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ABSTRACT

This work presents an analytical approach to investigate the mechanical and
thermal buckling of functionally graded materials sandwich truncated conical
shells resting on Pasternak elastic foundations, subjected to thermal load and
axial compressive load. Shells are reinforced by closely spaced stringers and
rings, in which thematerial properties of shells and sti�eners are graded in the
thickness direction following a general sigmoid law distribution and a general
power law distribution. Four models of coated shell-sti�ener arrangements
are investigated. The change of spacing between stringers in the meridional
direction also is taken into account. Two cases onuniform temperature rise and
linear temperature distribution through the thickness of shell are considered.
Using the �rst-order shear deformation theory, Lekhnitskii smeared sti�ener
technique and the adjacent equilibrium criterion, the linearization stability
equations have been established. Approximate solution satis�es simply
supported boundary conditions and Galerkin method is applied to obtain
closed-form expression for determining the critical compression buckling
load and thermal buckling load in cases uniform temperature rise and linear
temperature distribution across the shell thickness. The e�ects of temper-
ature, foundation, core layer, coating layer, sti�eners, material properties,
dimensional parameters and semi-vertex angle on buckling behaviors of shell
are shown.
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Introduction

Due to the high strength and thermal resistance, functionally gradedmaterial (FGM) conical shells were
applied to many modern technique �elds such as military aircra� propulsion system, and rocketry,
underwater vehicles, missiles, tanks, pressure vessels, buildings of modern power plants, and other
applications [1]. Therefore, the static and dynamic problems of FGM structures containing conical shells
always attract the attention of many scientists. Chung and Chang [2] analyzed an elastic, rectangular,
and simply supported FGM plate with medium thickness subjected to linear temperature change in
the z-direction. Young’s modulus and Poisson ratio of the FGM plates are assumed to remain constant
throughout the entire plate. However, the coe�cient of thermal expansion of the FGM plate varies con-
tinuously throughout the thickness direction in relation to the volume fraction of constituents de�ned
by power-law, sigmoid, or exponential functions. The series solutions for the power-law FGM (P-FGM),
sigmoid FGM (S-FGM), or exponential FGM (E-FGM) plates subjected to thermal loading are obtained
based on the classical plate theory and Fourier series expansion. The analytical solutions for P-, S-, and
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2 N. D. DUC ET AL.

E-FGM plates are veri�ed by numerical results obtained with the �nite element technique. Fazzolari [3]
presented analysis of free vibration of functionally graded plates with temperature-dependent materials
in thermal environment. In this study, two di�erent volume fractions are considered: (i) P-FGM and
(ii) S-FGM. The analysis is performed using advanced hierarchical higher-order equivalent single-layer
plate theories developed using the method of power series expansion of displacement components. The
modal characteristics of the P- and S-FGM plates are investigated while subjected to a temperature
gradient. The governing equations are derived in their strong form using the principle of the virtual
displacements and are solved in an exact sense using the Navier-type closed form solution. Lee et al.
[4] presented a re�ned higher-order shear and normal deformation theory for E-, P-, and S-FGM
plates on elastic foundation. In this study, the displacement �eld of the four-variable plate theory is
modi�ed by considering a thickness stretching e�ect. The number of unknown functions involved in
the present theory is only �ve, as opposed to six or even greater numbers in the case of other shear and
normal deformation theories. The present theory accounts for both shear deformation and thickness
stretching e�ects by a parabolic variation of all displacements across the thickness, and satis�es the
stress-free boundary conditions on the upper and lower surfaces of the plate. The equations of motion
are derived fromminimum total potential energy principle. Analytical solutions for the bending analysis
are obtained for simply supported plates. It is assumed that the elastic medium is modeled as Pasternak
elastic foundation. Naj et al. [5] studied thermal and mechanical instability of FGM truncated conical
shells using the �rst-order shell theory. Bich et al. [6] investigated buckling of un-sti�ened FGM conical
panels under mechanical loads. Bagherizadeh et al. [7] investigated the mechanical buckling of FGM
cylindrical shell that is embedded in an outer elastic medium and subjected to combined axial and
radial compressive loads. A linear thermal buckling analysis of truncated hybrid FGM conical shells
based on the classical shell theory using Sanders nonlinear kinematics equations was analyzed by Torabi
et al. [8]. A linear buckling analysis for nanocomposite conical shells reinforced with single walled
carbon nanotubes subjected to lateral pressure is presented by Jam and Kiani [9]. Free vibration analysis
of open conical panels made of through-the-thickness FGMs is analyzed by Akbari et al. [10]. Tung
[11] presented an analytical approach to investigate the nonlinear stability of clamped FGM shallow
spherical shells and circular plates resting on elastic foundations, subjected to uniform external pressure
and exposed to thermal environments. So�yev [12–14] investigated the linear stability and vibration
of unsti�ened FGM truncated conical shells with di�erent boundary conditions. The same author [15]
presented the buckling of FGM truncated conical shells subjected to axial compressive load and resting
onWinkler–Pasternak foundations. Quan and Duc [16] presented analytical solutions for the nonlinear
static and dynamic stability of imperfect eccentrically sti�ened FGM (ES-FGM) higher-order shear
deformable double curved shallow shell on elastic foundations in thermal environments. Mirzavand
et al. [17] studied dynamic thermal post-buckling behavior of functionally graded cylindrical shells
with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and
applied actuator voltage. Mahapatra et al. [18] reported the geometrically nonlinear thermomechanical
transverse de�ection responses of the functionally graded curved structure under the in�uence of
nonlinear thermal �eld. So�yev and Kuruoglu [19] studied the nonlinear buckling behavior of FGM
truncated conical shells surrounded by an elastic medium based on the classical shell theory and
applying Galerkin method. So�yev and Kuruoglu [20] obtained a closed form of the solution for critical
combined loads (combined e�ects of the axial load and lateral pressure or the axial load and hydrostatic
pressure) of FGM truncated conical shell in the framework of the shear deformation theory. Tornabene
and Viola [21] investigated static analysis of functionally graded doubly curved shells and panels of
revolution applying the generalized di�erential quadrature method. Tornabene et al. [22] studied stress
and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-
order equivalent single layer theory. Viola et al. [23] studied the static analysis of functionally graded
conical shells and panels. In this study, a two-dimensional unconstrained third-order shear deformation
theory is used for the evaluation of tangential and normal stresses in moderately thick functionally
graded truncated conical shells and panels subjected to meridian, circumferential and normal uniform
loadings.Nejad et al. [24] used the �rst-order shear deformation theory (FSDT) andmultilayermethod, a
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JOURNAL OF THERMAL STRESSES 3

semi-analytical solution has been performed for the purpose of elastic analysis of rotating thick truncated
conical shells made of FGMs under nonuniform pressure. Based on the Donnell–Mushtari thin shell
theory and the sti�eners smeared technique, Mecitoglu [25] studied the vibration characteristics of a
sti�ened truncated conical shell by the collocation method. The minimum weight design of axially
loaded simply supported sti�ened conical shells with natural frequency constraints is considered by
Rao and Reddy [26]. The in�uence of placing the sti�eners inside as well as outside the conical shell
on the optimum design is studied. The expressions for the critical axial (buckling) load and natural
frequency of vibration of conical shell also are derived. Bagherizadeh et al. [27] presented the thermal
buckling analysis of FG cylindrical shell on a Pasternak-type elastic foundation. Akbari et al. [28]
studied thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports.
Bifurcation behavior of heated conical shell made of a through-the-thickness FGM is investigated
in the present research. Mirzaei and Kiani [29] studied thermal buckling of temperature dependent
FG-carbon nanotubes reinforced composite conical shells. In this research, linear thermal buckling of
a composite conical shell made from a polymeric matrix and reinforced with carbon nanotube �bers
is investigated. Sabzikar Boroujerdy et al. [30] based on the Donnell theory of shells combined with
the von Kármán type of geometrical nonlinearity, three coupled equilibrium equations for a through-
the-thickness functionally graded cylindrical shell embedded in a two parameter Pasternak elastic
foundation are obtained. Thermal bifurcation behavior of cross-ply laminated composite cylindrical
shells embedded with shape memory alloy �bers is investigated by Asadi et al. [31]. Castro et al. [32]
studied linear buckling predictions of un-sti�ened laminated composite cylinders and cones under
various loading and boundary conditions using semi-analytical models. Castro et al. [33] presented
semi-analytical model to predict the non-linear behavior of unsti�ened cylinders and cones considering
initial geometric imperfections and various loads and boundary conditions is presented.

As can be seen, the above introduced works mainly related to unsti�ened FGM structures. However,
in practice, plates and shells including conical shells, usually reinforced by sti�eners system to provide
the bene�t of added load carrying capability with a relatively small additional weight. Thus, the study on
static and dynamic behavior of these structures are signi�cant practical problem. Naja�zadeh et al. [34],
with the linearized stability equations in terms of displacements studied buckling of FGM cylindrical
shell reinforced by rings and stringers under axial compression. The sti�eners and skin, in their work,
are assumed to be made of FGMs and its properties vary continuously through the thickness direction.
The nonlinear buckling of the shells reinforced by sti�eners in thermal environment was considered by
Duc and Quan [35] for the imperfect ES-FGM double curved thin shallow shells on elastic foundations.
The nonlinear dynamic behavior of eccentrically sti�ened functionally graded circular cylindrical thin
shells under external pressure and surrounded by an elastic medium was studied by Dung and Nam
[36]. Dung and Hoa [37] investigated the nonlinear buckling and post-buckling of functionally graded
sti�ened thin circular cylindrical shells surrounded by elastic foundations in thermal environments and
under torsional load by analytical approach. Duc [38] presented an analytical investigation on nonlinear
thermal dynamic behavior of imperfect functionally graded circular cylindrical shells eccentrically
reinforced by outside sti�eners and surrounded by elastic foundations using the Reddy’s third-order
shear deformation shell theory in thermal environment. Material properties are graded in the thickness
direction according to sigmoid power law distribution (S-FGM) in terms of the volume fractions of
constituents with metal–ceramic–metal layers. Duc et al. [39] studied nonlinear dynamic analysis and
vibration of eccentrically sti�ened S-FGM elliptical cylindrical shells surrounded by elastic foundations
in thermal environments.

For ES-FGM conical shells, studies on their buckling and vibration are still limited and they should
be further studied. This may be attributed to the inherent complexity of governing equations of conical
shell, as well as variable coe�cient partial di�erential equations. Dung et al. [40] studied linear buckling
of FGM thin truncated conical shells reinforced by homogeneous eccentrically stringers and rings
subjected to axial compressive load and uniform external pressure load based on the smeared sti�eners
technique and the classical shell theory. Dung et al. [41] investigated an analytical solution for buckling
of an eccentrically sti�ened sandwich truncated conical shell. In this study, the shell consists of two FGM
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4 N. D. DUC ET AL.

coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an
external uniformpressure. Shells are reinforced by stringers and rings, inwhich thematerial properties of
shells and sti�eners are graded in the thickness direction following a general sigmoid law distribution.
Two models of coated shell-sti�ener arrangements are investigated. Duc and Cong [42] investigated
nonlinear thermal stability of ES-FGM truncated conical surrounded on elastic foundations based on
the classical shell theory. Duc et al. [43] investigated the linear stability analysis of ES-FGM conical shell
panels reinforced by mechanical and thermal loads on elastic foundations. The FGM conical shell is
in thermal environment and both the panel and the sti�eners are deformed under temperature. The
material properties of both the panels and sti�eners are assumed to be temperature-dependent.

As can be observed, the studies in Dung et al. [40, 41], Duc and Cong [42], and Duc et al. [43] were
performed using the classical shell theory, so obtained results only are suitable for thin-walled conical
shells. However, for thicker conical shells, it is necessary to use higher-order theories. Recently, there
are some investigations on buckling of truncated conical shells using the FSDT [9, 10, 24, 32], but these
structures are unsti�ened conical shells.

Nowadays, in the world, the sandwich structures have become more popular, known as one of the
principal elements of structure in aircra�, satellites, submarines, water-borne ballistic missiles, or in
civil engineering. Their mechanical properties vary smoothly and continuously in preferred directions,
that enable sandwich FGMs to avoid interface problems, as well as unexpected stress concentrations.
However, the sandwich structures also have the mentionable properties, especially thermal and sound
insulation. Sandwich structures �nd an increasing use in aerospace, naval, transportation, and other
industries, in which sti� and lightweight structural components are required. Various theoretical models
have been developed in the recent years to discuss the static and dynamic behavior of these structures.
There are signi�cant studies on the stability and vibration of layered FGM shells. Liew et al. [44]
analyzed the nonlinear vibration of a three-layer coating-FGM-substrate based on the FSDT with the
geometric nonlinearity in von Kármán sense. Alibeigloo and Liew [45] investigated the free vibration
of sandwich cylindrical panel with FGM core using the three-dimensional theory of elasticity. The
state space technique was used to obtain natural frequencies analytically in this work. Li and Batra
[46] considered the buckling of a simply supported three-layer circular cylindrical shell under the axial
compressive load. The inner and outer layers of the shell are comprised of the same homogenous and
isotropic material, and the middle layer is made of FGM. So�yev and Kuruoglu [47] solved the problem
on vibration and buckling of the cylindrical shell with FGM coatings in an elastic medium. So�yev [48]
studied the vibration and buckling of sandwich cylindrical shells covered by di�erent types of coatings,
such as functionally graded,metal, and ceramic coatings and subjected to a uniformhydrostatic pressure
using the FSDT. Najafov et al. [49] considered the linear and nonlinear vibrations of a truncated conical
shell. Both internal and external surfaces are covered by functionally graded coatings. The theoretical
formulation is based on the von Kármán–Donnell-type nonlinear kinematics. The basic equations are
reduced to the ordinary di�erential equation depending on time with geometric nonlinearity using
the Superposition and Galerkin methods. Soyev et al. [50] examined the stability of thin three-layered
truncated conical shells containing a functionally graded (FG) layer subjected to non-uniform lateral
pressure. Deniz [51] investigated response of a FG coated truncated conical shell subjected to an axial
load bymeans of non-linear equations governing the �nite deformations of the shell. So�yev [52] studied
dynamic buckling of truncated conical shells with functionally graded coatings subjected to a time
dependent axial load in the large deformation. The method of solution utilizes Superposition principle
and Galerkin procedure. Temperature-dependent buckling analysis of sandwich truncated conical shells
with FG facesheets was studied by Seidi et al. [53]. In this study, an improved high-order theory is
presented for temperature-dependent buckling analysis of sandwich conical shell with thin functionally
graded (FG) facesheets and homogenous so� core. Duc [54] studied the nonlinear dynamic response
of higher-order shear deformable sandwich functionally graded circular cylindrical shells with outer
surface-bondedpiezoelectric actuator on elastic foundations subjected to thermo-electromechanical and
damping loads. The sigmoid FGM shells are made of the metal–ceramic–metal layers with temperature-
dependent material properties. The governing equations are established based on Reddy’s third-order
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JOURNAL OF THERMAL STRESSES 5

shear deformation theory using the stress function, the Galerkin method and the fourth-order Runge–
Kutta method. Duc and Quan considered nonlinear dynamic analysis of imperfect FGM double curved
thin [55] and thick [56] shallow shells with temperature-dependent properties on elastic foundations
also using Galerkin method.

To the best of the authors’ knowledge, there is no analytical approach on the stability of FGMsandwich
truncated conical shells subjected to thermal load and axial compressive load.

The new contribution of this article is to use the FSDT for investigating the stability of FGM sandwich
truncated conical shells subjected to thermal load and axial compressive load. Shells are reinforced by
closely spaced FGM stringers and rings. The material properties of shells and sti�eners are assumed
to be graded in the thickness direction according to a general sigmoid law distribution and a general
power law in terms of the volume fractions of the constituents. The change of spacing between stringers
in the meridional direction are taken into account. Four models of coated shell-sti�ener arrangements
are investigated. The general formula for force and moment resultants of ES-FGM truncated conical
shells are established correctly by the Lekhnitskii smeared sti�eners technique. By using the adjacent
equilibrium criterion, the linearization stability equations are established. As a result of that, �ve
variable coe�cient partial di�erential equations are solved by Galerkin method. Two cases of uniform
temperature rise and linear temperature distribution through the thickness of shell are considered. The
closed-form expression for determining the critical buckling load, thermal buckling load and thermo-
mechanical buckling load are obtained. The e�ects of various parameters such as the temperature, the
foundation, the core layer, the coating layer, the sti�ener, the semi-vertex angle, the volume fraction
index of materials, and the dimensional parameters on stability of shell are analyzed.

FGM sandwich truncated conical shell model

Consider a FGM sandwich truncated conical shell of thickness h and semi-vertex angle β . The geometry
of shell is shown in Figure 1, where L is the length, H is the height of the truncated conical shell, and R
is its small base radius. The truncated cone is referred to a curvilinear coordinate system (x, θ , z) with
origin is located in the middle surface of the shell, x is in the generatrix direction measured from the

Figure 1. Geometry of eccentrically sti�ened truncated conical shell surrounded by an elastic foundation.

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 1

6:
26

 1
1 

D
ec

em
be

r 
20

17
 



6 N. D. DUC ET AL.

vertex of conical shell, θ is in the circumferential direction and the axis z being perpendicular to the axis
x, lies in the outwards normal direction of the cone. Also, x0 indicates the distance from the vertex to
small base of the shell. Assume that the shell consists of two coating layers and one core layer.

Furthermore, assume that the conical shell is sti�ened eccentrically by closely spaced FGM longitu-
dinal stringers and rings. To guarantee the continuity between the sti�ener and shell, the sti�ener side
is taken to be pure-metal if it is located at metal-rich shell side and is pure-ceramic if it is located at
ceramic-rich shell side. In this study, four models with eight cases are investigated, in which the material
properties of shell and sti�eners are graded in the thickness direction with a general model of power law
and general model of sigmoid law distribution as follows.

General model of sigmoid law

First model [1, 2, 4, 38] (FGM–Ceramic core–FGM conical shell, Figure 2a)

Case 1: FGM–Ceramic core–FGM conical shell and inside FGM sti�ener.

Case 2: FGM–Ceramic core–FGM conical shell and outside FGM sti�ener.
Second model (FGM–Metal core–FGM conical shell, Figure 2b)

Case 3: FGM–Metal core–FGM conical shell and inside FGM sti�ener.

Case 4: FGM–Metal core–FGM conical shell and outside FGM sti�ener.

General model of power law

Third model [1, 2, 4, 35] (Ceramic–FGM core–Metal conical shell, Figure 2c)

Case 5: Ceramic–FGM core–Metal conical shell and inside FGM sti�ener.

Figure 2. Four models of FGM sandwich truncated conical shell (h = 2hf + hco).
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JOURNAL OF THERMAL STRESSES 7

Case 6: Ceramic–FGM core–Metal conical shell and outside FGM sti�ener.
Fourth model (Metal–FGM core–Ceramic conical shell, Figure 2d)

Case 7:Metal–FGM core–Ceramic conical shell and inside FGM sti�ener.

Case 8:Metal–FGM core–Ceramic conical shell and outside FGM sti�ener.

Theoretical formulation of FGM truncated conical shell

According to the Timoshenko–Mindlin assumption, the displacements at distance z from the middle
surface of the shell, are represented in displacement components u, v, w of a point in the middle surface
in the direction x, θ , and z, respectively [57]

ux = u + zφx, uθ = v + zφθ , uz = w (1)

in which φx, φθ are the rotations of a transverse normal about the θ and x-axis, respectively.
The strain–displacement relationship at themiddle surface of the shell based on the FSDT taking into

account the von Kármán geometrical nonlinearity is given by [1, 58, 59]

εxm = u,x +
1

2
w2
,x, εθm =

1

x sinβ
v,θ +

u

x
+

w

x
cotβ +

1

2x2 sin2 β
w2
,θ

γxθm =
1

x sinβ
u,θ −

v

x
+ v,x +

1

x sinβ
w,xw,θ , γxzm = w,x + φx, γθzm =

1

x sinβ
w,θ + φθ

(2)

kx = φx,x, kθ =
1

x sinβ
φθ ,θ +

1

x
φx, kxθ =

1

2

[

φθ ,x +
1

x sinβ
φx,θ −

1

x
φθ

]

(3)

where εxm and εθm are the normal strains and γxθm is the shear strain at the middle surface of the shell,
and γxzm, γθzm are the transverse shear strains; and kx are the change of curvatures and twist, respectively.

The normal and shear strains at distance z from the middle surface of shell are of the form

εx = εxm + zkx, εθ = εθm + zkθ , γxθ = γxθm + 2zkxθ , γxz = γxzm, γθz = γθzm (4)

The stress–strain relations including temperature e�ects based on Hooke law is given by:
For the FGM conical shell

σ sh
x =

Esh

1 − ν2
(εx + νεθ ) −

Eshαsh1T(z)

1 − ν
,1T(z) = T − T0

σ sh
θ =

Esh

1 − ν2
(εθ + νεx) −

Eshαsh1T (z)

1 − ν

σ sh
xθ =

Esh

2 (1 + ν)
γxθ , σ

sh
xz =

Esh

2 (1 + ν)
γxzm, σ

sh
θz =

Esh

2 (1 + ν)
γθzm

(5)

For longitudinal stringers and rings, respectively

σ s
x = Esεx − Esαs1T (z) , σ r

θ = Erεθ − Erαr1T (z) (6)

where 1T(z) denotes the change of environment temperature from thermal stress free initial state.
Subscripts s and r denote longitudinal stringers and rings, respectively. The force andmoment resultants
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8 N. D. DUC ET AL.

are expressed in terms of the stress components through the thickness as

Ni =
∫ h

2

− h
2

σ sh
i dz + Nst

i , Mi =
∫ h

2

− h
2

zσ sh
i dz + Mst

i , (i = x, θ)

Nxθ =
∫ h

2

− h
2

σ sh
xθ dz, Mxθ =

∫ h
2

− h
2

xσ sh
xθ dz, Qx =

5

6

∫ h
2

− h
2

σ sh
xz dz, Qθ =

5

6

∫ h
2

− h
2

σ sh
θzdz

(7)

where Nst
i ,M

st
i are force resultants and moment resultants of sti�eners, respectively. In this article, it is

assumed that the thermal stress of sti�eners is negligible, therefore, we can ignore it.
Setting Eqs. (2)–(6) into Eq. (7) and using Lekhnitskii smeared sti�ener technique, and taking into

account the change of spacing between stringers in the meridional direction, a�er integrating the above
stress–strain equations and their moments through the thickness of the shell, the expressions for force
and moment resultants, and transverse force resultants of an ES-FGM conical shell are given by

Nx =
[

A11 +
E1sbs

ds (x)

]

εxm + A12εθm + [B11 + c1 (x)] kx + B12kθ + 8a

Nθ = A12εxm +
[

A22 +
E1rbr

dr

]

εθm + B12kx + (B22 + c2) kθ + 8a

Nxθ = A66γxθm + 2B66kxθ

(8)

Mx = [B11 + c1 (x)] εxm + B12εθm +
[

D11 +
E3sbs

ds (x)

]

kx + D12kθ + 8b,

Mθ = B12εxm + (B22 + c2) εθm + D12kx +
[

D22 +
E3rbr

dr

]

kθ + 8b

Mxθ = B66γxθm + 2D66kxθ

(9)

Qx = A44γxzm = A44

(

w,x + φx

)

, Qθ = A55γθzm = A55

[

1

x sinβ
w,θ + φθ

]

(10)

where the coe�cients Ei, Eis, Eir, c1(x), c2, ds(x), dr, bs, br, ns, nr, Aij, Bij, Dij, 8a, 8b, are de�ned in
Appendix A and bs and br are the width of stringer and ring, respectively.

The reaction–de�ection relation of Pasternak foundation model is expressed by

qf = K1w − K2

(

∂2w

∂x2
+

1

x

∂w

∂x
+

1

x2 sin2 β

∂2w

∂θ2

)

(11)

in which K1 (N/m
3) is theWinkler foundation sti�ness and K2 (N/m) is the shear subgrade modulus of

the Pasternak foundation model.
The nonlinear equilibrium equations of truncated conical shells surrounded by elastic foundation

according to FSDT, are of the form [42, 57–59]

xNx,x +
1

sinβ
Nxθ ,θ + Nx − Nθ = 0 (12a)

1

sinβ
Nθ ,θ + xNxθ ,x + 2Nxθ = 0 (12b)
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JOURNAL OF THERMAL STRESSES 9

xMx,xx + 2Mx,x +
2

sinβ
Mxθ ,xθ +

2

x sinβ
Mxθ ,θ +

1

x sin2 β
Mθ ,θθ − Mθ ,x − Nθ cotβ

+
[

xNxw,x +
1

sinβ
Nxθw,θ

]

,x

+
1

sinβ

[

Nxθw,x +
1

x sinβ
Nθw,θ

]

,θ

= xK1w − xK2

(

∂2w

∂x2
+

1

x

∂w

∂x
+

1

x2 sin2 β

∂2w

∂θ2

)

(12c)

(x sinβMx),x + Mxθ ,θ − Mθ sinβ − x sinβQx = 0 (12d)

(x sinβMxθ ),x + Mθ ,θ + Mxθ sinβ − x sinβQθ = 0 (12e)

Linearization stability equations

The stability equations of conical shell are derived using the adjacent equilibrium criterion. Based on
this criterion, each of the displacement components on the primary equilibrium path are perturbed
in�nitesimally to establish a new equilibrium con�guration. The components of displacement �eld at
the new adjacent equilibrium con�guration may be written as [57]

u = u0 + u1, v = v0 + v1, w = w0 + w1, φx = φx0 + φx1, φθ = φθ0 + φθ1 (13)

Similarly, the force and moment resultants of a neighboring state may be related to the state of
equilibrium as [57]

Nx = Nx0 + Nx1, Nθ = Nθ0 + Nθ1, Nxθ = Nxθ0 + Nxθ1, Qx = Qx0 + Qx1

Qθ = Qθ0 + Qθ1, Mx = Mx0 + Mx1, Mθ = Mθ0 + Mθ1, Mxθ = Mxθ0 + Mxθ1

(14)

where terms with 0 subscripts correspond to the u0, v0, w0 displacements and those with 1 subscripts
represents the portions of increments of force and moment resultants that are linear in u1, v1, and w1.
The substitution of Eqs. (13) and (14) into Eqs. (12a)–(12e) and note that the terms in the resulting
equations with subscript 0 satisfy the equilibrium equations and therefore drop out of the equations,
and the nonlinear terms with the subscript 1 are ignored because they are small compared to the linear
terms, the remaining terms form the stability equations as follows [42, 57]:

xNx1,x +
1

sinβ
Nxθ1,θ + Nx1 − Nθ1 = 0 (15a)

1

sinβ
Nθ1,θ + xNxθ1,x + 2Nxθ1 = 0 (15b)

xMx1,xx + 2Mx1,x +
2

sinβ
Mxθ1,xθ +

2

x sinβ
Mxθ1,θ +

1

x sin2 β
Mθ1,θθ − Mθ1,x

−Nθ1 cotβ +
[

xNx0w1,x +
1

sinβ
Nxθ0w1,θ

]

,x

+
1

sinβ

[

Nxθ0w1,x +
1

x sinβ
Nθ0w1,θ

]

,θ

− xK1w1 + xK2

(

∂2w1

∂x2
+

1

x

∂w1

∂x
+

1

x2 sin2 β

∂2w1

∂θ2

)

= 0 (15c)

x sinβMx1,x + sinβMx1 + Mxθ1,θ − Mθ1 sinβ − x sinβQx1 = 0 (15d)

x sinβMxθ1,x + 2 sinβMxθ1 + Mθ1,θ − x sinβQθ1 = 0 (15e)
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10 N. D. DUC ET AL.

where the force and moment resultants for the subscript 1 are de�ned by

Nx1 =
[

A11 +
E1sbs

ds (x)

]

εxm1 + A12εθm1 + [B11 + c1 (x)] kx1 + B12kθ1

Nθ1 = A12εxm1 +
[

A22 +
E1rbr

dr

]

εθm1 + B12kx1 + (B22 + c2) kθ1

Nxθ1 = A66γxθm1 + 2B66kxθ1

(16)

Mx1 = [B11 + c1 (x)] εxm1 + B12εθm1 +
[

D11 +
E3sbs

ds (x)

]

kx1 + D12kθ1

Mθ1 = B12εxm1 + (B22 + c2) εθm1 + D12kx1 +
[

D22 +
E3rbr

dr

]

kθ1

Mxθ1 = B66γxθm1 + 2D66kxθ1

(17)

Qx1 = A44γxzm1 = A44

(

w1,x + φx1

)

, Qθ1 = A55γθzm1 = A55

[

1

x sinβ
w1,θ + φθ1

]

(18)

and the linear form of the strains and curvatures and twist in terms of the displacement components are
of the form

εxm1 = u1,x, εθm1 =
1

x sinβ
v1,θ +

u1

x
+

w1

x
cotβ , γxθm1 =

1

x sinβ
u1,θ −

v1

x
+ v1,x

γxzm1 = w1,x + φx1, γθzm1 =
1

x sinβ
w1,θ + φθ1

(19)

kx1 = φx1,x, kθ1 =
1

x sinβ
φθ1,θ +

1

x
φx1, kxθ1 =

1

2

[

φθ1,x +
1

x sinβ
φx1,θ −

1

x
φθ1

]

(20)

Setting Eqs. (16)–(18) into the Eqs. (15a)–(15e), taking into account Eqs. (19) and (20), we obtain
a system of the linearization stability equations in terms of displacement components u1, v1,w1 and
φx1,φθ1 as follows:

11 ≡ S11 (u1) + S12 (v1) + S13 (w1) + S14 (φx1) + S15 (φθ1) = 0 (21)

12 ≡ S21 (u1) + S22 (v1) + S23 (w1) + S24 (φx1) + S25 (φθ1) = 0 (22)

13 ≡ S31 (u1) + S32 (v1) + (S33 + S37K1 + S38K2) (w1) + N∧
x0S36 (w1)

+ S34 (φx1) + S35 (φθ1) = 0 (23)

14 ≡ S41 (u1) + S42 (v1) + S43 (w1) + S44 (φx1) + S45 (φθ1) = 0 (24)

15 ≡ S51 (u1) + S52 (v1) + S53 (w1) + S54 (φx1) + S55 (φθ1) = 0 (25)

where Sij are di�erential operators can be found in Appendix B.
The systemof Eqs. (21)–(25) are the couple set of �ve variable coe�cient partial di�erential equations.

It is used to analyze the stability and �nd the critical buckling load, thermal buckling load and
thermomechanical buckling load of ES-FGM truncated conical shells. This system is more complex
than the system of stability equations of plates or cylindrical shells. This is main reason why the buckling
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JOURNAL OF THERMAL STRESSES 11

investigation of ES-FGM truncated conical shells still is limited. In this article, the Galerkin method was
used to solve these problems.

Thermal buckling analysis of ES-FGM truncated conical shells only subjected to thermal
loads

Prebuckling thermal state

Consider an ES-FGM truncated conical shell only subjected to symmetric thermal loads. In this case,
according to Naj et al. [5] and Torabi et al. [8] for �nding pre-buckling force resultantsNx0,Nθ0,Nxθ0, it
is necessary to solve equilibrium equations of the shell in membrane state. For this aim, all the moment,
transverse force resultants and de�ection terms must be set equal to zero in Eqs. (15a)–(15e). It leads to

Nxθ0 = 0, x
dNx0

dx
+ Nx0 − Nθ0 = 0, −Nθ0 cotβ = 0 (26)

Solving this system with the boundary condition Nx0 = 8a at x = x0 + L, we obtain [5, 42]

Nx0 =
x0 + L

x
8a, Nxθ0 = 0, Nθ0 = 0 (27)

Setting N∧
x0 = xNx0 and noting Eq. (27), leads to

N∧
x0 = (x0 + L)8a. (28)

Galerkinmethod for determining critical thermal buckling load

This work considers a conical shell with the simply supported conditions at both ends. Then the
boundary conditions in this case, are expressed by Jam and Kiani [9] and Akbari et al. [10] as

Nx1 = v1 = w1 = φθ1 = Mx1 = 0 at x = x0, x0 + L (29)

The approximate solution satisfying the abovementioned boundary conditions may be found in the
form

u1 = A cos
mπ (x − x0)

L
sin nθ , v1 = B sin

mπ (x − x0)

L
cos nθ

w1 = C sin
mπ (x − x0)

L
sin nθ , φx1 = 81 cos

mπ (x − x0)

L
sin nθ

φθ1 = 82
1

x sinα
sin

mπ (x − x0)

L
cos nθ

(30)

wherem is the number of half-waves in the generatrix direction and n is the number of full-waves in the
circumferential direction of the shell, and A,B,C, and 81, 82 are constant coe�cients.

As can be seen the boundary conditions v1 = 0,w1 = 0, and φθ1 = 0 at x = x0, x0 + L are satis�ed
exactly, but Nx1 = 0 andMx1 = 0 at x = x0, x0 + L are ful�lled on the average sense as [47, 60]

∫ 2π

0

(

∂Nx1

∂x

)

x=x0,x0+L

dθ = 0 and

∫ 2π

0

(

∂Mx1

∂x

)

x=x0,x0+L

dθ = 0

As above emphasized, it is di�cult to use the trial function (30) and Eqs. (21)–(25) to obtain directly
closed-form of buckling load. Therefore, a di�erent procedure is presented here. Because x0 ≤ x ≤
x0 + L; 0 ≤ θ ≤ 2π and for sake of convenience in integration, Eqs. (21), (22), and (24) are multiplied
by x; Eqs. (23) and (24) by x2 and the corresponding eigenfunctions, then applying Galerkin method for
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12 N. D. DUC ET AL.

the resulting equations, the following expressions are obtained
∫ x0+L

x0

∫ 2π

0
x11 cos

mπ (x − x0)

L
sin nθ · x sinβdθdx = 0 (31a)

∫ x0+L

x0

∫ 2π

0
x12 sin

mπ (x − x0)

L
cos nθ · x sinβdθdx = 0 (31b)

∫ x0+L

x0

∫ 2π

0
x213 sin

mπ (x − x0)

L
sin nθ · x sinβdθdx = 0 (31c)

∫ x0+L

x0

∫ 2π

0
x14 cos

mπ (x − x0)

L
sin nθ · x sinβdθdx = 0 (31d)

∫ x0+L

x0

∫ 2π

0
x215

1

x sinβ
sin

mπ (x − x0)

L
cos nθ · x sinβdθdx = 0 (31e)

Substituting Eq. (30) into Eqs. (31a)–(31e) and integrating those expressions, a�er series calculations
and rearrangements, we obtain

L11A + L12B + L13C + L1481 + L1582 = 0 (32a)

L21A + L22B + L23C + L2481 + L2582 = 0 (32b)

L31A + L32B +
(

L33 + N∧
x0L36 + K1L37 + K2L38

)

C + L3481 + L3582 = 0 (32c)

L41A + L42B + L43C + L4481 + L4582 = 0 (32d)

L51A + L52B + L53C + L5481 + L5582 = 0 (32e)

where the coe�cients Lij are given in Appendix C.
Because the Eqs. (32a)–(32e) is a system of linear homogeneous equations for A,B,C and 81, 82.

So for the nontrivial solution, the determinant of its coe�cient matrix must be to zero i.e.,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32
(

L33 + N∧
x0L36 + K1L37 + K2L38

)

L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Developing this determinant and solving resulting equation for combination of critical axial com-
pressive load and thermal buckling load, yields

N∧
x0L36 = −L31

D1

D3
+ L32

D2

D3
+ L34

D4

D3
− L35

D5

D3
− L33 − K1L37 − K2L38 (33)

where Di (i = 1, 2, 3, 4, 5) are calculated by

D1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L12 L13 L14 L15

L22 L23 L24 L25

L42 L43 L44 L45

L52 L53 L54 L55

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, D2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L11 L13 L14 L15

L21 L23 L24 L25

L41 L43 L44 L45

L51 L53 L54 L55

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L11 L12 L14 L15

L21 L22 L24 L25

L41 L42 L44 L45

L51 L52 L54 L55

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 1

6:
26

 1
1 

D
ec

em
be

r 
20

17
 



JOURNAL OF THERMAL STRESSES 13

D4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L11 L12 L13 L15

L21 L22 L23 L25

L41 L42 L43 L45

L51 L52 L53 L55

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, D5 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L11 L12 L13 L14

L21 L22 L23 L24

L41 L42 L43 L44

L51 L52 L53 L54

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Equation (33) used to determine the thermal buckling load of sti�ened FGM truncated conical shell
subjected to thermal load.

Note that the thermal buckling load 1T contained in N∧
x0 depends on values of m and n, therefore

must minimize its expression with respect tom and n, we obtain the critical thermal load 1Tcr.

Uniform temperature rise

Consider a conical shell under uniform temperature rise, namely 1T(z) = 1T = const. A�er
substituting 1T(z) in Eq. (28), and noting expressions of 8a, we obtain
(i) First model

Case 1: FGM–Ceramic core–FGM conical shell with FGM sti�ener inside

N∧
x0

= 1T (x0 + L) S1 (34)

where

S1 = −
1

1 − ν

[

Ecαc(h − 2hf ) + 2hf

(

Emαm +
Emαcm + αmEcm

k + 1
+

Ecmαcm

2k + 1

)]

Finally, setting Eq. (40) into Eq. (39), leads to

1T =
1

L36 (x0 + L) S1

(

−L31
D1

D3
+ L32

D2

D3
+ L34

D4

D3
− L35

D5

D3
− L33 − K1L37 − K2L38

)

(35)

(ii) Fourth model

Case 5: Ceramic–FGM core–Metal conical shell with FGM sti�ener inside

N∧
x0

= 1T (x0 + L) S2 (36)

where

S2 = −
1

1 − ν

[

(Emαm + Ecαc) hf +
(

Emαm +
Emαcm + αmEcm

k + 1
+

Ecmαcm

2k + 1

)

(h − 2hf )

]

Finally, setting Eq. (42) into Eq. (39), lead to

1T =
1

L36 (x0 + L) S2

(

−L31
D1

D3
+ L32

D2

D3
+ L34

D4

D3
− L35

D5

D3
− L33 − K1L37 − K2L38

)

(37)

Linear temperature distribution through the thickness

If the conical shell is thin enough, a linear temperature distribution across the shell thickness is the �rst
approximation to the solution of the heat conduction equation of the FGM conical shell. Thus, we can
assume [5, 42]

1T(z) = 1T
z

h
+

Ta + Tb

2
(38)
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14 N. D. DUC ET AL.

where Ta and Tb are the temperatures of the internal and external surfaces of conical shell, respectively,
and 1T = Tb − Ta. Substituting Eq. (38) in Eq. (28) by noting expressions of 8a, we obtain
(i) First model

Case 1: FGM–Ceramic core–FGM conical shell with FGM sti�ener inside

N∧
x0

= (x0 + L)
Ta + Tb

2
S1 (39)

(ii) Fourth model

Case 5: Ceramic–FGM core–Metal conical shell with FGM sti�ener inside

N∧
x0

= (x0 + L)

[

Ta + Tb

2
S2 + 1TS3

]

(40)

where

S3 = −
1

(1 − ν) h















































Ecαc − Emαm

2

[

(

h

2

)2

−
(

h

2
− hf

)2
]

+
[

(Emαcm + Ecmαm)

(

1

k + 2
−

1

2k + 2

)

+ Ecmαcm

(

1

2k + 2
−

1

4k + 2

)]

(h − 2hf )
2















































Substituting N∧
x0
contained in Eqs. (39) and (40) into Eq. (33) and using assumption of Naj et al. [5],

Tb = 0, we obtain
(i) First model

Case 1: FGM–Ceramic core–FGM conical shell with FGM sti�ener inside

Ta =
1

L36M1

(

−L31
D1

D3
+ L32

D2

D3
+ L34

D4

D3
− L35

D5

D3
− L33 − K1L37 − K2L38

)

(41)

where

M1 = (x0 + L)
S1

2

(ii) Fourth model

Case 5: Ceramic–FGM core–Metal conical shell with FGM sti�ener inside

Ta =
1

L36M2

(

−L31
D1

D3
+ L32

D2

D3
+ L34

D4

D3
− L35

D5

D3
− L33 − K1L37 − K2L38

)

(42)

where

M2 = (x0 + L)

(

S2

2
− S3

)

Mechanical buckling analysis

Consider an ES-FGM truncated conical shell only subjected to the axial compressive mechanical load of
intensity p(N) at x = x0 (Figure 3).
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JOURNAL OF THERMAL STRESSES 15

Figure 3. The mechanical buckling of eccentrically sti�ened functionally graded materials (ES-FGM).

By the samemethod as the section above, solving the system (15a)–(15e)with the boundary condition
Nx0 = − p

cosβ at x = x0, we obtain

Nx0 = −
px0

x cosβ
, Nθ0 = 0, Nxθ0 = 0 (43)

N∧
x0 = xNx0 = −

P

2π sinβ cosβ
(44)

where P = 2πpx0 sinβ .
Applying Galerkinmethod, similarly, by notingN∧

x0 in Eq. (44), we obtain closed-form expression for
determining the mechanical buckling load as follows

P = −
2π sinβ cosβ

L36

(

−L31
D1

D3
+ L32

D2

D3
+ L34

D4

D3
− L35

D5

D3
− L33 − K1L37 − K2L38

)

(45)

Minimizing Eq. (45) with respect tom and n, we obtain the critical value of P.

Validation of the present study

To verify the present study, two problems on critical load are comparedwith results fromopen literatures.

First comparison

Table 1 using Eq. (45) compares the critical buckling load of unsti�ened isotropic truncated conical shell
(Stainless steel - SUS304) under axial compressive loadswith the results given byNaj et al. [5] and Baruch
et al. [61]. The input data base is: E = 200.109N/m2, k = 0, h = 0.01m, R = 100×h, ν = 0.3, P∗ = Pcr

Pcl

where Pcl = 2πEh2 cos2 α√
3(1−ν2)

[5] and Pcr is found from Eq. (45).

Second comparison

Tables 2 and 3 shows present results compared with those of Naj et al. [5] and Duc et al. [42] for
un-sti�ened FGM truncated conical shell and the material compositions only vary smoothly along its
thickness direction with the power law distribution under uniform thermal load and linear thermal
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16 N. D. DUC ET AL.

Table 1. Comparisons of the results on the critical buckling load of unsti�ened isotropic truncated conical shells with results of Naj et al.
[5] and Baruch et al. [61].

L/R = 0.2 L/R = 0.5

β Naj et al. [5] Baruch et al. [61] P∗(Present) Naj et al. [5] Baruch et al. [61] P∗ (Present)

1◦ 1.005 (7) 1.005 (7) 0.9962(1,6)* 1.0017 (8) 1.002 (8) 0.9979 (3,1)
5◦ 1.006 (7) 1.006 (7) 0.9962 (1,6) 1.0010 (8) 1.002 (8) 0.9988 (2,8)
10◦ 1.007 (7) 1.007 (7) 0.9962 (1,6) 1.0000 (8) 1.002 (8) 0.9985 (2,8)
30◦ 1.0171 (5) 1.017 (5) 0.9980 (1,4) 0.9870 (7) 1.001 (7) 1.0000 (2,7)
60◦ 1.148 (0) 1.144 (0) 1.1267 (1,1) 1.045 (7) 1.044 (7) 1.0140 (1,7)

*Buckling mode (m, n).

Table 2. Comparisons of the results on the thermal buckling load of unsti�ened isotropic truncated conical shells under linear thermal
load with results of Naj et al. [5] and Duc et al. [42].

αc1T∧
cr × 103

R1/h = 200 R1/h = 400

k Naj et al. [5] Duc et al. [42] Present Naj et al. [5] Duc et al. [42] Present

0 2.75 2.78 (1,17) 2.735 (7,9)* 1.40 1.37 (11,14) 1.369 (9,15)
0.3 2.43 2.44 (1,17) 2.396 (8,5) 1.24 1.20 (11,18) 1.199 (8,17)
1 2.22 2.22 (9,13) 2.135 (8,5) 1.08 1.07 (11,18) 1.068 (8,17)
5 1.92 1.95 (8,1) 1.941 (6,11) 0.99 0.97 (11,13) 0.972 (10,12)
∞ 1.75 1.73 (8,8) 1.730 (7,9) 0.89 0.87 (10,25) 0.866 (9,15)

FGM, functionally graded material.
*Buckling mode (m, n).

Table 3. Comparisons of the results on the thermal buckling load of unsti�ened isotropic truncated conical shells under linear thermal
load with results of Naj et al. [5] and Duc et al. [42].

R1/h = 200 R1/h = 400

αc1T∧
cr × 103 Naj et al. [5] Duc et al. [42] Present Naj et al. [5] Duc et al. [42] Present

Ta = 0 4.17 4.16 (4,26) 4.1497 (8,5)* 2.08 2.09 (2,27) 2.0762 (8,17)
Tb = 0 4.38 4.40 (6,23) 4.3983 (8,5) 2.19 2.20 (10,26) 2.2006 (8,17)

FGM, functionally graded material.
*Buckling mode (m, n).

load, and not resting on elastic foundation, with data base as: Em = 200.109N/m2, Ec = 380.109N/m2,
αm = 11.7 × 10−61/◦C, αc = 7.4 × 10−61/◦C, h = 0.01m, ν = 0.3, β = π

18 , K1 = 0, K2 = 0, where
1T∧

cr = (1 − ν) 1Tcr, and1Tcr is found from Eq. (37) for uniform thermal load case and1Tcr is found
from Eq. (42) for linear thermal load case.

Table 4. Comparisons with results of Dung et al. [41] for FGM sandwich truncated conical shell reinforced by FGM sti�eners.

β 15◦ 30◦ 45◦ 60◦

Case 1 Dung et al. [41] 27.45251 (6,19)* 22.12813 (6,19) 14.78617 (5,18) 7.45014 (4,16)
Present 26.9185 (6,10) 21.6295 (5,10) 14.4169 (5,9) 7.1698 (4,8)

Percentage 1.95 2.25 2.50 3.76

Case 2 Dung et al. [41] 28.41658 (8,15) 22.79853 (7,15) 15.22234 (6,14) 7.66136 (5,10)
Present 27.9788 (7,9) 22.4206 (6,9) 14.8872 (5,9) 7.4018 (4,8)

Percentage 1.54 1.66 2.20 3.39

Case 3 Dung et al. [41] 21.33585 (5,16) 17.27832 (4,16) 11.57539 (4,15) 5.86457 (3,14)
Present 20.6411 (4,8) 16.7555 (4,8) 11.1932 (4,8) 5.5457 (3,7)

% 3.26 3.03 3.30 5.44

Case 4 Dung et al. [41] 22.19521 (7,11) 17.88501 (5,15) 11.97889 (5,11) 6.04788 (4,10)
Present 21.2933 (2,7)* 17.4869 (5,8) 11.6282 (4,8) 5.7668 (3,7)

Percentage 4.06 2.23 2.93 4.65

FGM, functionally graded material.
*Buckling mode (m, n).
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Third comparison

Table 4 compares present results with those of Dung et al. [41] for FGM sandwich truncated conical shell
reinforced by FGM sti�eners, resting on Pasternak elastic foundations, subjected to axial compressive
load and the material properties of shells and sti�eners are graded in the thickness direction following
a general sigmoid law distribution by analytical method based on the classical shell theory with Em =
70.109N/m2, Ec = 380.109N/m2, ν = 0.3, K1 = 5× 105N/m3, K2 = 3× 104N/m, k2 = k3 = k = 1,
hf = 0.0015m, hco = 0.0025m, R = 300 × hf , L = 2 × R, hs = 0.003m, bs = 0.002m, hr = 0.003m,
br = 0.002m, ns = 50, nr = 30, and Pcr (MN) is found from Eq. (45).

It is seen from Tables 1–4 that there is a very good agreement between this article results and the
results of Naj et al. [5], Baruch et al. [61], Dung et al. [41], and Duc et al. [42].

Numerical results

E�ect of sti�ener arrangement

Consider an ES-FGM conical shell with input parameters as Em = 70.109N/m2, Ec = 380.109N/m2,
αm = 22.2×10−61/K, αc = 5.4×10−61/K, ν = 0.3, k = 1, h = 0.05m, R = 2.5m, L = 2×R, β = π

4 ,
K1 = 2.5 × 107N/m3, K2 = 2.5 × 105N/m, hs = 0.03m, bs = 0.02m, hr = 0.03m, br = 0.02m.
Tables 5 and 6, using Eqs. (35), (37), (41), and (42), shows the e�ect of sti�ener on thermal buckling
load 1Tcr in two temperature �eld uniform temperature rise and temperature distribution through the
thickness.

As can be seen that sti�ener arrangement has signi�cant in�uence on the critical thermal load of shell.
The value of the critical temperature in the case of sti�eners inside smaller than in the case of external
sti�eners. Both tables show that, with the same number of sti�eners (n = 30), the critical thermal load
is greatest for stringer sti�ened shell, orthogonally sti�ened shell is the second, ring sti�ened shell is the
third, and the critical load values in the unsti�ened case is smaller than sti�ened case. In the case of
uniform temperature rise, the critical thermal load value is smaller than the case of linear temperature
distribution through the thickness.

E�ect of sti�ener number

With the database of the above section, Tables 7 presents e�ects of reinforcement sti�ener num-
ber on critical thermal load 1Tcr. As expected, the obtained results show that the critical thermal
load increases when the number of sti�eners increases and inversely. This increase is considerable.

Table 5. E�ect of sti�ener arrangement on thermal buckling load1Tcr for Case 1.

Uniform Linear temperature distribution (Tb = 0)

1Tcr (K) Inside sti�ener Outside sti�ener Inside sti�ener Outside sti�ener

Un-sti�ened 285.2874 (5,5)* 285.2874 (5,5) 570.5748 (5,5) 570.5748 (5,5)
Stringer (ns = 30) 297.9866 (4,7) 295.8553 (5,4) 595.9732 (4,7) 591.7105 (5,4)
Ring (nr = 30) 287.1580 (5,5) 295.0556 (5,4) 574.3161 (5,5) 590.1113 (5,4)
Orthogonal (ns = nr = 15) 292.8425 (5,5) 295.5116 (5,4) 585.6850 (5,5) 591.0231 (5,4)

*Buckling mode (m, n).

Table 6. E�ect of sti�ener arrangement on thermal buckling load1Tcr for Case 5.

Uniform Linear temperature distribution (Tb = 0)

1Tcr (K) Inside sti�ener Outside sti�ener Inside sti�ener Outside sti�ener

Un-sti�ened 225.2755 (5,5)* 225.2755 (5,5) 474.7724 (5,5) 474.7724 (5,5)
Stringer (ns = 30) 242.6644 (4,7) 229.9255 (5,4) 511.4199 (4,7) 484.5725 (5,4)
Ring (nr = 30) 226.8908 (5,5) 232.7340 (6,1) 478.1768 (5,5) 490.4915 (6,1)
Orthogonal (ns = nr = 15) 235.6625 (5,5) 232.0334 (5,4) 496.6632 (5,5) 489.0149 (5,4)

*Buckling mode (m,n).
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18 N. D. DUC ET AL.

Table 7. E�ect of sti�ener number on critical thermal load1Tcr .

1Tcr (K) (Orthogonal (ns = nr = n/2), sti�eners at inside)

Uniform Linear temperature distribution (Tb = 0)

Sti�ener number (n) Case 1 Case 5 Case 1 Case 5

10 287.8154 (5,5)* 228.7550 (5,5) 575.6308 (5,5) 479.6058 (5,4)

20 290.3338 (5,5) 232.2173 (5,5) 580.6675 (5,5) 484.3176 (5,4)

30 292.8425 (5,5) 235.6625 (5,5) 585.6850 (5,5) 489.0149 (5,4)

40 295.3417 (5,5) 239.0906 (5,5) 590.6834 (5,5) 493.6978 (5,4)

50 297.8227 (4,7) 242.5019 (5,5) 595.6454 (4,7) 498.3663 (5,4)

60 299.2748 (4,7) 244.9245 (4,7) 598.5496 (4,7) 503.0206 (5,4)

*Buckling mode (m,n).

For example, for Case 1,1Tcr = 287.8154K (n = 10) for uniform temperature rise in comparison with
1Tcr = 299.2748K (n = 60) increase about 1.04 times; for Case 5, 1Tcr = 228.7550K (n = 10)
for uniform temperature rise in comparison with 1Tcr = 244.9245K (n = 60) increase about 1.07
times. The prime reason is that the presence of sti�eners makes the shells become sti�er, so bearing load
capacity of them will be better.

E�ect of semi-vertex angle β

In this case, the semi-vertex angle β is changed. The e�ect of semi-vertex angle β on critical thermal load
1Tcr is presented in Table 8. It can be seen that the critical thermal buckling load of sandwich truncated
conical shell strongly decreases when semi-vertex angle increases. For example, an orthogonal sti�ened
shell in Table 8, for Case 1, when the semi-vertex angle varies the values from 5◦ to 60◦, in the case of
uniform temperature rise, the critical thermal load 1Tcr decreases from 810.4664 to 195.6100 K, about
75.86% and in the linear temperature distribution, the critical thermal load1Tcr decreases from 1620.9
to 391.2199 K, about 75.86%.

Table 8. E�ect of angle β on critical thermal load1Tcr .

1Tcr (K) (Orthogonal (ns = nr = n/2), sti�eners at inside)

Uniform Linear temperature distribution (Tb = 0)

β Case 1 Case 5 Case 1 Case 5

5◦ 810.4664 (7,6)* 650.6878 (6,6) 1620.9 (7,6) 1336.8 (8,3)

10◦ 697.4159 (6,7) 558.9150 (6,7) 1394.8 (6,7) 1151.5 (8,2)

20◦ 535.1976 (6,6) 428.4204 (6,6) 1070.4 (6,6) 887.6080 (7,3)

30◦ 419.3676 (5,7) 335.8325 (5,7) 838.7353 (5,7) 699.2480 (6,4)

45◦ 292.8425 (5,5) 235.6625 (5,5) 585.6850 (5,5) 489.0149 (5,4)

60◦ 195.6100 (4,4) 159.9401 (4,4) 391.2199 (4,4) 330.9807 (5,1)

*Buckling mode (m, n).

Table 9. E�ect of core layer on critical thermal load1Tcr .

1Tcr (K)—Uniform; orthogonal (Sti�eners at inside) (ns = nr = 15)

hco/hf Case 1 Case 3 Case 5 Case 7

0 189.8319 (5,6)* 266.6013 (4,5) 281.3797 (5,6) 274.6792 (5,6)

1 250.6088 (5,5) 265.7473 (4,5) 246.8102 (5,5) 241.5338 (5,6)

2 292.8425 (5,5) 261.6721 (4,4) 235.6625 (5,5) 231.0389 (5,5)

3 323.4413 (5,5) 253.9062 (4,4) 230.3635 (5,5) 226.0274 (5,5)

4 346.4294 (5,5) 247.8966 (4,3) 227.2936 (5,5) 223.1486 (5,5)

5 364.0200 (5,4) 235.4068 (4,3) 225.2932 (5,5) 221.2846 (5,5)

*Buckling mode (m, n).
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Table 10. E�ect of core layer on critical compression load Pcr .

Pcr (MN) Orthogonal (Sti�eners at inside) (ns = nr = 15)

hco/hf Case 1 Case 3 Case 5 Case 7

0 971.1708 (5,6)* 1363.9 (4,5) 971.7198 (5,6) 948.5801 (5,6)
1 1183.1 (5,5) 1170 (4,5) 989.1143 (5,5) 967.9689 (5,6)
2 1324.6 (5,5) 1087.1 (4,4) 1009.7 (5,5) 989.9281 (5,5)
3 1424.6 (5,5) 1049.7 (4,4) 1025.3 (5,5) 1006 (5,5)
4 1498.5 (5,5) 1029 (4,3) 1036.9 (5,5) 1018 (5,5)
5 1554 (5,4) 1016.8 (4,3) 1045.6 (5,5) 1027 (5,5)

*Buckling mode (m, n).

E�ect of core layer hco

With the database of the section before, the in�uences of the thickness of core layer to coating layer
ratio hco/hf on the critical thermal load 1Tcr and critical compression load Pcr are shown in Tables 9
and 10, respectively. It is observed that when hco/hf increases, 1Tcr and Pcr both increase markedly in
Cases 1, 5, and 7, but they decrease in Case 3. The critical thermal load and the critical compression
load is greatest for Case 1. For example, in Table 9, for Case 1, comparing 1Tcr = 189.8319K (when
hco/hf = 0) with 1Tcr = 364.0200K (when hco/hf = 5), the critical thermal load increases about
91.76%. For Case 3, comparing 1Tcr = 266.6013 K (when hco/hf = 0) with 1Tcr = 235.4068K (when
hco/hf = 5), the critical thermal load decreases about 11.7%. In Table 10, for Case 1, comparing Pcr =
971.1708 (MN) (when hco/hf = 0) with Pcr = 1554 (MN) (when hco/hf = 5), it is observed that the
critical load increases about 37.5%, and for Case 3, comparing Pcr = 1363.9 (MN) (when hco/hf = 0)
with Pcr = 1016.8 (MN) (when hco/hf = 5), the critical load decreases about 25.45%. This result agrees
with the actual property of material. As the core layer hco (for Case 1) increases, the volume fraction of
ceramic increases, and the value of the critical load is larger. Inversely, for Case 3, when the core layer
hco increases, the volume fraction of metal increases, and the value of critical load is smaller.

E�ect of the ratio R/h

In this section, the ratio R/h is changed, the other parameters are the same as before. Figures 4 and 5
show e�ects of the radius-to-thickness ratios R/h on the critical thermal load 1Tcr of shell. We can see
that the both critical thermal load 1Tcr decrease markedly with the increase of R/h ratio. These results

Figure 4. E�ects of R/h on critical thermal load1Tcr—Case 1 (uniform temperature rise).
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20 N. D. DUC ET AL.

Figure 5. E�ects of R/h on critical thermal load1Tcr—Case 5 (uniform temperature rise).

Figure 6. E�ects of L/R on critical thermal load1Tcr—Case 1 (uniform temperature rise).

re�ect accurately the actual property of shell because of increasing ratio R/h, hwill be reduced, and then
the ability of thermal load also will be decreased.

E�ect of the ratio L/R

Figures 6 and 7 describe e�ects of L/R ratio for di�erent volume fraction index (k) on the critical thermal
load 1Tcr. It can be observed, the critical thermal load 1Tcr decreases with the increase of length-to-
radius ratio L/R. In other words, in the case where R and h are constants, the more the shell length
increases, the more the critical thermal load decreases.
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Figure 7. E�ects of L/R on critical thermal load1Tcr—Case 5 (uniform temperature rise).

Figure 8. E�ects of index volume k on critical thermal load1Tcr—Case 1 (uniform temperature rise).

E�ect of volume fraction index k

The e�ects of index volume k on critical thermal load 1Tcr for sti�ened FGM sandwich truncated
conical shell are given by Figures 8 and 9. It is found that the critical thermal load 1Tcr of sti�ened
FGM truncated conical shell decreases when the value of k increases. This is expected because the elastic
modulus E of the ceramic ismuch larger than of themetal while the volume ratio of ceramic components
in the shell decreases with increasing k. Moreover, Figures 8 and 9 also show the relationship curved
between the critical thermal load–volume ratio coe�cient will be lowered if the semi-vertex angle β

increases.
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22 N. D. DUC ET AL.

Figure 9. E�ects of index volume k on critical thermal load1Tcr—Case 5 (uniform temperature rise).

Table 11. E�ect of elastic foundations on critical thermal load1Tcr—Case 1 (ns = nr = 15).

1Tcr (K) (Uniform, outside sti�ener, orthogonal) K2 = 0 N/m K2 = 105 N/m K2 = 2 × 105 N/m K2 = 5 × 105 N/m

K1 = 0 N/m3 270.9841 (4,7)* 271.6957 (4,7) 272.4072 (4,7) 274.5420 (4,7)

K1 = 107 N/m3 278.4502 (5,5) 279.0076 (5,5) 279.5650 (5,5) 281.2372 (5,5)

K1 = 2 × 107 N/m3 283.3264 (5,5) 283.8838 (5,5) 284.4412 (5,5) 286.1135 (5,5)

K1 = 5 × 107 N/m3 297.9550 (5,5) 298.5124 (5,5) 299.0699 (5,5) 300.7421 (5,5)

*Buckling mode (m, n).

Table 12. E�ect of elastic foundations on critical thermal load1Tcr—Case 5 (ns = nr = 15).

1Tcr (K) (Uniform, outside orthogonal sti�ener) K2 = 0 N/m K2 = 105 N/m K2 = 2 × 105 N/m K2 = 5 × 105 N/m

K1 = 0 N/m3 216.3770 (4,7)* 217.1282 (4,7) 217.8794 (4,7) 220.1329 (4,7)

K1 = 107 N/m3 224.4066 (4,7) 225.1578 (4,7) 225.9090 (4,7) 228.1625 (4,7)

K1 = 2 × 107 N/m3 231.6176 (5,5) 232.2060 (5,5) 232.7945 (5,5) 234.5598 (5,5)

K1 = 5 × 107 N/m3 247.0604 (5,5) 247.6488 (5,5) 248.2373 (5,5) 250.0026 (5,5)

*Buckling mode (m, n).

E�ect of elastic foundations on critical thermal load

With the database as the section before, Tables 11 and 12 respectively, show the in�uence of elastic
foundations on the critical thermal load1Tcr of the ES-FGM sandwich truncated conical shell for Cases
1 and 5. It was found that when increasing the value of the foundation’s coe�cient K1 (N/m

3) = (0; 107;
2 × 107; 5 × 107) and unchanging the value of the foundation’s coe�cient K2 or conversely, increasing
the in�uence of the foundation’s coe�cient K2 (N/m) = (0; 105; 2 × 105; 5 × 105) and unchanging
the coe�cient K1 made the value of the critical thermal load increase. Without elastic foundations
(K1 = 0,K2 = 0), the critical thermal load value is the smallest; and when the foundation’s value
K1 = 5× 107, K2 = 5× 105 is the largest. For example, in Table 11, for Case 1, the critical thermal load
for uniform temperature rise is increased 10.98%.

E�ect of axial compressive load on critical thermal load

With the database of the section before, Tables 13 and 14 presents e�ects of sti�ener arrangement and
axially pre-loaded P on critical thermal load 1Tcr. It is observed that the value of critical thermal
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Table 13. E�ect of axially pre-loaded P on critical thermal load1Tcr (K)—Case 1.

1Tcr(K) (Inside sti�eners) (m, n) P = 0 P = 10MN P = 20MN P = 30MN

Un-sti�ened Uniform 285.2874 (5,5)* 250.5594(5,5) 215.8315 (5,5) 181.1035 (5,5)
Linear 570.5748 (5,5) 501.1189 (5,5) 431.6629 (5,5) 362.2070 (5,5)

Stringer (ns = 30) Uniform 297.9866 (4,7) 263.2586 (4,7) 228.5307 (4,7) 193.8027 (4,7)
Linear 595.9732 (4,7) 526.5173 (4,7) 457.0613 (4,7) 387.6054 (4,7)

Ring (nr = 30) Uniform 287.1580 (5,5) 252.4301 (5,5) 217.7021 (5,5) 182.9741 (5,5)
Linear 574.3161 (5,5) 04.8601 (5,5) 435.4042 (5,5) 365.9482 (5,5)

Orthogonal (ns = nr = 15) Uniform 292.8425 (5,5) 258.1145 (5,5) 223.3866 (5,5) 188.6586 (5,5)
Linear 585.6850 (5,5) 516.2291 (5,5) 446.7731 (5,5) 377.3172 (5,5)

*Buckling mode (m, n).

Table 14. E�ect of axially pre-loaded P on critical thermal load1Tcr (K)—Case 5.

1Tcr(K) (Inside sti�eners) (m, n) P = 0 P = 10MN P = 20MN P = 30MN

Un-sti�ened Uniform 225.2755 (5,5)* 188.6147 (5,5) 151.9540 (5,5) 115.2932 (5,5)
Linear 474.7724 (5,5) 97.5092 (5,5) 320.2459 (5,5) 242.9827 (5,5)

Stringer (ns = 30) Uniform 242.6644 (4,7) 206.0036 (4,7) 169.3429 (4,7) 132.6821 (4,7)
Linear 511.4199 (4,7) 434.1567 (4,7) 356.8934 (4,7) 279.6302 (4,7)

Ring (nr = 30) Uniform 226.8908 (5,5) 190.2301 (5,5) 153.5693 (5,5) 116.9086 (5,5)
Linear 478.1768 (5,5) 400.9135 (5,5) 323.6503 (5,5) 246.3870 (5,5)

Orthogonal (ns = nr = 15) Uniform 235.6625 (5,5) 199.0017 (5,5) 162.3410 (5,5) 125.6802 (5,5)
Linear 496.6632 (5,5) 19.4000 (5,5) 342.1367 (5,5) 264.8735 (5,5)

*Buckling mode (m, n).

load 1Tcr increases with the decrease of axial preloaded P. This increase is considerable. For example,
in Table 13, for Case 1 (uniform temperature rise), comparing 1Tcr = 188.6586K (P = 30) with
1Tcr = 292.8425K (P = 0) in the case of orthogonally sti�ener, we can see that the critical thermal
load increases about 35.58%.

E�ect of elastic foundations on critical axial compressive load

Consider an eccentrically sti�ened sandwich truncated conical shells made of FGMs resting on elastic
foundations with input parameters as Em = 70 × 109N/m2, Ec = 380 × 109N/m2, ν = 0.3, k = 1,
h = 0.05m, R = 50 × h, L = 2 × R, β = π

4 , hs = 0.03m, bs = 0.02m, hr = 0.03m, br = 0.02m.
Tables 15 and 16, using Eq. (45), shows the e�ects of elastic foundations on critical compression load
Pcr. As can be observed, the critical buckling load corresponding to the presence of the both foundation
parameters K1 = 5 × 107N/m3 and K2 = 5 × 105N/m is the biggest. The critical buckling load
of shell without foundation is the smallest. For example, in Table 15 comparing Pcr = 1277.5MN

Table 15. E�ect of elastic foundations on critical compression load Pcr—Case 1 (ns = nr = 15).

Pcr (MN) (Outside orthogonal) K2 = 0 N/m K2 = 105 N/m K2 = 2 × 105 N/m K2 = 5 × 105 N/m

K1 = 0 N/m3 1239.9 (4,7)* 1243.1 (4,7) 1246.3 (4,7) 1256 (4,7)

K1 = 107 N/m3 16005 (1,1) 1277.5 (4,7) 1280.7 (4,7) 1290.4 (4,7)

K1 = 2 × 107 N/m3 16516 (1,1) 16518 (1,1) 16521 (1,1) 16528 (1,1)

K1 = 5 × 107 N/m3 18049 (1,1) 18052 (1,1) 18054 (1,1) 18062 (1,1)

*Buckling mode (m, n).

Table 16. E�ect of elastic foundations on critical compression load Pcr—Case 5 (ns = nr = 15).

Pcr (MN) (Outside orthogonal) K2 = 0 N/m K2 = 105 N/m K2 = 2 × 105 N/m K2 = 5 × 105 N/m

K1 = 0 N/m3 927.1067 (4,7)* 930.3252 (4,7) 933.5438 (4,7) 943.1995 (4,7)

K1 = 107 N/m3 961.5109 (4,7) 964.7294 (4,7) 967.9480 (4,7) 977.6037 (4,7)

K1 = 2 × 107 N/m3 992.4076 (4,7) 994.9288 (4,7) 997.4501 (5,5) 1005.00 (5,5)

K1 = 5 × 107 N/m3 1058.6 (5,5) 1061.1 (5,5) 1063.6 (5,5) 1071.2 (5,5)

*Buckling mode (m, n).
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24 N. D. DUC ET AL.

(K1 = 107N/m3, K2 = 105N/m) with Pcr = 18062MN (K1 = 5 × 107N/m3, K2 = 5 × 105N/m),
increases about 14.57 times.

Conclusion

An analytical solution is presented, in this article, to investigate the thermal buckling and mechanical
buckling of FGM sandwich truncated conical shells reinforced by FGM sti�eners resting on elastic
foundations, subjected to thermal load and axial compressive load. The material properties of shells
and sti�eners are assumed to be graded in the thickness direction according to a general sigmoid law
distribution and a general power law in terms of the volume fractions of the constituents. The change
of spacing between stringers in the meridional direction are taken into account. Four models of coated
shell-sti�ener arrangements are investigated. Using the adjacent equilibrium criterion, the linearization
stability equations in terms of displacement components are established. The couple set of �ve variable
coe�cient partial di�erential equations is investigated by Galerkin. Two cases on uniform temperature
rise and linear temperature distribution through the thickness of shell are considered. The closed-
form expression for determining the thermal buckling load and critical compression buckling load are
obtained. The e�ects of temperature, foundation, sti�eners, material properties, dimensional parameters
and semi-vertex angle on buckling behaviors of shell are considered. The numerical calculations show
some remarks as follows:

(i) The critical thermal buckling load (1Tcr) and the critical axial compressive load (Pcr) of FGM
sandwich truncated conical shell increase considerably when the thickness of core layer to
coating layer hco/hf ratio increases in models 1st, 3rd and 4th, and reversely in model 2nd. The
critical thermal load and the critical compression load are greatest for model 1.

(ii) The sti�eners, and the volume fraction indices k, k2, and k3 strongly a�ect the critical buckling
load. The critical thermal buckling load of FGM sandwich truncated conical shell under both
uniform temperature rise and linear temperature distribution across the shell thickness is lower
than that of pure ceramic conical shells and higher than the pure metallic conical shells.

(iii) The value of the critical thermal load increases when we increase the sti�ener number and
inversely. The value of the critical thermal load in case of the uniform temperature rise is smaller
than one of the linear temperature distribution through the thickness.

(iv) Critical thermal loads of FGM sandwich truncated conical shells decrease when the axially
preloaded P increases.

(v) Critical thermal load of FGM sandwich truncated conical shells decreases when the semi-vertex
angle β increases.

(vi) The critical thermal buckling load of FGM sandwich truncated conical shell under both types of
thermal loading decreases when R/h increases.

(vii) The critical thermal buckling load of FGM sandwich truncated conical shell under both types of
thermal loading decreases when L/R increases.

(viii) Foundation parameters K1 and K2 a�ect strongly on the critical thermal loads and the critical
axial compressive load. Furthermore, the foundation coe�cient K1 a�ects the critical thermal
load and the critical axial compressive load more than the foundation coe�cient K2.

Appendix A

λ0 =
2πsinβ

ns
, ds (x) = λ0x, dr =

L

nr
, c01 =

E2sbs

λ0
, c1 (x) =

c01
x
,

c2 =
E2rbr

dr
, A11 = A22 =

E1

1 − ν2
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A12 =
νE1

1 − ν2
, A44 = A55 =

5E1

12 (1 + ν)
, A66 =

E1

2 (1 + ν)
,

B11 = B22 =
E2

1 − ν2
, B12 =

νE2

1 − ν2

B66 =
E2

2 (1 + ν)
, D11 = D22 =

E3

1 − ν2
, D12 =

νE3

1 − ν2
, D66 =

E3

2 (1 + ν)

8a = −
∫ h

2

− h
2

Eshαsh1T(z)

1 − ν
dz,8b = −

∫ h
2

− h
2

Eshαsh1T(z)z

1 − ν
dz

(i) For the �rst model (FGM–Ceramic core–FGM conical shell)

Esh =











































Ec + Emc

(

z − z1

z2 − z1

)k

, z1 ≤ z ≤ z2,

Em, z2 ≤ z ≤ z3,

Ec + Emc

(

z − z4

z3 − z4

)k

, z3 ≤ z ≤ z4,

, αsh =































αc + αmc

(

z − z1

z2 − z1

)k

, z1 ≤ z ≤ z2

αm, z2 ≤ z ≤ z3

αc + αmc

(

z − z4

z3 − z4

)k

, z3 ≤ z ≤ z4

E1 = Emh + Ecm

[

z2 − z1

k + 1
+ z3 − z2 −

z3 − z4

k + 1

]

, E2 = 0

E3 =
Emh

3

12
+ Ecm











(z2 − z1)
3

k + 3
+

2z1 (z2 − z1)
2

k + 2
+

z21 (z2 − z1)

k + 1
+

z33 − z32
3

−
(z3 − z4)

3

k + 3
−

2z4 (z3 − z4)
2

k + 2
−

z24 (z3 − z4)

k + 1











Case 1, sti�eners at inside:

Es = Em + Ecm

(

z1 − z

hs

)k2

, −
h

2
− hs ≤ z ≤ −

h

2
;

Er = Em + Ecm

(

z1 − z

hr

)k3

, −
h

2
− hr ≤ z ≤ −

h

2

E1s = Emhs + Ecm
hs

k2 + 1
, E2s =

Em

2

[

z21 − (z1 − hs)
2
]

+ Ecm

[

z1hs

k2 + 1
−

h2s
k2 + 2

]

E3s =
Em

3

[

z31 − (z1 − hs)
3
]

+ Ecm

[

h3s
k2 + 3

−
2z1h

2
s

k2 + 2
+

z21hs

k2 + 1

]

E1r = Emhr + Ecm
hr

k3 + 1
, E2r =

Em

2

[

z21 − (z1 − hr)
2
]

+ Ecm

[

z1hr

k3 + 1
−

h2r
k3 + 2

]

E3r =
Em

3

[

z31 − (z1 − hr)
3
]

+ Ecm

[

h3r
k3 + 3

−
2z1h

2
r

k3 + 2
+

z21hr

k3 + 1

]
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Case 2, sti�eners at outside:

Es = Em + Ecm

(

z − z4

hs

)k2

,
h

2
≤ z ≤

h

2
+ hs;

Er = Em + Ecm

(

z − z4

hr

)k3

,
h

2
≤ z ≤

h

2
+ hr

E1s = Emhs + Ecm
hs

k2 + 1
, E2s =

Em

2

[

(z4 + hs)
2 − z24−

]

+ Ecm

[

z4hs

k2 + 1
+

h2s
k2 + 2

]

E3s =
Em

3

[

(z4 + hs)
3 − z34

]

+ Ecm

[

h3s
k2 + 3

+
2z4h

2
s

k2 + 2
+

z24hs

k2 + 1

]

E1r = Emhr + Ecm
hr

k3 + 1
, E2r =

Em

2

[

(z4 + hr)
2 − z24−

]

+ Ecm

[

z4hr

k3 + 1
+

h2r
k3 + 2

]

E3s =
Em

3

[

(z4 + hr)
3 − z34

]

+ Ecm

[

h3r
k3 + 3

+
2z4h

2
r

k3 + 2
+

z24hr

k3 + 1

]

(ii) For the second model (FGM–Metal core–FGM conical shell)

Esh =




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




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





Ec + Emc
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z − z1

z2 − z1

)k

, z1 ≤ z ≤ z2,

Em, z2 ≤ z ≤ z3,

Ec + Emc

(

z − z4

z3 − z4
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, z3 ≤ z ≤ z4,

; αsh =



































αc + αmc

(

z − z1

z2 − z1

)k

, z1 ≤ z ≤ z2

αm, z2 ≤ z ≤ z3

αc + αmc

(

z − z4

z3 − z4

)k

, z3 ≤ z ≤ z4

E1 = Ech + Emc

[

z2 − z1

k + 1
+ z3 − z2 −

z3 − z4

k + 1

]

,E2 = 0

E3 =
Ech

3

12
+ Emc











(z2 − z1)
3

k + 3
+

2z1 (z2 − z1)
2

k + 2
+

z21 (z2 − z1)

k + 1
+

z33 − z32
3

−
(z3 − z4)

3

k + 3
−

2z4 (z3 − z4)
2

k + 2
−

z24 (z3 − z4)

k + 1











Case 3, sti�eners at inside:

Es = Ec + Emc

(

z1 − z

hs

)k2

, −
h

2
− hs ≤ z ≤ −

h

2
;

Er = Ec + Emc

(

z1 − z

hr

)k3

, −
h

2
− hr ≤ z ≤ −

h

2

E1s = Echs + Emc
hs

k2 + 1
, E2s =

Ec

2

[

z21 − (z1 − hs)
2
]

+ Emc

[

z1hs

k2 + 1
−

h2s
k2 + 2

]

E3s =
Ec

3

[

z31 − (z1 − hs)
3
]

+ Emc

[

h3s
k2 + 3

−
2z1h

2
s

k2 + 2
+

z21hs

k2 + 1

]
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E1r = Echr + Emc
hr

k3 + 1
, E2r =

Ec

2

[

z21 − (z1 − hr)
2
]

+ Emc

[

z1hr

k3 + 1
−

h2r
k3 + 2

]

E3r =
Ec

3

[

z31 − (z1 − hr)
3
]

+ Emc

[

h3r
k3 + 3

−
2z1h

2
r

k3 + 2
+

z21hr

k3 + 1

]

Case 4, sti�eners at outside:

Es = Ec + Emc

(

z − z4

hs

)k2

,
h

2
≤ z ≤

h

2
+ hs; Er = Ec + Emc

(

z − z4

hr

)k3

,
h

2
≤ z ≤

h

2
+ hr

E1s = Echs + Emc
hs

k2 + 1
, E2s =

Ec

2

[

(z4 + hs)
2 − z24−

]

+ Emc

[

z4hs

k2 + 1
+

h2s
k2 + 2

]

E3s =
Ec

3

[

(z4 + hs)
3 − z34

]

+ Emc

[

h3s
k2 + 3

+
2z4h

2
s

k2 + 2
+

z24hs

k2 + 1

]

E1r = Echr + Emc
hr

k3 + 1
, E2r =

Ec

2

[

(z4 + hr)
2 − z24−

]

+ Emc

[

z4hr

k3 + 1
+

h2r
k3 + 2

]

E3s =
Ec

3

[

(z4 + hr)
3 − z34

]

+ Emc

[

h3r
k3 + 3

+
2z4h

2
r

k3 + 2
+

z24hr

k3 + 1

]

(iii) For the third model (Ceramic–FGM core–Metal conical shell)

Esh =























Em, z1 ≤ z ≤ z2,

Em + Ecm

(

z − z2

z3 − z2

)k

, z2 ≤ z ≤ z3

Ec, z3 ≤ z ≤ z4,

; αsh =



























αm, z1 ≤ z ≤ z2

αm + αcm

(

z − z2

z3 − z2

)k

, z2 ≤ z ≤ z3

αc, z3 ≤ z ≤ z4

E1 = Emh + Ecm

[

z3 − z2

k + 1
+ z4 − z3

]

, E2 = Ecm

[

(z3 − z2)
2

k + 2
+

z2 (z3 − z2)

k + 1
+

z24 − z23
2

]

E3 =
Emh

3

12
+ Ecm

[

(z3 − z2)
3

k + 3
+

2z2 (z3 − z2)
2

k + 2
+

z22 (z3 − z2)

k + 1
+

z34 − z33
3

]

Case 5, sti�eners at inside: the Eis, Eir (i = 1 ÷ 3) are the same as the �rst model.
Case 6, sti�eners at outside: the Eis, Eir (i = 1 ÷ 3) are the same as the second model.

(iv) For the fourth model (Metal–FGM core–Ceramic conical shell)

Esh =



























Ec, z1 ≤ z ≤ z2,

Ec + Emc

(

z − z2

z3 − z2

)k

, z2 ≤ z ≤ z3

Em, z3 ≤ z ≤ z4,

; αsh =



























αc, z1 ≤ z ≤ z2

αc + αmc

(

z − z2

z3 − z2

)k

, z2 ≤ z ≤ z3

αm, z3 ≤ z ≤ z4

E1 = Ech + Emc

[

z3 − z2

k + 1
+ z4 − z3

]

, E2 = Emc

[

(z3 − z2)
2

k + 2
+

z2 (z3 − z2)

k + 1
+

z24 − z23
2

]

E3 =
Ech

3

12
+ Emc

[

(z3 − z2)
3

k + 3
+

2z2 (z3 − z2)
2

k + 2
+

z22 (z3 − z2)

k + 1
+

z34 − z33
3

]

Case 7, sti�eners at inside, the Eis, Eir (i = 1 ÷ 3) are the same as the second model.
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Case 8, sti�eners at outside, the Eis, Eir (i = 1 ÷ 3) are the same as in model 1.

Emc = Em − Ec, Ecm = Ec − Em, αmc = αm − αc, αcm = αc − αm

Appendix B

In Eqs. (27)–(31):

S11 =
[

A11x +
E1sbs

λ0

]

∂2

∂x2
+

1

x sin2 β
A66

∂2

∂θ2
+ A11

∂

∂x
−

[

A22 +
E1rbr

dr

]

1

x

S12 =
1

sinβ
(A12 + A66)

∂2

∂x∂θ
−

1

x sinβ

[

A22 + A66 +
E1rbr

dr

]

∂

∂θ

S13 = cotβA12
∂

∂x
− cotβ

1

x

[

A22 +
E1rbr

dr

]

S14 =
(

B11x + c01
) ∂2

∂x2
+

1

x sin2 β
B66

∂2

∂θ2
+ B11

∂

∂x
− (B22 + c2)

1

x

S15 =
1

sinβ
(B12 + B66)

∂2

∂x∂θ
−

1

x sinβ
(B22 + B66 + c2)

∂

∂θ

S21 =
1

sinβ
(A12 + A66)

∂2

∂x∂θ
+

1

x sinβ

[

A22 + A66 +
E1rbr

dr

]

∂

∂θ

S22 = A66x
∂2

∂x2
+

1

x sin2 β

[

A22 +
E1rbr

dr

]

∂2

∂θ2
+ A66

∂

∂x
− A66

1

x

S23 =
(

A22 +
E1rbr

dr

)

cotβ
1

x sinβ

∂

∂θ

S24 =
1

sinβ
(B12 + B66)

∂2

∂x∂θ
+

1

x sinβ
(B22 + B66 + c2)

∂

∂θ

S25 = B66x
∂2

∂x2
+

1

x sin2 β
(B22 + c2)

∂2

∂θ2
+ B66

∂

∂x
− B66

1

x

S31 =
(

B11x + c01
) ∂3

∂x3
+

1

x sin2 β
(B12 + 2B66)

∂3

∂x∂θ2
+ 2B11

∂2

∂x2

+
1

x2 sin2 β
(B22 + c2)

∂2

∂θ2
−

[

A12 cotβ + (B22 + c2)
1

x

]

∂

∂x

−
{[

A22 +
E1rbr

dr

]

cotβ − (B22 + c2)
1

x

}

1

x

S32 = (B12 + 2B66)
1

sinβ

∂3

∂x2∂θ
+ (B22 + c2)

1

x2 sin3 β

∂3

∂θ3
− (B22 + c2)

1

x sinβ

∂2

∂x∂θ

−
{[

A22 +
E1rbr

dr

]

cotβ − (B22 + c2)
1

x

}

1

x sinβ

∂

∂θ
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S33 = B12 cotβ
∂2

∂x2
+ (B22 + c2) cotβ

1

x2 sin2 β

∂2

∂θ2
− (B22 + c2) cotβ

1

x

∂

∂x

−
{[

A22 +
E1rbr

dr

]

cotβ − (B22 + c2)
1

x

}

cotβ
1

x

S34 =
[

D11x +
E3sbs

λ0

]

∂3

∂x3
+

1

x sin2 β
(D12 + 2D66)

∂3

∂x∂θ2
+ 2D11

∂2

∂x2

+
[

D22 +
E3rbr

dr

]

1

x2 sin2 β

∂2

∂θ2
−

[

B12 cotβ +
(

D22 +
E3rbr

dr

)

1

x

]

∂

∂x

−
{

(B22 + c2) cotβ −
[

D22 +
E3rbr

dr

]

1

x

}

1

x

S35 = (D12 + 2D66)
1

sinβ

∂3

∂x2∂θ
+

[

D22 +
E3rbr

dr

]

1

x2 sin3 β

∂3

∂θ3

−
[

D22 +
E3rbr

dr

]

1

x sinβ

∂2

∂x∂θ
−

[

(B22 + c2) cotβ −
(

D22 +
E3rbr

dr

)

1

x

]

1

x sinβ

∂

∂θ

S36 =
∂2

∂x2
, S37 = −x, S38 = x

∂2

∂x2
+

1

x sin2 β

∂2

∂θ2
+

∂

∂x

S41 =
(

B11x + c01
)

sinβ
∂2

∂x2
+ B66

1

x sinβ

∂2

∂θ2
+ B11 sinβ

∂

∂x
− (B22 + c2) sinβ

1

x

S42 = (B12 + B66)
∂2

∂x∂θ
− (B22 + B66 + c2)

1

x

∂

∂θ

S43 = (B12 cosβ − A44x sinβ)
∂

∂x
− (B22 + c2) cosβ

1

x

S44 =
[

D11x +
E3sbs

λ0

]

sinβ
∂2

∂x2
+

1

x sinβ
D66

∂2

∂θ2
+ D11 sinβ

∂

∂x
−

{

A44x +
[

D22 +
E3rbr

dr

]

1

x

}

sinβ

S45 = (D12 + D66)
∂2

∂x∂θ
−

[

D22 + D66 +
E3rbr

dr

]

1

x

∂

∂θ

S51 = (B12 + B66)
∂2

∂x∂θ
+ (B22 + B66 + c2)

1

x

∂

∂θ

S52 = B66x sinβ
∂2

∂x2
+

1

x sinβ
(B22 + c2)

∂2

∂θ2
+ B66 sinβ

∂

∂x
− B66 sinβ

1

x

S53 = −
[

A55 − (B22 + c2) cotβ
1

x

]

∂

∂θ

S54 = (D12 + D66)
∂2

∂x∂θ
+

[

D22 + D66 +
E3rbr

dr

]

1

x

∂

∂θ

S55 = D66x sinβ
∂2

∂x2
+

[

D22 +
E3rbr

dr

]

1

x sinβ

∂2

∂θ2
+ D66 sinβ

∂

∂x
−

[

A55x + D66
1

x

]

sinβ
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Appendix C

In Eqs. (32a)–(32e):

L11 = −
m2π3

L2
A11 sinβ

[

(x0 + L)4 − x40
8

+
3L3 (2x0 + L)

8m2π2

]

−
π

4
L (2x0 + L) sinβ

[

A22 +
n2

sin2 β
A66 +

E1rbr

dr

]

−
m2π3

L2
E1sbs

λ0
sinβ

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

+
π

4
L (2x0 + L)A11 sinβ

L12 = −
mnπ2

L
(A12 + A66)

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

−
nL2

4m

[

A22 + A66 +
E1rbr

dr

]

L13 =
mπ2

L
cotβ sinβA12

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

+ cotβ sinβ
L2

4m

[

A22 +
E1rbr

dr

]

L14 = −
m2π3

L2
B11 sinβ

[

(x0 + L)4 − x40
8

+
3L3 (2x0 + L)

8m2π2

]

−
π

4
L (2x0 + L) sinβ(B22 +

n2

sin2 β
B66 + c2)

−
m2π3

L2
c01 sinβ

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

+
π

4
L (2x0 + L)B11 sinβ

L15 = −
mnπ2

4

1

sinβ
(2x0 + L) (B12 + B66)

L21 = −
mnπ2

L
(A12 + A66)

[

(x0 + L)3 − x30
6

−
L3

4m2π2

]

−
nL2

4m

[

A22 + A66 +
E1rbr

dr

]

L22 = −
m2π3

L2
A66 sinβ

[

(x0 + L)4 − x40
8

−
3L3 (2x0 + L)

8m2π2

]

−
π

4
L (2x0 + L)A66 sinβ

−
π

4
L (2x0 + L) sinβ

{

n2

sin2 β

[

A22 +
E1rbr

dr

]

+ A66

}

L23 =
nπ

4
L (2x0 + L) cotβ

[

A22 +
E1rbr

dr

]

L24 = −
mnπ2

L
(B12 + B66)

[

(x0 + L)3 − x30
6

−
L3

4m2π2

]

−
nL2

4m
(B22 + B66 + c2)

L25 = −
m2π3

L2
B66

[

(x0 + L)3 − x30
6

−
L3

4m2π2

]

−
n2πL

2 sin2 β
(B22 + c2) +

π

4
LB66
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L31 =
m3π4

L3
B11 sinβ

{

(x0 + L)5 − x50
10

+
L2

[

x30 − (x0 + L)3
]

2m2π2
+

3L5

4m4π4

}

+
[

m3π4

L3
c01 sinβ +

mπ2

L
cotβ sinβA12

] [

(x0 + L)4 − x40
8

−
3L3 (2x0 + L)

8m2π2

]

+
[

mπ2

L
sinβ (3B11 + B22 + c2) +

mn2π2

L sinβ
(B12 + 2B66)

] [

(x0 + L)3 − x30
6

−
L3

4m2π2

]

+ cotβ sinβ

[

A22 +
E1rbr

dr

]

L2 (2x0 + L)

4m
+

L2

4m
sinβ (B22 + c2)

[

n2

sin2 β
− 1

]

L32 =
m2nπ3

L2
(B12 + 2B66)

[

(x0 + L)4 − x40
8

−
3L3 (2x0 + L)

8m2π2

]

+ nπ cotβ

[

A22 +
E1rbr

dr

] [

(x0 + L)3 − x30
6

−
L3

4m2π2

]

+
nπL (2x0 + L)

4
(B22 + c2)

[

n2

sin2 β
− 2

]

L33 = −
m2π3

L2
cotβ sinβB12

[

(x0 + L)4 − x40
8

−
3L3 (2x0 + L)

8m2π2

]

−π cot2 β sinβ

[

A22 +
E1rbr

dr

] [

(x0 + L)3 − x30
6

−
L3

4m2π2

]

−
π

4
L (2x0 + L) cotβ sinβ (B22 + c2)

[

n2

sin2 β
− 2

]

L34 =
m3π4

L3
D11 sinβ

{

(x0 + L)5 − x50
10

+
L2

[

x30 − (x0 + L)3
]

2m2π2
+

3L5

4m4π4

}

+
[

m3π4

L3
E3sbs

λ0
sinβ +

mπ2

L
cotβ sinβB12

] [

(x0 + L)4 − x40
8

−
3L3 (2x0 + L)

8m2π2

]

+
{

mπ2

L
sinβ

[

3D11 + D22 +
E3rbr

dr

]

+
mn2π2

L sinβ
(D12 + 2D66)

} [

(x0 + L)3 − x30
6

−
L3

4m2π2

]

+
L2 (2x0 + L)

4m
cotβ sinβ (B22 + c2) +

L2

4m
sinβ

[

D22 +
E3rbr

dr

] [

n2

sin2 β
− 1

]

L35 =
m2nπ3

L2
1

sinβ
(D12 + 2D66)

[

(x0 + L)3 − x30
6

−
L3

4m2π2

]

+
nπ

4 sinβ
L (2x0 + L) cotβ (B22 + c2) −

nπ

sinβ
L (D12 + 2D66)

+
nπ

2 sinβ
L

[

D22 +
E3rbr

dr

] [

n2

sin2 β
− 2

]

−
nπ

4 sinβ
L

(

2D12 + D22 + 4D66 +
E3rbr

dr

)
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L36 = −
m2π3

L2
sinβ

[

(x0 + L)4 − x40
8

−
3L3 (2x0 + L)

8m2π2

]

L37 = −π sinβ

{

(x0 + L)5 − x50
10

+
L2

[

x30 − (x0 + L)3
]

2m2π2
+

3L5

4m4π4

}

L38 = −
m2π3

L2
sinβ

{

(x0 + L)5 − x50
10

+
L2

[

x30 − (x0 + L)3
]

2m2π2
+

3L5

4m4π4

}

−
π

2

[

3 sinβ +
2n2

sinβ

] [

(x0 + L)3 − x30
6

+
L3

4m2π2

]

L41 = −
m2π3

L2
B11 sin

2 β

[

(x0 + L)4 − x40
8

+
3L3 (2x0 + L)

8m2π2

]

−
m2π3

L2
c01 sin

2 β

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

+
π

4
L (2x0 + L)

[

sin2 β (B11 − B22 − c2) − n2B66
]

L42 = −
mnπ2

L
sinβ (B12 + B66)

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

−
nL2

4m
sinβ (B22 + B66 + c2)

L43 = −
mπ2

L
A44 sin

2 β

[

(x0 + L)4 − x40
8

+
3L3 (2x0 + L)

8m2π2

]

+
mπ2

L
sinβ cosβB12

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

+
L2

4m
sinβ cosβ (B22 + c2)

L44 = −
[

m2π3

L2
D11 sin

2 β + πA44 sin
2 β

] [

(x0 + L)4 − x40
8

+
3L3 (2x0 + L)

8m2π2

]

−
m2π3

L2
E3sbs

λ0
sin2 β

[

(x0 + L)3 − x30
6

+
L3

4m2π2

]

+
π

4
L (2x0 + L)

{

sin2 β

[

D11 − D22 −
E3rbr

dr

]

− n2D66

}

L45 = −
mnπ2

4
(2x0 + L) (D12 + D66)

L51 = −
mnπ2

L
(B12 + B66)

[

(x0 + L)3 − x30
6

−
L3

4m2π2

]

−
nL2

4m
(B22 + B66 + c2)

L52 = −
m2π3

L2
B66 sinβ

[

(x0 + L)4 − x40
8

−
3L3 (2x0 + L)

8m2π2

]

−
π

2
L (2x0 + L)

[

n2

2 sinβ
(B22 + c2) + B66 sinβ

]
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L53 = −nπA55

[

(x0 + L)3 − x30
6

−
L3

4m2π2

]

+
nπ

4
L (2x0 + L) cotβ (B22 + c2)

L54 = −
mnπ2

L
(D12 + D66)

[

(x0 + L)3 − x30
6

−
L3

4m2π2

]

−
nL2

4m

[

D22 + D66 +
E3rbr

dr

]

L55 = −π

[

A55 +
m2π2

L2
D66

] [

(x0 + L)3 − x30
6

−
L3

4m2π2

]

+
π

4
L

{

D66 −
2n2

sin2 β

[

D22 +
E3rbr

dr

]}
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