
RNN on Machine Reading
Comprehension

- Bi-Directional Attention Flow model -

Implementor

NGUYEN Hong Thinh

Vietnam National University, Hanoi
University of Engineering and Technology

Faculty of Electronics and Telecommunications

Contents

1 Introduction 3

2 Background 5
2.1 Recurrent Neural Networks . 5
2.2 Long Short-Term Memory . 5

2.2.1 The Problem of Long-Term Dependencies 6
2.2.2 Long Short-Term Memory Networks 7

2.3 Gated Recurrent Unit . 8
2.4 Attention Mechanism . 8

3 Bi-Directional Attention Flow model (BiDAF) 11

4 Conclusion 15

Bibliography 17

1

Chapter 1

Introduction

Although end-to-end deep neural network have gained popularity in the last few
years and have been successful in several Natural Language Processing (NLP) tasks
such as sequence labeling [6], the task of reading comprehension remains a chal-
lenging task for NLP researchers. Reading or machine comprehension is a special
task of Question Answering (QA), where the machine is given a query about a
given context and is required to predict the answer. Such problems gain signifi-
cant popularity over the years not only because of their vast applications, but also
theoretical values for language and neural network research. This task is challeng-
ing because the system must be able to model complex interactions between the
question and the context paragraph and must be able to do several complex skills
such as coreference resolution, commonsense reasoning, causal relations, and spa-
tiotemporal relations. To solve this, usually some attention mechanism is adopted
to focus on only a small portion of the context. This task also requires modeling of
the interaction between query and context. To motivate this line of research, Stan-
ford NLP group released the SQuAD dataset [8], which consists of 100K question-
answer pairs, along with a context paragraph for each pair. There is also a public
leader board available. The state of the art is already very competitive, as there are
many methods that are approaching human level performance.

An Example of SQuAD dataset context One of the most famous people born in
Warsaw was Maria Skłodowska-Curie, who achieved international recognition for
her research on radioactivity and was the first female recipient of the Nobel Prize.
Famous musicians include Władysław Szpilman and Frédéric Chopin. Though
Chopin was born in the village of Żelazowa Wola, about 60 km (37 mi) from War-
saw, he moved to the city with his family when he was seven months old. Casimir
Pulaski, a Polish general and hero of the American Revolutionary War, was born
here in 1745.

3

4 Chapter 1. Introduction

Example 1.1 (A pair of questions/answers from the above context)
What was Maria Curie the first female recipient of?
Ground Truth Answers: Nobel Prize

Example 1.2 (Another pair of questions/answers)
What year was Casimir Pulaski born in Warsaw?
Ground Truth Answers: 1745

Example 1.3 (Another pair of questions/answers)
Who was one of the most famous people born in Warsaw?
Ground Truth Answers: Maria Skłodowska-Curie

Example 1.4 (Another pair of questions/answers)
How old was Chopin when he moved to Warsaw with his family?
Ground Truth Answers: seven months old

Problem Definition We define our problem as the following: Given word se-
quence of context with length T, p = {p1, p2, ..., pT} and question with length J,
q = {q1, q2, ..., qJ}, the model needs to learn a function f : (p, q) → {as, ae}, with
the condition 1 ≤ as ≤ ae ≤ T. {as, ae} is a pair of scalar indices pointing to the
start position and end position respectively in the context p, indicating the answer
to the question q.

The report is constructed as following: chapter 2 presents several popular neu-
ral network structures that have been using in NLP field: recurrent neural network,
long short term memory, attention mechanism. . . Chapter 3 will forcus on BiDAF,
the most popular model of the leaderboard of SQuAD. Finally, chapter 4 will con-
clude the report with some remarks.

Chapter 2

Background

2.1 Recurrent Neural Networks

Humans don’t start their thinking from scratch every second. As you read this
essay, you understand each word based on your understanding of previous words.
You don’t throw everything away and start thinking from scratch again. Your
thoughts have persistence.

Traditional neural networks can’t do this, and it seems like a major shortcom-
ing. For example, imagine you want to classify what kind of event is happening at
every point in a movie. It’s unclear how a traditional neural network could use its
reasoning about previous events in the film to inform later ones. Recurrent neu-
ral networks address this issue. They are networks with loops in them, allowing
information to persist. These loops make recurrent neural networks seem kind of
mysterious. However, if you think a bit more, it turns out that they aren’t all that
different than a normal neural network. A recurrent neural network can be thought
of as multiple copies of the same network, each passing a message to a successor.
This chain-like nature reveals that recurrent neural networks are intimately related
to sequences and lists. They’re the natural architecture of neural network to use for
such data. The RNN handles the variable-length sequence by having a recurrent
hidden state whose activation at each time is dependent on that of the previous
time.

2.2 Long Short-Term Memory

In the last few years, there have been incredible success applying RNNs to a variety
of problems: speech recognition, language modeling, translation, image caption-
ing. . . Essential to these successes is the use of “LSTMs,” a very special kind of
recurrent neural network which works, for many tasks, much much better than the
standard version. Almost all exciting results based on recurrent neural networks

5

6 Chapter 2. Background

Figure 2.1: Recurrent Neural Networks unrolled

are achieved with them.

2.2.1 The Problem of Long-Term Dependencies

One of the appeals of RNNs is the idea that they might be able to connect previous
information to the present task, such as using previous video frames might inform
the understanding of the present frame. If RNNs could do this, they’d be extremely
useful. But can they? It depends.

Sometimes, we only need to look at recent information to perform the present
task. For example, consider a language model trying to predict the next word
based on the previous ones. If we are trying to predict the last word in “the clouds
are in the [. . .],” we don’t need any further context – it’s pretty obvious the next
word is going to be “sky”. In such cases, where the gap between the relevant
information and the place that it’s needed is small, RNNs can learn to use the past
information.

But there are also cases where we need more context. Consider trying to pre-
dict the last word in the text “I grew up in Hanoi. . . I speak fluent [. . .].” Recent
information suggests that the next word is probably the name of a language (which
is Vietnamese), but if we want to narrow down which language, we need the context
of Hanoi, from further back. It’s entirely possible for the gap between the relevant
information and the point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to connect the
information. In theory, RNNs are absolutely capable of handling such “long-term
dependencies.” A human could carefully pick parameters for them to solve toy
problems of this form. In practice, however, RNNs don’t seem to be able to learn
them. In fact, it has been observed by, e.g., Bengio et al. [2] that it is difficult to
train RNNs to capture long-term dependencies because the gradients tend to either
vanish (most of the time) or explode (rarely, but with severe effects).

One of the solution is to design a more sophisticated activation function than a
usual activation function, consisting of affine transformation followed by a simple
element-wise nonlinearity by using gating units. The earliest attempt in this direc-
tion resulted in an activation function, or a recurrent unit, called a long short-term
memory (LSTM) unit.

2.2. Long Short-Term Memory 7

Figure 2.2: a standard RNN

Figure 2.3: a LSTM

2.2.2 Long Short-Term Memory Networks

Long Short-Term Memory networks – usually just called “LSTMs” – are a special
kind of RNN, capable of learning long-term dependencies. They were introduced
by Hochreiter & Schmidhuber [5], and were refined and popularized by many
people. They work tremendously well on a large variety of problems, and are now
widely used.

LSTMs are explicitly designed to avoid the long-term dependency problem.
Remembering information for long periods of time is practically their default be-
havior, not something they struggle to learn! All recurrent neural networks have
the form of a chain of repeating modules of neural network. In standard RNNs,
this repeating module will have a very simple structure, such as a single tanh layer
as in figure 2.2.

LSTMs also have this chain like structure, but the repeating module has a dif-
ferent structure. Instead of having a single neural network layer, there are four,
interacting in a very special way. The key to LSTMs is the cell state, the horizon-
tal line running through the top of the diagram. The cell state is kind of like a
conveyor belt. It runs straight down the entire chain, with only some minor linear
interactions. It’s very easy for information to just flow along it unchanged.

8 Chapter 2. Background

Figure 2.4: a Gated Recurrent Unit

2.3 Gated Recurrent Unit

A slightly more dramatic variation on the LSTM is the Gated Recurrent Unit, or
GRU, introduced by Cho, et al. [3] to make each recurrent unit to adaptively
capture dependencies of different time scales. Similarly to the LSTM unit, the GRU
has gating units that modulate the flow of information inside the unit, however,
without having a separate memory cells. It combines the forget and input gates
into a single “update gate.” It also merges the cell state and hidden state, and
makes some other changes. The resulting model is simpler than standard LSTM
models, and has been growing increasingly popular.

GRU is relatively new, and its performance is on par with LSTM, but computa-
tionally more efficient (less complex structure as pointed out). So we are seeing it
being used more and more. Chung et al. [4] made an excellent and comprehensive
comparison between LSTM and GRU.

2.4 Attention Mechanism

Attention Mechanisms in Neural Networks are (very) loosely based on the visual
attention mechanism found in humans. Human visual attention is well-studied
and while there exist different models, all of them essentially come down to being
able to focus on a certain region of an image with high “resolution” while perceiv-
ing the surrounding image in “low resolution”, and then adjusting the focal point
over time.

Attention mechanism was first introduced in Neural Machine Translation (NMT)
[1], where it generate a translation word based on the whole original sentence
states, not just the last state. The idea is to let every step of an RNN pick infor-
mation to look at from some larger collection of information. For example, if you
are using an RNN to create a caption describing an image, it might pick a part of
the image to look at for every word it outputs. The idea is then applied to reading
comprehension, allowing the model to select a subset of context paragraph and a
subset of question that are most relevant. That way, the model can use the most

2.4. Attention Mechanism 9

Figure 2.5: the attention weight matrix when translating a sentence

relevant information to give a better answer.
Classically, most NMT systems work by encoding the source sentence (e.g. a

German sentence) into a vector using a Recurrent Neural Network, and then de-
coding an English sentence based on that vector, also using a RNN. The decoder is
supposed to generate a translation solely based on the last hidden state from the
encoder. This vector must encode everything we need to know about the source
sentence. It must fully capture its meaning. In more technical terms, that vector is
a sentence embedding. In fact, if you plot the embeddings of different sentences in
a low dimensional space using PCA for dimensionality reduction, you can see that
semantically similar phrases end up close to each other.

Still, it seems somewhat unreasonable to assume that we can encode all infor-
mation about a potentially very long sentence into a single vector and then have
the decoder produce a good translation based on only that. Let’s say your source
sentence is 50 words long. The first word of the English translation is probably
highly correlated with the first word of the source sentence. But that means de-
coder has to consider information from 50 steps ago, and that information needs to
be somehow encoded in the vector. Recurrent Neural Networks are known to have
problems dealing with such long-range dependencies. In theory, architectures like
LSTMs should be able to deal with this, but in practice long-range dependencies
are still problematic. For example, researchers have found that reversing the source
sequence (feeding it backwards into the encoder) produces significantly better re-
sults because it shortens the path from the decoder to the relevant parts of the
encoder. Similarly, feeding an input sequence twice also seems to help a network

10 Chapter 2. Background

to better memorize things.
With an attention mechanism we no longer try encode the full source sentence

into a fixed-length vector. Rather, we allow the decoder to “attend” to different
parts of the source sentence at each step of the output generation. Importantly,
we let the model learn what to attend to based on the input sentence and what
it has produced so far. So, in languages that are pretty well aligned (like English
and German) the decoder would probably choose to attend to things sequentially.
Attending to the first word when producing the first English word, and so on. A
big advantage of attention is that it gives us the ability to interpret and visualize
what the model is doing.

Chapter 3

Bi-Directional Attention Flow model
(BiDAF)

In this chapter, we cover BiDAF [9], the most popular model of the leaderboard of
SQuAD. BIDAF is a multi-stage hierarchical process that represents the context at
different levels of granularity and uses a bi-directional attention flow mechanism
to achieve a query aware context representation without early summarization.

BIDAF includes character-level, word-level, and contextual embeddings, and
uses bi-directional attention flow to obtain a query-aware context representation.
The attention mechanism offers some improvements to the previously popular at-
tention paradigms. First, the attention layer is not used to summarize the context
paragraph into a fixed-size vector. Instead, the attention is computed for every
time step, and the attended vector at each time step, along with the representa-
tions from previous layers, is allowed to flow through to the subsequent modeling
layer. This reduces the information loss caused by early summarization. Second,
the authors used a memory-less attention mechanism, that is the attention at each
time step is a function of only the query and the context paragraph at the current
time step and does not directly depend on the attention at the previous time step.
This simplification leads to the division of labor between the attention layer and
the modeling layer. It forces the attention layer to focus on learning the attention
between the query and the context, and enables the modeling layer to focus on
learning the interaction within the query-aware context representation (the output
of the attention layer). It also allows the attention at each time step to be unaf-
fected from incorrect attendances at previous time steps. The experiments show
that memory-less attention gives a clear advantage over dynamic attention. Third,
attention mechanisms are used in both directions, query-to-context and context-to-
query, which provide complimentary information to each other.

BiDAF model is a hierarchical multi-stage process and consists of six layers
(Figure 3.1):

11

12 Chapter 3. Bi-Directional Attention Flow model (BiDAF)

Figure 3.1: Bi-Directional Attention Flow model

• Character Embedding Layer maps each word to a vector space using character-
level CNNs.

• Word Embedding Layer maps each word to a vector space using a pre-trained
word embedding model.

• Contextual Embedding Layer utilizes contextual cues from surrounding words
to refine the embedding of the words. These first three layers are applied to
both the query and context.

• Attention Flow Layer couples the query and context vectors and produces a
set of queryaware feature vectors for each word in the context.

• Modeling Layer employs a Recurrent Neural Network to scan the context.

• Output Layer provides an answer to the query.

Character Embedding Layer Character embedding layer is responsible for map-
ping each word to a high-dimensional vector space. Let {x1, ...xT} and {q1, ...qJ}
represent the words in the input context paragraph and query, respectively. The
characterlevel embedding of each word is obtained via Convolutional Neural Net-
works (CNN). Characters are embedded into vectors, which can be considered as
1D inputs to the CNN, and whose size is the input channel size of the CNN. The
outputs of the CNN are max-pooled over the entire width to obtain a fixed-size
vector for each word.

13

Word Embedding Layer Word embedding layer also maps each word to a high-
dimensional vector space. The pre-trained word vectors, GloVe [7], is often used to
obtain the fixed word embedding of each word. The concatenation of the character
and word embedding vectors is passed to a two-layer Highway Network [10]. The
outputs of the Highway Network are two sequences of d-dimensional vectors, or
more conveniently, two matrices: X ∈ Rd×T for the context and Q ∈ Rd×J for the
query.

Contextual Embedding Layer a Long Short-Term Memory Network (LSTM) is
used on top of the embeddings provided by the previous layers to model the tem-
poral interactions between words. The outputs of the two LSTMs is concatenated.
Hence we obtain H ∈ R2d×T from the context word vectors X, and U ∈ R2d×T from
query word vectors Q.

Attention Flow Layer Attention flow layer is responsible for linking and fusing
information from the context and the query words. Unlike previously popular
attention mechanisms, the attention flow layer is not used to summarize the query
and context into single feature vectors. Instead, the attention vector at each time
step, along with the embeddings from previous layers, are allowed to flow through
to the subsequent modeling layer. This reduces the information loss caused by
early summarization.

The inputs to the layer are contextual vector representations of the context H
and the query U. The outputs of the layer are the query-aware vector represen-
tations of the context words, G, along with the contextual embeddings from the
previous layer.

Modeling Layer The input to the modeling layer is G, which encodes the query-
aware representations of context words. The output of the modeling layer captures
the interaction among the context words conditioned on the query. This is different
from the contextual embedding layer, which captures the interaction among con-
text words independent of the query. We use two layers of bi-directional LSTM,
with the output size of d for each direction. Hence we obtain a matrix M ∈ R2d×T,
which is passed onto the output layer to predict the answer. Each column vector
of M is expected to contain contextual information about the word with respect to
the entire context paragraph and the query.

Chapter 4

Conclusion

In this report, we have presented in details the popular Bi-Directional Attention
Flow model which represents the context at different level and combined the
context-to-query and query-to-context direction attention. All neccesary back-
ground knowledge of general Recurrent Neural Network is also discussed. Cur-
rently, at least 8 out of top-40 of SQuAD leaderboards directly use BiDAF as the
main component. Table 4.1 compares human performance with some BiDAF-based
models on the dataset SQuAD.

Model EM F1

Human Performance 82.304 91.221

BiDAF + Self Attention + ELMo (ensemble) 81.003 87.432

BiDAF + Self Attention + ELMo (single model) 78.580 85.833

SEDT+BiDAF (ensemble) 73.723 81.530

BiDAF (ensemble) 73.744 81.525

BiDAF (single model) 67.974 77.323

Table 4.1: BiDAF-related models Performance

15

Bibliography

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473
(2014). arXiv: 1409.0473. url: http://arxiv.org/abs/1409.0473.

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term de-
pendencies with gradient descent is difficult”. In: IEEE transactions on neural
networks 5.2 (1994), pp. 157–166.

[3] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014).
arXiv: 1406.1078. url: http://arxiv.org/abs/1406.1078.

[4] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling”. In: CoRR abs/1412.3555 (2014). arXiv:
1412.3555. url: http://arxiv.org/abs/1412.3555.

[5] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[6] Xuezhe Ma and Eduard H. Hovy. “End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF”. In: CoRR abs/1603.01354 (2016). arXiv: 1603.
01354. url: http://arxiv.org/abs/1603.01354.

[7] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural
Language Processing (EMNLP). 2014, pp. 1532–1543. url: http://www.aclweb.
org/anthology/D14-1162.

[8] Pranav Rajpurkar et al. “SQuAD: 100, 000+ Questions for Machine Compre-
hension of Text”. In: CoRR abs/1606.05250 (2016). arXiv: 1606.05250. url:
http://arxiv.org/abs/1606.05250.

[9] Min Joon Seo et al. “Bidirectional Attention Flow for Machine Comprehen-
sion”. In: CoRR abs/1611.01603 (2016). arXiv: 1611.01603. url: http://
arxiv.org/abs/1611.01603.

[10] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway
networks”. In: arXiv preprint arXiv:1505.00387 (2015).

17

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1603.01354
http://arxiv.org/abs/1603.01354
http://arxiv.org/abs/1603.01354
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603

	Front page
	Contents
	1 Introduction
	2 Background
	2.1 Recurrent Neural Networks
	2.2 Long Short-Term Memory
	2.2.1 The Problem of Long-Term Dependencies
	2.2.2 Long Short-Term Memory Networks

	2.3 Gated Recurrent Unit
	2.4 Attention Mechanism

	3 Bi-Directional Attention Flow model (BiDAF)
	4 Conclusion
	Bibliography

