (W1) + S14 (9x1) + S15 (1) =0 (21)
Ay = 851 (u1) + S22 (V) + S23 (W) + S24 (Px1) + Sz5 (1) =0 (22)

Az = S31 (u1) + S32 (V1) + (S33 + S37K1 + S38K2) (1) + NSz (W)

+ 834 (Px1) + S35 (¢hg1) =0 (23)
Ay = Sy1 (u1) + Sa2 (V1) + Sa3 (W1) + Saa (Px1) + Sas (Po1) =0 (24)
As = Ssq (u1) + Ssz (v1) + S53 (W1) + Ss4 (dx1) + Ss5 (1) =0 (25)

where §;; are differential operators can be found in Appendix B.

The system of Eqs. (21)-(25) are the couple set of five variable coefficient partial differential equations.
It is used to analyze the stability and find the critical buckling load, thermal buckling load and
thermomechanical buckling load of ES-FGM truncated conical shells. This system is more complex
than the system of stability equations of plates or cylindrical shells. This is main reason why the buckling



Downloaded by [UNIVERSITY OF ADELAIDE LIBRARIES] at 16:26 11 December 2017

JOURNAL OF THERMAL STRESSES (&) 11

investigation of ES-FGM truncated conical shells still is limited. In this article, the Galerkin method was
used to solve these problems.

Thermal buckling analysis of ES-FGM truncated conical shells only subjected to thermal
loads

Prebuckling thermal state

Consider an ES-FGM truncated conical shell only subjected to symmetric thermal loads. In this case,
according to Naj et al. [5] and Torabi et al. [8] for finding pre-buckling force resultants Nxo, Ngo, Nxgo, it
is necessary to solve equilibrium equations of the shell in membrane state. For this aim, all the moment,
transverse force resultants and deflection terms must be set equal to zero in Egs. (15a)-(15e). It leads to

dN,
Nego =0, x d"o + Ny — Ngo =0, —NpgcotB =0 (26)
x
Solving this system with the boundary condition Nyy = ®, at x = x¢ + L, we obtain [5, 42]
xo+ L
0= ———®g Nigo=0, Ngo=0 27)

Setting N, = xNyo and noting Eq. (27), leads to
Ny = (x0 + L) ®,. (28)

Galerkin method for determining critical thermal buckling load

This work considers a conical shell with the simply supported conditions at both ends. Then the
boundary conditions in this case, are expressed by Jam and Kiani [9] and Akbari et al. [10] as

Nyg=vi=w; =¢g =My =0 atx=uxp, xo+L (29)

The approximate solution satisfying the abovementioned boundary conditions may be found in the
form

mm (x — X mm (x — X
u; = A cos (—0) sinnf, v; = Bsin M cos nf
L L

mim (x — x mm (x — X

wy = Csin % sinnd, ¢y = P;cos % sin no (30)
1 . omi (x — xg)

P91 = P———sin cos no

xsina L

where m is the number of half-waves in the generatrix direction and # is the number of full-waves in the
circumferential direction of the shell, and A, B, C, and ®;, ®, are constant coefficients.

As can be seen the boundary conditions v; = 0,w; = 0, and ¢g; = 0 at x = xp, xp + L are satisfied
exactly, but Ny; = 0 and M, = 0 at x = X, xp + L are fulfilled on the average sense as [47, 60]

T (9N, T (OM.
/ (—“) d0=0 and / ( "1) do =0
0 9x x=x0,x0+L 0 0x x=x0,X0+L

As above emphasized, it is difficult to use the trial function (30) and Egs. (21)-(25) to obtain directly
closed-form of buckling load. Therefore, a different procedure is presented here. Because xg < x <
%o + L; 0 < 0 < 27 and for sake of convenience in integration, Egs. (21), (22), and (24) are multiplied
by x; Egs. (23) and (24) by x? and the corresponding eigenfunctions, then applying Galerkin method for
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the resulting equations, the following expressions are obtained

xo+L p2m mir (x — x.
/ / xAq cos +® sinnf - xsin 8dOdx = 0 (31a)
0
xo+L p2m T _
/ / xAj sin M cosnf - xsin Bd6dx = 0 (31b)
X0 0 L
xo+L 2 _
f / X2 As sinwsinne - xsin dfdx = 0 (31c)
X0 0 L
xo+L p2m mir (x — x.
f / xA4 cos % sinnf - xsin 8dOdx = 0 (31d)
0
xo+L 2 _
/ / sin ma (x — Xo) cosnb - xsin Bd6dx = 0 (31e)
> xsin ﬂ L

Substituting Eq. (30) into Eqs. (31a)-(31e) and integrating those expressions, after series calculations
and rearrangements, we obtain

L1A+ LB+ Li3C+ L1g®P; + LisP, =0 (32a)
Lo1A + LyppB + LosC+ Lpg @1 + Los®, =0 (32b)
L31A + L3;B + (Lss + NjyLss + KiL37 + KaLsg) C + L3s @y + L3sP, = 0 (320¢)
LA+ LB+ Ly3C+ Lyg®y + LysDy =0 (32d)
L5jA + LspB + L53C + L5y @1 + Lss®, = 0 (32e)

where the coefficients L;; are given in Appendix C.
Because the Eqs. (32a)-(32e) is a system of linear homogeneous equations for A, B, C and ®;, ®;.
So for the nontrivial solution, the determinant of its coefficient matrix must be to zero i.e.,

Lu L2 L3 Lia Lis
Ly Ly Ly Lyy  Lys
L3y Lz (Lss+NjlLss + KiLs7 + KaLss) Lss Las| =0
Ly Ly Ly Ly Lys
Lsi Lsp Ls3 L5y Lss

Developing this determinant and solving resulting equation for combination of critical axial com-
pressive load and thermal buckling load, yields

NjyLss = L31D— + L32D + L34D - L35E — L33 — KiL37 — KpL3g (33)
Ds Ds Ds Ds
where D; (i = 1,2, 3,4, 5) are calculated by
L1z L1z L1a L1s Ly L1z Lia L1s Ly L1z Lia L1s
_ Loz La3 Lag Las _ Loy Las Lag Las _ Loy Loz Lag Las
L Ly Las Lag Las| ’ Lat Las Lag Las| ’ La Lap Lag Las|

Lsy Ls3 Lsg Lss Lsy Ls3 Lsg Lss Lsy Lsp Lsg Lss
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L1 Lz Ly3 Lys Liy Ly L3 Ly

Ly Lyy Lys Lys Ly1 Lyy Lpz Loy
D4 == > DS ==

L4y Lyp Ly3 Lys Lyy Lyp Lyz Lyy

Lsy Lsp Ls3 Lss Lsy Lsp Ls3 Lsy

Equation (33) used to determine the thermal buckling load of stiffened FGM truncated conical shell
subjected to thermal load.

Note that the thermal buckling load AT contained in N}, depends on values of m and n, therefore
must minimize its expression with respect to m and n, we obtain the critical thermal load AT,.

Uniform temperature rise

Consider a conical shell under uniform temperature rise, namely AT(z) = AT = const. After
substituting AT (z) in Eq. (28), and noting expressions of ®,, we obtain
(i) First model

Case 1: FGM-Ceramic core-FGM conical shell with FGM stiffener inside

NA = AT (xo+ D) Sy (34)
where
S = —ﬁ [Ecac(h — 2hy) + 2hg <Emam + Ema“}‘( :[ ?mEcm iji“jf‘l“ )}
Finally, setting Eq. (40) into Eq. (39), leads to
AT= L (-Ly& + L32& + L34& - L35% — L3z — KiL37 — KzLas) (35)
L3g (xo + L) S D D D; Dj

(ii) Fourth model

Case 5: Ceramic—-FGM core—Metal conical shell with FGM stiffener inside

N:(\) =ATxo+L)S; (36)
where
1 Enoem + anE Eno
S = _m I:(Emam + Ecac) he + (Emam + = ml; i lm = zclin+cr1n) (h— th)]

Finally, setting Eq. (42) into Eq. (39), lead to

1
Ly (xo+L)S

PSR JCC S SO . S TR JUR O JUR ) (37)
31D3 32D3 34D3 35D3 33 11437 2138

AT

Linear temperature distribution through the thickness

If the conical shell is thin enough, a linear temperature distribution across the shell thickness is the first
approximation to the solution of the heat conduction equation of the FGM conical shell. Thus, we can
assume [5, 42]

T, + T
ATe = ATZ + 22170

h 2 (38)
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where T, and T}, are the temperatures of the internal and external surfaces of conical shell, respectively,
and AT = Ty — T,. Substituting Eq. (38) in Eq. (28) by noting expressions of ®,, we obtain
(i) First model

Case 1: FGM-Ceramic core-FGM conical shell with FGM stiffener inside
a + Tb

5 S (39)

= (xo + L)

(ii) Fourth model

Case 5: Ceramic-FGM core—Metal conical shell with FGM stiffener inside

T
= (x0 +L)[ + bSZ+ATS3} (40)
where
Ecte — Emctm [(h)z (h ﬂ
Zfem PmBm ) (7)) (2 kg
2 2 2
S3 = 1 (E + Ecm@m) ! !
1—-wh m&em T Fem®m) \ 1775 7 3k +2
1 1 5
+ Ecm®cm (m - T 2)] (h — 2h¢)

Substituting N ;; contained in Egs. (39) and (40) into Eq. (33) and using assumption of Naj et al. [5],
T, = 0, we obtain
(i) First model

Case 1: FGM-Ceramic core-FGM conical shell with FGM stiffener inside

1
L3gM;

a =

D, Dy Ds
— 31 + L32 + L3s— — L35— — L33 — KLy — KpLag (41)
D; D;
where
S1
My = (xo + L) 5
(ii) Fourth model

Case 5: Ceramic—-FGM core—Metal conical shell with FGM stiffener inside

_ ! L D1+L D+L Ds 1 .Ds 1 Kl KoL (42)
_L36M2 31 32 34D3 35D3 33 1437 2438

S,
= (xo+1L) (— - 53)

where

Mechanical buckling analysis

Consider an ES-FGM truncated conical shell only subjected to the axial compressive mechanical load of
intensity p(N) at x = xo (Figure 3).
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Figure 3. The mechanical buckling of eccentrically stiffened functionally graded materials (ES-FGM).

By the same method as the section above, solving the system (15a)-(15e) with the boundary condition
Ny = —ﬁ at x = xp, we obtain

X0
Nep= -2 Nyp=0, Ngo=0 (43)
xcos f3
P
N = xNyo = (44)

27 sin 8 cos 8

where P = 27 px sin .
Applying Galerkin method, similarly, by noting N7, in Eq. (44), we obtain closed-form expression for
determining the mechanical buckling load as follows

27 sin B cos B
Lse

D, D, Dy Ds
P= —L31— 4+ L3p— + L3g— — L3s— — L33 — K1L37 — KyL3s (45)
Ds Ds Ds

Ds;

Minimizing Eq. (45) with respect to m and n, we obtain the critical value of P.

Validation of the present study

To verify the present study, two problems on critical load are compared with results from open literatures.

First comparison

Table 1 using Eq. (45) compares the critical buckling load of unstiffened isotropic truncated conical shell
(Stainless steel - SUS304) under axial compressive loads with the results given by Naj et al. [5] and Baruch
etal. [61]. The input data base is: E = 200.10° N/mz, k=0,h=001mR=100xh,v =0.3,P* = f)—ci
where P = Bk’ cos’ o [5] and P, is found from Eq. (45).

NEG=D)

Second comparison

Tables 2 and 3 shows present results compared with those of Naj et al. [5] and Duc et al. [42] for
un-stiffened FGM truncated conical shell and the material compositions only vary smoothly along its
thickness direction with the power law distribution under uniform thermal load and linear thermal
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Table 1. Comparisons of the results on the critical buckling load of unstiffened isotropic truncated conical shells with results of Naj et al.
[5] and Baruch et al. [61].

L/R=0.2 L/R=05
B Naj et al. [5] Baruch et al. [61] P*(Present) Naj et al. [5] Baruch et al. [61] P* (Present)
1° 1.005 (7) 1.005 (7) 0.9962(1,6)* 1.0017 (8) 1.002 (8) 0.9979 (3,1)
5° 1.006 (7) 1.006 (7) 0.9962 (1,6) 1.0010 (8) 1.002 (8) 0.9988 (2,8)
10° 1.007 (7) 1.007 (7) 0.9962 (1,6) 1.0000 (8) 1.002 (8) 0.9985 (2,8)
30° 1.0171 (5) 1.017 (5) 0.9980 (1,4) 0.9870 (7) 1.001 (7) 1.0000 (2,7)
60° 1.148 (0) 1.144 (0) 1.1267 (1,1) 1.045 (7) 1.044 (7) 1.0140(1,7)

*Buckling mode (m, n).

Table 2. Comparisons of the results on the thermal buckling load of unstiffened isotropic truncated conical shells under linear thermal
load with results of Naj et al. [5] and Duc et al. [42].

acAT) x 103

Ry /h = 200 Ry /h = 400
k Naj et al. [5] Duc et al. [42] Present Naj et al. [5] Duc et al. [42] Present
0 2.75 2.78(1,17) 2.735(7,9)* 1.40 1.37(11,14) 1.369 (9,15)
0.3 243 244 (1,17) 2.396 (8,5) 1.24 1.20(11,18) 1.199 (8,17)
1 222 2.22(9,13) 2.135(8,5) 1.08 1.07 (11,18) 1.068 (8,17)
5 1.92 1.95 (8,1) 1.941 (6,11) 0.99 0.97 (11,13) 0.972(10,12)
00 1.75 1.73(8,8) 1.730(7,9) 0.89 0.87(10,25) 0.866 (9,15)

FGM, functionally graded material.
*Buckling mode (m, n).

Table 3. Comparisons of the results on the thermal buckling load of unstiffened isotropic truncated conical shells under linear thermal
load with results of Naj et al. [5] and Duc et al. [42].

Rq1/h = 200 Rq/h = 400
acATcAr x 103 Naj et al. [5] Duc et al. [42] Present Naj et al. [5] Duc et al. [42] Present
Ta=0 417 4.16 (4,26) 4.1497 (8,5)* 2.08 2.09 (2,27) 2.0762 (8,17)
T, =0 438 4.40 (6,23) 43983 (8,5) 2.19 2.20(10,26) 2.2006 (8,17)

FGM, functionally graded material.
*Buckling mode (m, n).

load, and not resting on elastic foundation, with data base as: Ep, = 200.10° N/m?, E. = 380.10° N/m?,
am = 11.7 x 10761/°C, ac = 7.4 x 107°1/°C,h = 0.01m, v = 0.3, B = &, K| = 0, K; = 0, where
AT, = (1 — v) AT, and AT, is found from Eq. (37) for uniform thermal load case and AT, is found

from Eq. (42) for linear thermal load case.

Table 4. Comparisons with results of Dung et al. [41] for FGM sandwich truncated conical shell reinforced by FGM stiffeners.

B 15° 30° 45° 60°
Case 1 Dung et al. [41] 27.45251 (6,19)* 22.12813(6,19) 14.78617 (5,18) 7.45014 (4,16)
Present 26.9185 (6,10) 21.6295 (5,10) 14.4169 (5,9) 7.1698 (4,8)
Percentage 1.95 2.25 2.50 3.76
Case 2 Dung et al. [41] 28.41658 (8,15) 22.79853 (7,15) 15.22234 (6,14) 7.66136 (5,10)
Present 27.9788 (7,9) 22.4206 (6,9) 14.8872(5,9) 7.4018 (4,8)
Percentage 1.54 1.66 2.20 3.39
Case3 Dung et al. [41] 21.33585 (5,16) 17.27832 (4,16) 11.57539 (4,15) 5.86457 (3,14)
Present 20.6411 (4,8) 16.7555 (4,8) 11.1932 (4,8) 5.5457 (3,7)
% 3.26 3.03 3.30 5.44
Case 4 Dung et al. [41] 22.19521(7,11) 17.88501 (5,15) 11.97889 (5,11) 6.04788 (4,10)
Present 21.2933 (2,7)* 17.4869 (5,8) 11.6282 (4,8) 5.7668 (3,7)
Percentage 4.06 2.23 293 4.65

FGM, functionally graded material.
*Buckling mode (m, n).
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Third comparison

Table 4 compares present results with those of Dung et al. [41] for FGM sandwich truncated conical shell
reinforced by FGM stiffeners, resting on Pasternak elastic foundations, subjected to axial compressive
load and the material properties of shells and stiffeners are graded in the thickness direction following
a general sigmoid law distribution by analytical method based on the classical shell theory with E;,, =
70.10° N/m?, E. = 380.10° N/m?,v = 0.3,K; =5x 10°N/m>, K, =3 x 10*N/m, ky = ks = k=1,
hs = 0.0015m, heo = 0.0025m, R = 300 x h¢, L = 2 X R, hy = 0.003 m, bs = 0.002 m, b, = 0.003 m,
by = 0.002 m, ny = 50, n, = 30, and P, (MN) is found from Eq. (45).

It is seen from Tables 1-4 that there is a very good agreement between this article results and the
results of Naj et al. [5], Baruch et al. [61], Dung et al. [41], and Duc et al. [42].

Numerical results
Effect of stiffener arrangement

Consider an ES-FGM conical shell with input parameters as Ey, = 70.10° N/m?, E. = 380.10° N/m?,
am =222x107°1/K,ac =54x107°1/K,v =03,k=1,h=0.05m,R=25m,L =2xR, =%,
Ky = 2.5 x 107 N/m3, K5 = 2.5 x 105N/m, hy = 0.03m, by = 0.02m, h; = 0.03m, by = 0.02m.
Tables 5 and 6, using Egs. (35), (37), (41), and (42), shows the effect of stiffener on thermal buckling
load AT in two temperature field uniform temperature rise and temperature distribution through the
thickness.

As can be seen that stiffener arrangement has significant influence on the critical thermal load of shell.
The value of the critical temperature in the case of stiffeners inside smaller than in the case of external
stiffeners. Both tables show that, with the same number of stiffeners (n = 30), the critical thermal load
is greatest for stringer stiffened shell, orthogonally stiffened shell is the second, ring stiffened shell is the
third, and the critical load values in the unstiffened case is smaller than stiffened case. In the case of
uniform temperature rise, the critical thermal load value is smaller than the case of linear temperature
distribution through the thickness.

Effect of stiffener number

With the database of the above section, Tables 7 presents effects of reinforcement stiffener num-
ber on critical thermal load AT.. As expected, the obtained results show that the critical thermal
load increases when the number of stiffeners increases and inversely. This increase is considerable.

Table 5. Effect of stiffener arrangement on thermal buckling load AT, for Case 1.

Uniform Linear temperature distribution (T, = 0)
ATer (K) Inside stiffener Outside stiffener Inside stiffener Outside stiffener
Un-stiffened 285.2874 (5,5)* 285.2874 (5,5) 570.5748 (5,5) 570.5748 (5,5)
Stringer (ns = 30) 297.9866 (4,7) 295.8553 (5,4) 595.9732 (4,7) 591.7105 (5,4)
Ring (n, = 30) 287.1580 (5,5) 295.0556 (5,4) 574.3161 (5,5) 590.1113 (5,4)
Orthogonal (ng = ny = 15) 292.8425 (5,5) 295.5116 (5,4) 585.6850 (5,5) 591.0231 (5,4)

*Buckling mode (m, n).

Table 6. Effect of stiffener arrangement on thermal buckling load AT, for Case 5.

Uniform Linear temperature distribution (T, = 0)
ATer (K) Inside stiffener Outside stiffener Inside stiffener Outside stiffener
Un-stiffened 225.2755 (5,5)* 225.2755 (5,5) 4747724 (5,5) 474.7724 (5,5)
Stringer (ns = 30) 242.6644 (4,7) 229.9255 (5,4) 511.4199 (4,7) 484.5725 (5,4)
Ring (n, = 30) 226.8908 (5,5) 232.7340 (6,1) 478.1768 (5,5) 490.4915 (6,1)
Orthogonal (ns = ny = 15) 235.6625 (5,5) 232.0334(5,4) 496.6632 (5,5) 489.0149 (5,4)

*Buckling mode (m,n).
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Table 7. Effect of stiffener number on critical thermal load AT.
AT (K) (Orthogonal (ns = n, = n/2), stiffeners at inside)

Uniform Linear temperature distribution (T, = 0)

Stiffener number (n) Case 1 Case 5 Case 1 Case 5

10 287.8154 (5,5)* 228.7550 (5,5) 575.6308 (5,5) 479.6058 (5,4)
20 290.3338 (5,5) 232.2173 (5,5) 580.6675 (5,5) 484.3176 (5,4)
30 292.8425 (5,5) 235.6625 (5,5) 585.6850 (5,5) 489.0149 (5,4)
40 295.3417 (5,5) 239.0906 (5,5) 590.6834 (5,5) 493.6978 (5,4)
50 297.8227 (4,7) 242.5019 (5,5) 595.6454 (4,7) 498.3663 (5,4)
60 299.2748 (4,7) 2449245 (4,7) 598.5496 (4,7) 503.0206 (5,4)

*Buckling mode (m,n).

For example, for Case 1, AT = 287.8154 K (n = 10) for uniform temperature rise in comparison with
AT, = 299.2748K (n = 60) increase about 1.04 times; for Case 5, AT, = 228.7550K (n = 10)
for uniform temperature rise in comparison with AT, = 244.9245K (n = 60) increase about 1.07
times. The prime reason is that the presence of stiffeners makes the shells become stiffer, so bearing load
capacity of them will be better.

Effect of semi-vertex angle 3

In this case, the semi-vertex angle 8 is changed. The effect of semi-vertex angle 8 on critical thermal load
AT, is presented in Table 8. It can be seen that the critical thermal buckling load of sandwich truncated
conical shell strongly decreases when semi-vertex angle increases. For example, an orthogonal stiffened
shell in Table 8, for Case 1, when the semi-vertex angle varies the values from 5° to 60°, in the case of
uniform temperature rise, the critical thermal load AT, decreases from 810.4664 to 195.6100 K, about
75.86% and in the linear temperature distribution, the critical thermal load AT, decreases from 1620.9
t0 391.2199 K, about 75.86%.

Table 8. Effect of angle B on critical thermal load AT;.
AT (K) (Orthogonal (ns = n, = n/2), stiffeners at inside)

Uniform Linear temperature distribution (T, = 0)
B Case 1 Case 5 Case 1 Case 5
5° 810.4664 (7,6)* 650.6878 (6,6) 1620.9 (7,6) 1336.8 (8,3)
10° 697.4159 (6,7) 558.9150 (6,7) 1394.8 (6,7) 1151.5(8,2)
20° 535.1976 (6,6) 428.4204 (6,6) 1070.4 (6,6) 887.6080 (7,3)
30° 419.3676 (5,7) 335.8325(5,7) 838.7353 (5,7) 699.2480 (6,4)
45° 292.8425 (5,5) 235.6625 (5,5) 585.6850 (5,5) 489.0149 (5,4)
60° 195.6100 (4,4) 159.9401 (4,4) 391.2199 (4,4) 330.9807 (5,1)

*Buckling mode (m, n).

Table 9. Effect of core layer on critical thermal load AT.
AT (K)—Uniform; orthogonal (Stiffeners at inside) (ns = n, = 15)

heo/hs Case 1 Case 3 Case 5 Case 7

0 189.8319 (5,6)* 266.6013 (4,5) 281.3797 (5,6) 274.6792 (5,6)
1 250.6088 (5,5) 265.7473 (4,5) 246.8102 (5,5) 241.5338(5,6)
2 292.8425 (5,5) 261.6721 (4,4) 235.6625 (5,5) 231.0389 (5,5)
3 323.4413 (5,5) 253.9062 (4,4) 230.3635 (5,5) 226.0274 (5,5)
4 346.4294 (5,5) 247.8966 (4,3) 227.2936 (5,5) 223.1486 (5,5)
5 364.0200 (5,4) 235.4068 (4,3) 225.2932 (5,5) 221.2846 (5,5)

*Buckling mode (m, n).
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Table 10. Effect of core layer on critical compression load Pcy.
P¢r (MN) Orthogonal (Stiffeners at inside) (ns = n, = 15)

heo/hs Case 1 Case 3 Case 5 Case 7

0 971.1708 (5,6)* 1363.9 (4,5) 971.7198 (5,6) 948.5801 (5,6)
1 1183.1(5,5) 1170 (4,5) 989.1143 (5,5) 967.9689 (5,6)
2 1324.6 (5,5) 1087.1 (4,4) 1009.7 (5,5) 989.9281 (5,5)
3 14246 (5,5) 1049.7 (4,4) 1025.3 (5,5) 1006 (5,5)
4 1498.5 (5,5) 1029 (4,3) 1036.9 (5,5) 1018 (5,5)

5 1554 (5,4) 1016.8 (4,3) 1045.6 (5,5) 1027 (5,5)

*Buckling mode (m, n).

Effect of core layer h,

With the database of the section before, the influences of the thickness of core layer to coating layer
ratio heo/hs on the critical thermal load AT, and critical compression load P., are shown in Tables 9
and 10, respectively. It is observed that when h,/h¢ increases, AT, and P, both increase markedly in
Cases 1, 5, and 7, but they decrease in Case 3. The critical thermal load and the critical compression
load is greatest for Case 1. For example, in Table 9, for Case 1, comparing AT, = 189.8319K (when
heo/hs = 0) with AT, = 364.0200K (when heo/hs = 5), the critical thermal load increases about
91.76%. For Case 3, comparing AT, = 266.6013 K (when h,/hf = 0) with AT = 235.4068 K (when
heo/hs = 5), the critical thermal load decreases about 11.7%. In Table 10, for Case 1, comparing P, =
971.1708 (MN) (when heo/hs = 0) with P, = 1554 (MN) (when hc,/hsf = 5), it is observed that the
critical load increases about 37.5%, and for Case 3, comparing P, = 1363.9 (MN) (when heo/hs = 0)
with P, = 1016.8 (MN) (when h,/hs = 5), the critical load decreases about 25.45%. This result agrees
with the actual property of material. As the core layer h, (for Case 1) increases, the volume fraction of
ceramic increases, and the value of the critical load is larger. Inversely, for Case 3, when the core layer
ho increases, the volume fraction of metal increases, and the value of critical load is smaller.

Effect of the ratioR/h

In this section, the ratio R/h is changed, the other parameters are the same as before. Figures 4 and 5
show effects of the radius-to-thickness ratios R/h on the critical thermal load AT, of shell. We can see
that the both critical thermal load AT, decrease markedly with the increase of R/ ratio. These results
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Figure 4. Effects of R/h on critical thermal load AT—Case 1 (uniform temperature rise).
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Figure 5. Effects of R/h on critical thermal load AT—Case 5 (uniform temperature rise).
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Figure 6. Effects of L/R on critical thermal load AT—Case 1 (uniform temperature rise).

reflect accurately the actual property of shell because of increasing ratio R/h, h will be reduced, and then
the ability of thermal load also will be decreased.

Effect of the ratio L/R

Figures 6 and 7 describe effects of L/R ratio for different volume fraction index (k) on the critical thermal
load AT. It can be observed, the critical thermal load AT, decreases with the increase of length-to-
radius ratio L/R. In other words, in the case where R and h are constants, the more the shell length
increases, the more the critical thermal load decreases.
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Figure 7. Effects of L/R on critical thermal load ATc—Case 5 (uniform temperature rise).
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Figure 8. Effects of index volume k on critical thermal load AT¢—Case 1 (uniform temperature rise).

Effect of volume fraction index k

The eftects of index volume k on critical thermal load AT, for stiffened FGM sandwich truncated
conical shell are given by Figures 8 and 9. It is found that the critical thermal load AT, of stiffened
FGM truncated conical shell decreases when the value of k increases. This is expected because the elastic
modulus E of the ceramic is much larger than of the metal while the volume ratio of ceramic components
in the shell decreases with increasing k. Moreover, Figures 8 and 9 also show the relationship curved
between the critical thermal load-volume ratio coefficient will be lowered if the semi-vertex angle 8
increases.
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Figure 9. Effects of index volume k on critical thermal load AT¢—Case 5 (uniform temperature rise).

Table 11. Effect of elastic foundations on critical thermal load AT¢—Case 1 (ns = ny = 15).
ATy (K) (Uniform, outside stiffener, orthogonal) Ky =0 N/m K = 10° N/m Ky =2 x 10° N/m Ky =5x 10° N/m

Ky = ON/m3 270.9841 (4,7)*  271.6957 (4,7) 2724072 (4,7) 274.5420 (4,7)
Ky = 107 N/m3 278.4502 (5,5) 279.0076 (5,5) 279.5650 (5,5) 281.2372(5,5)
Ky =2 x 107 N/m3 283.3264 (5,5) 283.8838(5,5) 284.4412(5,5) 286.1135(5,5)
Ky =5 x 107 N/m3 297.9550 (5,5) 298.5124 (5,5) 299.0699 (5,5) 300.7421 (5,5)

*Buckling mode (m, n).

Table 12. Effect of elastic foundations on critical thermal load AT¢,—Case 5 (ns = ny = 15).
ATer (K) (Uniform, outside orthogonal stiffener) Ky = ON/m K = 105 N/m K =2x 105 N/m Ky =5x 105 N/m

K1 =0 N/m3 216.3770 (4,7)* 217.1282 (4,7) 217.8794 (4,7) 220.1329 (4,7)
Ky =107 N/m3 224.4066 (4,7) 2251578 (4,7) 225.9090 (4,7) 228.1625 (4,7)
Ky =2 x 107 N/m?3 2316176 (5,5)  232.2060 (5,5) 232.7945 (5,5) 234.5598 (5,5)
Ky =5 x 107 N/m3 247.0604 (55)  247.6488 (5,5) 2482373 (5,5) 250.0026 (5,5)

*Buckling mode (m, n).

Effect of elastic foundations on critical thermal load

With the database as the section before, Tables 11 and 12 respectively, show the influence of elastic
foundations on the critical thermal load AT, of the ES-FGM sandwich truncated conical shell for Cases
1 and 5. It was found that when increasing the value of the foundation’s coefficient K; (N/m?) = (0; 107;
2 x 107; 5 x 107) and unchanging the value of the foundation’s coefficient K, or conversely, increasing
the influence of the foundation’s coefficient K, (N/m) = (0; 10°; 2 x 10% 5 x 10°) and unchanging
the coefficient K; made the value of the critical thermal load increase. Without elastic foundations
(Ki = 0,K; = 0), the critical thermal load value is the smallest; and when the foundation’s value
K; =5 x 107, K5 = 5 x 10° is the largest. For example, in Table 11, for Case 1, the critical thermal load
for uniform temperature rise is increased 10.98%.

Effect of axial compressive load on critical thermal load

With the database of the section before, Tables 13 and 14 presents effects of stiffener arrangement and
axially pre-loaded P on critical thermal load AT,. It is observed that the value of critical thermal
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Table 13. Effect of axially pre-loaded P on critical thermal load AT, (K)—Case 1.

AT (K) (Inside stiffeners) (m, n) P=0 P =10MN P =20 MN P =30MN

Un-stiffened Uniform 285.2874 (5,5)* 250.5594(5,5) 215.8315(5,5) 181.1035 (5,5)
Linear 570.5748 (5,5) 501.1189 (5,5) 431.6629 (5,5) 362.2070 (5,5)

Stringer (ns = 30) Uniform 297.9866 (4,7) 263.2586 (4,7) 228.5307 (4,7) 193.8027 (4,7)
Linear 595.9732 (4,7) 526.5173 (4,7) 457.0613 (4,7) 387.6054 (4,7)

Ring (n, = 30) Uniform 287.1580 (5,5) 252.4301 (5,5) 217.7021 (5,5) 182.9741 (5,5)
Linear 574.3161 (5,5) 04.8601 (5,5) 435.4042 (5,5) 365.9482 (5,5)

Orthogonal (ns = ny = 15) Uniform 292.8425 (5,5) 258.1145 (5,5) 223.3866 (5,5) 188.6586 (5,5)
Linear 585.6850 (5,5) 516.2291 (5,5) 446.7731 (5,5) 3773172 (5,5)

*Buckling mode (m, n).
Table 14. Effect of axially pre-loaded P on critical thermal load AT, (K)—Case 5.
AT (K) (Inside stiffeners) (m, n) P=0 P =10MN P =20MN P =30MN

Un-stiffened Uniform 225.2755 (5,5)* 188.6147 (5,5) 151.9540 (5,5) 115.2932(5,5)
Linear 474.7724 (5,5) 97.5092 (5,5) 320.2459 (5,5) 2429827 (5,5)

Stringer (ns = 30) Uniform 242.6644 (4,7) 206.0036 (4,7) 169.3429 (4,7) 132.6821 (4,7)
Linear 511.4199 (4,7) 434.1567 (4,7) 356.8934 (4,7) 279.6302 (4,7)

Ring (n, = 30) Uniform 226.8908 (5,5) 190.2301 (5,5) 153.5693 (5,5) 116.9086 (5,5)
Linear 478.1768 (5,5) 400.9135 (5,5) 323.6503 (5,5) 246.3870 (5,5)

Orthogonal (ns = n, = 15) Uniform 235.6625 (5,5) 199.0017 (5,5) 162.3410 (5,5) 125.6802 (5,5)
Linear 496.6632 (5,5) 19.4000 (5,5) 342.1367 (5,5) 264.8735 (5,5)

*Buckling mode (m, n).

load AT, increases with the decrease of axial preloaded P. This increase is considerable. For example,
in Table 13, for Case 1 (uniform temperature rise), comparing AT, = 188.6586 K (P = 30) with
AT = 292.8425K (P = 0) in the case of orthogonally stiffener, we can see that the critical thermal
load increases about 35.58%.

Effect of elastic foundations on critical axial compressive load

Consider an eccentrically stiffened sandwich truncated conical shells made of FGMs resting on elastic
foundations with input parameters as E, = 70 x 10° N/mz, E. = 380 x 10° N/mz, v=03k=1,
h=005mR=50xhL=2xR= %,hs = 0.03m, by = 0.02m, b, = 0.03m, b = 0.02m.
Tables 15 and 16, using Eq. (45), shows the effects of elastic foundations on critical compression load
P.;. As can be observed, the critical buckling load corresponding to the presence of the both foundation
parameters K = 5 x 10’ N/m? and K, = 5 x 10° N/m is the biggest. The critical buckling load
of shell without foundation is the smallest. For example, in Table 15 comparing P, = 1277.5MN

Table 15. Effect of elastic foundations on critical compression load Po;—Case 1 (ng = n, = 15).

P¢r (MN) (Outside orthogonal) Ky = ON/m K> = 10° N/m Ky = 2 x 10° N/m Ky =5 x 10° N/m
Ky = 0N/m3 1239.9 (4,7)* 1243.1 (4,7) 1246.3 (4,7) 1256 (4,7)
Ky = 107 N/m3 16005 (1,1) 12775 (4,7) 1280.7 (4,7) 1290.4 (4,7)
Ky =2 x 107 N/m3 16516 (1,1) 16518 (1,1) 16521 (1,1) 16528 (1,1)
Ky =5 x 107 N/m? 18049 (1,1) 18052 (1,1) 18054 (1,1) 18062 (1,1)

*Buckling mode (m, n).

Table 16. Effect of elastic foundations on critical compression load Pcc—Case 5 (ns = n, = 15).

P¢r (MN) (Outside orthogonal) Ky = ON/m Ky = 10° N/m Ky =2 x 10° N/m Ky =5 x 10° N/m
K1 =0 N/m3 927.1067 (4,7)* 930.3252 (4,7) 933.5438 (4,7) 943.1995 (4,7)
K1 = 107 N/m3 961.5109 (4,7) 964.7294 (4,7) 967.9480 (4,7) 977.6037 (4,7)
K1 =2x 107 N/m3 992.4076 (4,7) 994.9288 (4,7) 997.4501 (5,5) 1005.00 (5,5)
K1 =5x 107 N/m3 1058.6 (5,5) 1061.1(5,5) 1063.6 (5,5) 1071.2(5,5)

*Buckling mode (m, n).
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(K; = 107 N/m?, K; = 10° N/m) with P, = 18062 MN (K; = 5 x 10’ N/m3, K, = 5 x 10° N/m),
increases about 14.57 times.

Conclusion

An analytical solution is presented, in this article, to investigate the thermal buckling and mechanical
buckling of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic
foundations, subjected to thermal load and axial compressive load. The material properties of shells
and stiffeners are assumed to be graded in the thickness direction according to a general sigmoid law
distribution and a general power law in terms of the volume fractions of the constituents. The change
of spacing between stringers in the meridional direction are taken into account. Four models of coated
shell-stiffener arrangements are investigated. Using the adjacent equilibrium criterion, the linearization
stability equations in terms of displacement components are established. The couple set of five variable
coeflicient partial differential equations is investigated by Galerkin. Two cases on uniform temperature
rise and linear temperature distribution through the thickness of shell are considered. The closed-
form expression for determining the thermal buckling load and critical compression buckling load are
obtained. The effects of temperature, foundation, stiffeners, material properties, dimensional parameters
and semi-vertex angle on buckling behaviors of shell are considered. The numerical calculations show
some remarks as follows:

(i) The critical thermal buckling load (AT) and the critical axial compressive load (P.) of FGM
sandwich truncated conical shell increase considerably when the thickness of core layer to
coating layer h¢,/hy ratio increases in models 1st, 3rd and 4th, and reversely in model 2nd. The
critical thermal load and the critical compression load are greatest for model 1.

(ii) The stiffeners, and the volume fraction indices k, k2, and k3 strongly affect the critical buckling
load. The critical thermal buckling load of FGM sandwich truncated conical shell under both
uniform temperature rise and linear temperature distribution across the shell thickness is lower
than that of pure ceramic conical shells and higher than the pure metallic conical shells.

(iii) The value of the critical thermal load increases when we increase the stiffener number and
inversely. The value of the critical thermal load in case of the uniform temperature rise is smaller
than one of the linear temperature distribution through the thickness.

(iv) Critical thermal loads of FGM sandwich truncated conical shells decrease when the axially
preloaded P increases.

(v) Critical thermal load of FGM sandwich truncated conical shells decreases when the semi-vertex
angle 8 increases.

(vi) The critical thermal buckling load of FGM sandwich truncated conical shell under both types of
thermal loading decreases when R/h increases.

(vii) The critical thermal buckling load of FGM sandwich truncated conical shell under both types of
thermal loading decreases when L/R increases.

(viii) Foundation parameters K; and K affect strongly on the critical thermal loads and the critical
axial compressive load. Furthermore, the foundation coefficient K affects the critical thermal
load and the critical axial compressive load more than the foundation coeflicient K.
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27 sin L E 9
Ao = ﬂ, d (x) = hox, dr=—, )= 22 a=2,
N Ny Ao
Eyb E
=2t An=Ap=—

d. 1—v2



Downloaded by [UNIVERSITY OF ADELAIDE LIBRARIES] at 16:26 11 December 2017

JOURNAL OF THERMAL STRESSES (&) 25

A, — vE1 Aus = Ace — 5E1 Ao — E1
2= A= As =T e = g
E2 sz
B ZB = B = —
n=2Byn=-—37 2=T7_3
E> E; vE3 E;
B =———, D1 =Dpp=——, Dp=——, Dgg=—"—
T+ THTTET I TRT I T8 T o4y
h h
2 E AT(z 2 E AT(2)z
@, = _/ sh®sh ()dZ, CDbZ—/ sh@sh (2) dz
_g 1—v _g 1—v

(i) For the first model (FGM-Ceramic core-FGM conical shell)

zZ—21 k
E. + Enc » 21 =z =2, zZ—2z1
22— Oc + Omc » 1 2222
22— 21
Eg = {Em 2=2=2, , oy =
m>22 =2 =23
Z— 24
Z— 24 Oc + Omc » 2322 =2z4
Ec + Emc » 23 <2 = z4, 23— 24
23 — 24
2y — 21 23 — 24
Ei =E h+Ey +2z3— 20 — E,=0
k+1 k+1 |’

(z2—21) 2z0(-2) Z@-z) 7-7

Enh? k+3 k+2 k+1 3
Es = 12 + Eem 3 2 2
(zm—z)” 224(z3 —z0)" 7y (23 —24)
k+3 k+2 k+1
Case 1, stiffeners at inside:
E, = Ey +E a-z\%  _h ho<z< 0
= > T z i)
S m cm hS 2 s = — 2
E = En+E a-z\" b ho<z< 0l
r = Em cm I, > > r =2 = >
hy En [ z1hg h?
Eis = Emhs + Eem———,  Ezs = — [2% — (z1 — he)*| + E -
1s mhs + cmk2+1 28 2 [Zl (z1 s)]+ cm _k2+1 ko + 2
Em 5 3 K 2z h? z:%hS ]
Ess = —|z; — (z1 — hg)’| + E S — s
3s 3 [zl (z1 s) ] cm b+3 kt2 k+1]
hr Em 2 2 i Zlhr h2
Eiy = Enh Em——, Ey=— - —h E - r
1r mhr + cmk3+1 2r 2 [Zl (z1 r)]+ cm _k3+1 ks + 2
Em ;5 ; h 2z1h? Zihe
E;p = — — —h E r_ _ r
3r 3 [Zl (z1 ) ] + Ecm |:k3 13 ks + 2 ks + 1_




Downloaded by [UNIVERSITY OF ADELAIDE LIBRARIES] at 16:26 11 December 2017

26 N.D.DUCETAL.

Case 2, stiffeners at outside:
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3s 3 [(4 r) 4] cm k3+3 k3+2 k3+1
(ii)  For the second model (FGM-Metal core-FGM conical shell)
zZ— 2z k Z—2]
Ec+Emc< ) » 21 <z=< 2, ac+amc< ) 215252
2 — 21 2 — 2]
Eqph = VEn, 2z <2z<zs, 5 Osh = \Yom, 22<2=<23
k
Z—Z4 Z—2Z4
Ec+Emc< ) » 23 <z =<z, ac+ozmc( ) 23 <z =1z4
23 — 24 23 — Z4
2 — 21 Z3 — Z4
Ei=Eh+E _ —2z) — yEy =0
1 c+mc[k+1 +2z3—2 k+1i| 2

(—2) 20@-2)" Z(@-z) Z-2

E3 k+3 k+2 k+1 3

(@2’ 2z(z—z) Z (s —z)
k+3 k+2 k+1

Case 3, stiffeners at inside:

2 —2z\" h h
Es:Ec+Emc< ) , ———hi<z<——;

h 2 2
Er = Ec+ Enc [ 2—2 ° M <<t
= —_— N _—— — Z _——
r C mc hr 2 r = — 2
hs EC 2 Zlhs h2
Eiys =Ehs+ Epne———, Ex=— — =
Is chs + mck2 1 2s > [Z1 (z1 — hs) ] o +1 k2

E3 =

E
3

N 2z1h? 2h
- [Z? —(z1 — hs)3] + Emc |: A Sk i|

ky+3 k+2 k+1

]

]

)
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h
Elr = Echr + Emc—ra E2r =

E
ks+1 2

2
C [Z% _ (Zl _ hr)2] +Emc |: Zlhr _ hr i|

ks+1 ks3+2

h 2z1h2 Zih, :|

C 3 3
By = — [z} — (z1 — h)*] + En -
o= [ = @ =k’ °[k3+3 ks+2 ks +1

Case 4, stiffeners at outside:

Ey = Ec + Eme <ﬂ>k2,ﬁ <2< thg B =EctEne (ﬂ>k3,ﬁ <o<lin,
hy 2 2 hy 2 2

Eis = Echs + Emcﬁ, Eys = E? [z + hs)® = 25—=] + Emc [];4—_};51 + kzhf_ 2]

Fas = E§ [(za+ 10" = 28] + Fime [kz +3 kzzzilgz kji—l}isl}

Ey, = Echy +EmC%, Ey = % [(z4 +h 0? —zi— ]+ Eme |:k:4.|h_r1 + k:f- 2}

E. h3 2z4h? 22h,
Eae = —< h 3_ .3 E r r 4
5= g [+’ 2] + mc[k3+3+k3+2 ks + 1
(iii)  For the third model (Ceramic-FGM core-Metal conical shell)
Em, 21 <z< 22, Oms 21 <z< V43

z— 2 z— 2

k
Egy = Em+Ecm< >,2252523;ash= am+acm< >,2252523

23— 2 23— 22

Ec, z3 <z <z, e, 23 <2 <24

Z3 — 2)
k+1

2 )
z3— 2 25 (z3 — 2 22—z
EIZEmh+Ecm|: (z3 — 22) 2 (z3 — 22) 4 3}

—z|, B=E
ta 23] 2 “m[ k+2 k+1 2

Er =
T k+3 k+2 k+1 3
Case 5, stiffeners at inside: the Ejs, Ejr (i = 1 = 3) are the same as the first model.
Case 6, stiffeners at outside: the Ej, E;; (i = 1 — 3) are the same as the second model.
(iv)  For the fourth model (Metal-FGM core-Ceramic conical shell)

Enh® [(Z3—ZZ>3 22 (3 — ) 23 (53— 2) zi—zi}
cm

E, z1<z=<2, a,, zZ1<z=<2
Z—2) zZ—2
Ey = Ec+Emc( ) 22 225235 gy = ac+amc(—> 22 22 =23
23— 2) 23 — 22
En, z3<z=<2z, am, 23<z=<2z4
-2 (z3—2) =n(—n) z25—72
Eil=Eh+En|=>—+4+z4—2z|, E,=E
1 C mc|:k_{_1 4 3 2 mc k+2 k+1 )
E _Ech3+E (z3—2)° 22(-—2)' HBE-—n) z-7
T2 ™l k43 k+2 k+1 3

Case 7, stiffeners at inside, the Ejs, Ej; (i = 1 = 3) are the same as the second model.
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Case 8, stiffeners at outside, the Ejs, E;r (i = 1 — 3) are the same as in model 1.

Enc =Em —E., Emn =Ec—En, Ome=0m —q, Om = 0c — Uy

Appendix B
In Egs. (27)-(31):

S Appx 4 Eisbs ” L4 G anl Ay, 4 Bubr] !
= X _ _— R _ = —
11 11 )"0 axz xsinz ,B 66 11 8X 22

2

Sp = (A + A - Eurr
27 in 5(12+ ) 5200 xsinﬂ[ dy

0 1 Ey by
S13 =cotBAp— —cotB— | Ay +
0x x dy

2

1 d
S15 = B (B12 + Bsg) —— (B22 + Bss + c2) Py}

in 8 0x060 xsin,B
Sy = (A1 + Agg) —— ” U gy 1 g 4 Bucle]
17 Sin ;3 12t Ae) 5ae T xsing P2 AT T | Ge
s A 02 1 Ey b, 92 A 0 A 1
= X— —_— —_— P — -
2 6% 9x2 " xsin2 g |77 d. | 062 O9x %
Ei b, 1 d
Ss = (A t —
2 ( 2+ d; >C0 'Bxsinﬂ a0
S ! (B12 + Bgs) i + (B2 + Bgs + )8
= — C —_—
T sing T T 9x00 T xsing 0 0T g
S B 92 I 1 By + ¢) 92 4B 0 B 1
= X—= C R —
5= Beoxg s+ g B2t e 592 T Bss — Bos
83 83 2
S B B 2B11—
3= 11x+cl) 0x3 t sin? B xsin? B (B2 +2Bes) 5592 9x002 + Nax2

9? 3
——— (B A t B —
+xzsin2ﬁ(2z+cz)89 [ 12¢co0tB + (B +¢2) - }8

Elrbr 1 1
—1|An+ cotf—(Bun+c)-¢ -
x| x

d;
Ss2 = (Bia + 2Bee) - 83+(+)183 (B+)182
32 = (B12 66 in B 9x206 By +c x2sin® B 9603 2T xsin B 0xd6
lrbr 1 1 9
1A t B -
{|: 2+ d, :| cotf = ( 22+62)x}xsin,389
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2 1 82

0 10
S33 = BipcotB— + (B +¢p)cot B————— — (Byp + ¢p) cot B——
33 = Bip ﬂaxZ (B2 + ¢2) ﬁxz sin? f 502 (B2 + ¢2) 'Bxax

Ei b, 1 1
—1{|Axpn + cotf — (Byy +¢2) —pcot f—
d; X X

E3sbs| 0° 1 3° 92
(D12 + 2Dg6) ———5 +2D11—
)»0 ax

S34 = |D —
H |: et dx3 +xsm ’B 9x002

oy B] L2 Ty ¢8+ Dy + ) 1] 2
2 d; | x%sin? B 062 12 2 d. ) x| ox

E3 b, ] 1)1
—{(322+Cz)C0tﬂ—|:D22+ }—}—

d. | x] x

S15= (Din + 2Dge) —— 0 [py, g Bobe] L ¥
T A 667 sin B 9x296 Dt = | 2w B 963
Es.b, 1 92 Esbe\ 1 1 3
~|p | tp— (D - 2
|: 2+ dy | xsin B 0x06 (B2 + c2) cot f 2+ dr ) x| xsinB 96
92 9?2 1 92 d
Ss = —— . Syy=-—x, Spg=x—— g2 4+ &
T ax2 37 N 9w =G + xsin? B 362 + dx
0 92 1 32
S41 = (BuX—i— Cl) sinﬂﬁ +B66x51 8 392 + B11 Sln,B_ — (B + ) Slnﬂ_
S—(B~|—B)2 (B+B+)la
42 = (D12 66 9x30 22 66 T C2 X 30
R 1
S43 = (Biacos B — Agaxsin B) Py (B2 +¢2) COSﬁ)—C
S E3sl7s . ,3 32 + 1 32 4D ,3 A +1|Dy + E3rbr
= sinf— + —— sin f— — X
4 *o 3x2 ' xsin ,B 6592 T 1 a4 2 .
Sus = (D12 + Dgg) ’ Dy + Deg + L0 12
45 = (D12 + Doo) 525 = | D2+ Dos + == | =5

2

10
S51 = (B12 + Bgs) + (Ba2 + Bes + ¢2) ey

0x00
. 2 32 9 1
S5, = Bggx s1n,3ﬁ sin B (Byz + ¢2) 307 ~+ Bgs smﬁa — Bgg sin ,3;

0
S53 = [Ass — (B2 +c2) cot B— ]

a6
Ss4 = (D12 + Deg) ’ + | Doy + Dgg + B2 |12
51 = (D12 + Deo) 5 2+ Des + == | 2755
9* Exb, | 1 02 3 1
Sss = Degxsin f— + | D 4 Degsin f— — | Assx + Des- | si
55 66XS1H,33x2+|: 2+ i xsin/3892+ 66 sin 55% + Des _ | sin

)

1
x

—}sinﬁ
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Appendix C
In Egs. (32a)-(32e):

23 4_ .4 3
mem . (xo+L)* —x; 3L° (2xp+ L)
Ly =— A
11 2 sin 8 [ 3 S22
"L (xo+L)sin B | Asy + g 4 Enlr
—_ X Sin —_—
4 0 2T G2 T g,

]

2_3 3 3 3
m=m> Eqsbg (x0 + L) — x L s
— i —L (2 L) A si
g sin 8 5 i + 1 (2xp+ L) Ap;sin B
2 3 3 3 2
mn (%0 +L)” — x L nL Ei. b,
Ly =— A A ——|A A
12 I (A2 + 66)|: 5 Al o | A2z T Aes i
2 3 3 3 2
mm (x0 + 1) — x5 L Ey b
Lz = —— cotBsin BA cotBsinf— [ A
13 I B sin BA1p |: S t iy | TeotBsin B 1 An + i
2.3 4 .4 3
mem ) (xo +L)* —xy 3L (2xp + L)
Liy=— B
14 12 Bu sin B |: 3 S
g . n?
- ZL (2xg + L) sin B(Bay + —5—=Bss + c2)

sin? B

c) sin

m?a3 0. IBI:(x0+L)3—x(3) L3

} + %L (2x0 + L) By sin 8

L2 6 4m2m?
2
mnm 1
Lis=— —— (2x0 + L) (B12 + Bes)
4 sinf
2 3.3 3 2
mnm (0 + L) — x3 L nL Ei b,
Ly = — Ap+A - — I Ay + Ags +
21 I (A12 + Aso) |: 5 P am | A2 T e T =
2.3 4_ .4 3
memw . (xo+L)* —x; 3L° (2xp+ L) T .
Lz = ——7—Aessin B [ p R — 7 L (2x0 + L) Ags sin B
"L (2xo+L)sin B T, g Eube] Ly
- X Sin -
4 0 sin2 g |72 4, 66
ni Elrbr
L23 = —1L (ZXO —+ L) cot ﬂ A22 +
4 d;
L mnr? (Bi> + Bee) (xo+L)* — xg L3 nlL? (Bys -+ Bes + c2)
= - — - — c
24 I 12 + Bss 5 P 2y, B2 1 Bes + 2

2

n“mlL

2.3 3 3 3
memw (xo + L)’ — x L
Lys = — B66[

12 6  4min?

J-;

S1

n? B

T
(B2 +c2) + ZLBss

|
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L3,

L33

L3g

L3s

3

4

m°m . (0o + L) —x2
—p Busing { 0
mixt mm? .
+ I ¢y sin B + I cot Bsin BA1;
mm? mn
+ sin 8 (3B11 + By + ¢2) +
. Elrbr
+ cotBsinB | Az +
d; 4m
m?nm3 (%o + L)4 —xt
72— (Biz +2Bes) [ 3 ¢ —

+ nm cot B |:A22 +

nnL (2xy + L
n (2x0 + L)

2

— 7 cot? Bsin B [Azg +

_ %L (2x0 + L) cot B sin B (Bas + ¢2) [”— -

m3

L3

mri
g

N L? (2x9 + L)

2

m-ni

L2

T

nmw
n

sin 8

3

4

|:m3714 E3bg

L3

2

3

+ n
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B

4

D11 sinﬂ {
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Lsin g

L2 (2xo + L L2
(2xo )+

2m2m?

v [ - @+D7°] 3L }

4mimt

2.2

(B2 + 2366)i| [

8 8m2m?

(xo + L)* — x3 31 2x + L)]

(x0+1)° —x} L3
6 4m27?

)
—sin B (B + c2) |:— - 1]
4m

sin B

(xo + L)3 — xS

303 2xo + L)}

8m2m?

dy

B2z +¢2) |:

mem .
2 cot B sin BB1> |:

(xo +L)° — xg

gl

6

2

sin? B

s

L3
4m2n2]

8

(xo + L)* — x3 B 313 (2x0 + L):|

8m2m2

dr

6

Elrb,:| [(xo + L) —x

2

sin? g

L3
B 4m2n2:|

2

}

sin 8 +

1
—— (D12 + 2Ds¢s)
sin 8

10

2

mi
L

sin |:3D11 + Dy +

Esb
dr

(0 +1)° = x3

cot B sin ,3B12i| |:

r]+

L
cot Bsin B (Byy + ¢3) + —sin 8
4m

2m2m?

4mimt
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2
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(D12 + 2D66)} |:
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Dy & E3rbr n2 1
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L3
4m2n2]

T
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l
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sin 8

B
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L3¢

Ls7

Lig

Ly

Ly

Lys
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8 8m2m2
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Lsy = —nmAss [(xo . L6)3 - 45712] " %L @+ bcotf e+ a)

Lot = _mrzﬂz (Dis + Dee) [(Xo + L6)3 —x _ 4;23”2} — Z—I;j |:D22 + Des + Ezlrrbr}

b= [ 2| [ Yy T, k)
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