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Unearthing new genomic markers of drug
response by improved measurement of
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Abstract

Background: Oncology drugs are only effective in a small proportion of cancer patients. Our current ability to
identify these responsive patients before treatment is still poor in most cases. Thus, there is a pressing need to
discover response markers for marketed and research oncology drugs. Screening these drugs against a large panel
of cancer cell lines has led to the discovery of new genomic markers of in vitro drug response. However, while the
identification of such markers among thousands of candidate drug-gene associations in the data is error-prone, an
appraisal of the effectiveness of such detection task is currently lacking.

Methods: Here we present a new non-parametric method to measuring the discriminative power of a drug-gene
association. Unlike parametric statistical tests, the adopted non-parametric test has the advantage of not making
strong assumptions about the data distorting the identification of genomic markers. Furthermore, we introduce a
new benchmark to further validate these markers in vitro using more recent data not used to identify the markers.

Results: The application of this new methodology has led to the identification of 128 new genomic markers
distributed across 61% of the analysed drugs, including 5 drugs without previously known markers, which were missed
by the MANOVA test initially applied to analyse data from the Genomics of Drug Sensitivity in Cancer consortium.

Conclusions: Discovering markers using more than one statistical test and testing them on independent data is
unusual. We found this helpful to discard statistically significant drug-gene associations that were actually spurious
correlations. This approach also revealed new, independently validated, in vitro markers of drug response such as
Temsirolimus-CDKN2A (resistance) and Gemcitabine-EWS_FLI1 (sensitivity).

Background
Cancer is a leading cause of morbidity and mortality in
industrialised nations, with failed treatment being often
life-threatening. While a wide range of drugs are now
available to treat cancer patients, in practice only a small
proportion of them respond to these drugs [1]. Worse
yet, our current ability to identify responsive patients
before treatment is still poor in most cases [2]. This situ-
ation has a negative impact on patient survival (the
tumour keeps growing until an effective drug is adminis-
tered), healthcare costs (very expensive drugs are inef-
fective, and thus wasted, on most cancer patients [1, 3])

and the success rates of oncology clinical trials (10% fall
in Phase II studies, with the number of phase III termi-
nations doubling in recent years [4]). There is therefore
a pressing need to understand and predict this aspect of
human variation to make therapy safer and more effect-
ive by determining which drugs will be more appropriate
for any given patient.
The analysis of tumour and germline DNA has been

investigated as a way to personalise cancer therapies
for quite some time [5]. However, the recent and
comprehensive flood of new data from much cheaper
and faster Next Generation Sequencing technologies
along with the maturity of more established molecular
profiling technologies represents an unprecedented
opportunity to study the molecular basis of drug
response. These data have shown that drug targets
often present genomic alterations across patient
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tumours [6]. At the molecular level, these somatic
mutations affect the abundance and function of gene prod-
ucts driving tumour growth and hence may influence dis-
ease outcome and/or response to therapy [7]. This is an
opportunity for genetic information to aid the selection of
effective therapy by relating the molecular profile of tu-
mours to their observed sensitivity to drugs. Research on
the identification of drug-gene associations to be used as
predictive biomarkers of in vitro drug response is carried
out on human cancer tumour-derived cell lines [8–10]. Cell
lines allow relatively quick and cheap experiments that are
generally not feasible on more accurate disease models
[11]. Here the molecular profile of the untreated cell line is
determined and a phenotypic readout is measured to assess
the intrinsic cell sensitivity or resistance to the tested drug.
In addition to biomarker discovery [8–10], these data sets
have also been used to enable pharmacogenomic modelling
[12–14], pharmacotranscriptomic modelling [15, 16],
QSAR modelling [17, 18], drug repositioning [18, 19] and
molecular target identification [19–21], among other
applications.
Our study focuses on the Genomics of Drug Sensitivity

in Cancer (GDSC) data analysed by Garnett et al. [9] and
publicly released after additional curation [22]. The re-
leased data set comprises 638 human tumour cell lines,
representing a broad spectrum of common and rare
cancer types. One benefit of looking at a large number of
cell lines is that the pool of data becomes larger, which is
crucial for in vitro biomarker discovery. These authors
profiled each cell line for various genetic abnormalities,
including point mutations, gene amplifications, gene dele-
tions, microsatellite instability, frequently occurring DNA
rearrangements and changes in gene expression. Next, the
sensitivity of 130 drugs against these cell lines was mea-
sured with a cell viability assay in vitro (cell sensitivity to a
drug was summarised by the half-maximal inhibitory
concentration or IC50 of the drug-cell pair). A p-value was
calculated for 8637 drug-gene associations using a MAN-
OVA test (PMANOVA), with 396 of those associations being
above a FDR = 20% Benjamini-Hochberg [23] adjusted
threshold and thus deemed significant (details in the
Methods section). Overall, it was found that only few
drugs had strong genomic markers, with no actionable
mutations being identified for 14 drugs.
However, a statistically significant drug-gene associ-

ation is not necessarily a useful genomic marker of in
vitro drug response. There are two types of errors at this
inter-association level: a false association (type I error or
false positive) or a missed association (type II error or
false negative). False negatives are the most worrying
types of errors because these are hard to detect and can
have particularly adverse consequences (e.g. missing a
genomic marker able to identify tumours sensitive to a
drug for which no marker has been found yet). Indeed,

significant p-values are merely intended to highlight po-
tential discoveries among thousands of possibilities and
thus their practical importance still have to be evaluated
for the problem at hand [24–26]. For example, a signifi-
cant drug-gene association can become non-significant
with the availability of more data and hence be revealed
as a spurious correlation. Another possibility is that the
association is significant but its effect is tiny and thus of
little consequence for identifying sensitive tumours. In
this context, the practical importance of a potential
marker is measured by how well the gene mutation dis-
criminates between cell lines from an independent test set
according their sensitivity to a given drug. Importantly,
while a parametric test such as MANOVA makes strong
modelling assumptions [27] (e.g. normality and equal vari-
ances in the distribution of residuals), the distribution of
drug responses of the compared groups of cell lines is
often skewed, contain outliers and/or have different vari-
ances. Consequently, p-values from the MANOVA test
may be more prone to Type I and Type II errors than stat-
istical tests requiring milder assumptions. Thus, research
intended to identify more appropriate statistical proce-
dures for biomarker discovery on comprehensive pharma-
cogenomic resources such as GDSC is crucial to make the
most out of these valuable data.
Here we will investigate the impact that the choice of the

statistical test has on the systematic identification of
genomic markers of drug sensitivity on GDSC pharmaco-
genomic data. The assessment will be carried out by com-
paring drug-gene associations identified by the MANOVA
test with those identified by Pearson’s chi-squared test.
The latter is a non-parametric test [28] and hence it does
not make strong modelling assumptions distorting the
detection task. This chi-squared test is applied to binary
classification and hence we propose here an auxiliary
threshold to enable its application to this problem. Fur-
thermore, the largest discrepancies between both statistical
tests on the training data set will be visualised and
discussed with respect to the discriminative power of its
significant and non-significant drug-gene associations. In
addition, we will introduce a benchmark using a more
recent GDSC dataset than that employed for the identifica-
tion of statistically significant drug-gene associations and
use it to validate in vitro the single-gene markers arising
from each statistical test. This is timely research because
the issue of systematically validating markers in vitro has
not been addressed yet and thus it is currently unknown to
which extent the limitations of the statistical test affect
genomic marker discovery.

Methods
GDSC data
From release 1.0 of the Genomics of Drug Sensiti-
vity in Cancer (GDSC) [22], we downloaded the
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following data files: gdsc_manova_input_w1.csv and
gdsc_manova_output_w1.csv.
In gdsc_manova_input_w1.csv, there are 130 unique

drugs as camptothecin was tested twice, drug ids 195 and
1003, and thus we only kept the instance that was more
broadly tested (i.e. drug ID 1003 on 430 cell lines). Thus,
effectively a panel of 130 drugs was screened against 638
cancer cell lines, leading to 47,748 IC50 values (57.6% of all
possible drug-cell pairs). Downloaded “IC50” values are
more precisely the natural logarithm of IC50 in μM units
(i.e. negative values represent drug responses more potent
than 1 μM). We converted each of these values into their
logarithm base 10 in μM units, which we denote as logIC50

(e.g. logIC50 = 1 corresponds to IC50 = 10 μM), as in this
way differences between two drug response values are dir-
ectly given as orders of magnitude in the molar scale.
gdsc_manova_input_w1.csv also contains genetic

mutation data for 68 cancer genes, which were selected
as the most frequently mutated cancer genes [9], charac-
terising each of the 638 cell lines. For each gene-cell pair,
a ‘x::y’ description was provided by the GDSC, where ‘x’
identifies a coding variant and ‘y’ indicates copy number
information from SNP6.0 data. As in Garnett et al. [9], a
gene for which a mutation is not detected is considered
to be wild-type (wt). A gene mutation is annotated if: a)
a protein sequence variant is detected (x ≠ {wt,na}) or b)
a deletion/amplification is detected. The latter corre-
sponds to a copy number (cn) variation different from
the wt value of y = 0 < cn < 8. Furthermore, three translo-
cations were considered (BCR_ABL, MLL_AFF1 and
EWS_FLI1). For each of these gene fusions, cell lines are
identified as fusion not-detected or the identified fusion
is given (i.e. wt or mutated with respect to the gene
fusion, respectively). The microsatellite instability (msi)
status of each cell line was also determined. Full details
can be found in the original publication [9].

Statistically significant drug-gene associations with the
MANOVA test
Garnett et al. [9] carried out a fixed-effects MANOVA
statistical test based on the genomic features specified in
the previous section. An nx2 dose–response matrix con-
sisting of IC50 and slope parameter for the n cell lines
was constructed for each drug. A linear (no interaction
terms) model was claimed to explain these observables
from the genomic features as input and the tissue type
as co-variate. Since this procedure was not fully specified
(e.g. no test statistic choice or implementation informa-
tion was provided), we used their results (gdsc_mano-
va_output_w1.csv) and hence we did not recalculate
them. This file contains 8701 drug-gene associations
with p-values. As we are considering all those involving
the 130 unique drugs (i.e. removing the camptothecin

duplicate), we are left with 8637 drug-gene associations
with p-values of which 396 were above a FDR = 20%
Benjamini-Hochberg adjusted threshold (0.00840749)
and thus deemed significant according to this test. As
usual [9], each statistically significant drug-gene associ-
ation was considered to be a genomic marker of in vitro
drug response. Figure 1 provides an overview of this
process.

Measuring the discriminative power of a genomic marker
with the chi-squared test
Let the training data for the association between the ith

drug and the jth gene be

Dij ¼ logIC kð Þ
50;i; x

kð Þ
j

� �n ok¼ni

k¼1

where ni is the number of cell lines screened against the
ith drug and k denotes the considered cell line. The sets
of mutated and WT cell lines with respect to the jth

gene, MTj and WTj, be

MT j ¼ k j x kð Þ
j ¼ 1

n o
WT j ¼ k j x kð Þ

j ¼ 0
n o

Next, the logIC50 threshold is defined as the average of
the two median responses from each set (this definition
is motivated in the subsection “Improved measurement
of discriminative power by the chi-squared test” within
the Results section).
Thus, for each association between the ith drug and the

jth gene, two steps are carried out to pose its evaluation as
an intra-association binary classification problem.
Step 1:

medMTij ¼ median logIC kð Þ
50;i

n o
k∈MT j

� �

medWTij ¼ median logIC kð Þ
50;i

n o
k∈WT j

� �

thresij ¼ medMTij þmedWTij
� �

=2

Step 2:
if (medMTij <medWTij) then mutant cell lines tend to

be more sensitive to the drug and hence this is a gen-
omic marker of drug sensitivity. Consequently, positives
are defined as cell lines with logIC50 < thresij and nega-
tives are defined as cell lines with logIC50 ≥ thresij.
else if (medMTij ≥medWTij) then mutant cell lines

tend to be more resistant to the drug and hence this is a
genomic marker of drug resistance. Therefore, negatives
are defined as cell lines with logIC50 < thresij and posi-
tives are defined as cell lines with logIC50 ≥ thresij.
At this point, the set of all the cell lines tested with a

given drug can be partitioned into four categories as
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defined in Fig. 2: true positive (TP), true negative (TN),
false positive (FP) or false negative (FN). From this con-
tingency table, the discrimination offered by a drug-gene
association can be summarised by the Matthews Correl-
ation Coefficient (MCC) [29].

MCC ¼ TP∙TN−FP∙FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ∙ FNþ TNð Þ∙ TNþ FPð Þ∙ FPþ TPð Þp

By the above definition of positives and negatives, MCC
can only take values from 0 (gene mutation has absolutely
no discriminative power) to 1 (gene mutation perfectly pre-
dicts whether cell lines are sensitive or resistant to the drug).

Also, note that both the definition of the logIC50 threshold
and the existence of mutated and wt cell lines in every asso-
ciation guarantees a non-zero value of the denominator in
the MCC formula and thus MCC is always defined in this
study. As previously explained, we report MCC as φ when-
ever this is calculated with the mutation-dependent thresh-
old on training data (i.e. GDSC release 1.0).

Statistically significant drug-gene associations with the
chi-squared test
For each of the 8637 drug-gene associations, the chi-
squared test statistic was computed from the 2 × 2

Fig. 1 Released GDSC data. a Garnett et al. [9] analysed a slightly different dataset than the one that was later released. In the released dataset, a
panel of 130 drugs was tested against 638 cancer cell lines, leading to 47,748 IC50 values (57.6% of all possible drug-cell pairs). For each cell line,
68 cancer genes were sequenced and their mutational status determined, plus three translocations and a microsatellite instability status. b A
dataset Dij can be compiled for each drug-gene combination comprising the ni cell responses to the ith drug (in our case, each response as the
logarithm base 10 of IC50 in μM units), with xj

(k) being a binary variable indicating whether the jth gene is mutated or not in the kth cell line. Next,
a p-value was calculated for each drug-gene pair using the MANOVA test. Those pairs with p-values below an adjusted threshold of 0.00840749
were considered statistically significant (396 of the 8637 drug-gene associations)

Fig. 2 Measuring the discriminative power of a genomic marker with φ and the chi-squared test. a Scatter plot showing the logIC50 of n = 284
cell lines screened against the marketed drug Dasatinib. The left boxplot shows BCR_ABL positive cell lines, whereas the boxplot on the right
shows cell lines without this mutation (the median of each group appears as a black horizontal line within the boxplot). The red dotted line is
the IC50 threshold, which is defined as the mean of both medians. b Contingency table showing the number of training set cell lines in each of
the four non-overlapping categories (TP, FN, FP, TN), where positives are cell lines below the threshold in the case of a sensitising mutation
(above the threshold if the mutation induces resistance). φ and χ2 are functions of these metrics and summarise binary classification performance,
as further described in the Methods section. BCR_ABL is a very strong marker of Dasatinib sensitivity as shown in the scatter plot and highlighted
by both statistical tests (PMANOVA = 1.4∙10− 10, Pχ2 = 6.4∙10− 28), offering unusually high discrimination between cell lines according to their relative
drug sensitivity (φ = 0.65)
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contingency table [30] to identify those drug-gene asso-
ciations with statistically significant discriminative
power. The formula to compute the chi-squared test
statistic is

χ2 ¼
X2

l¼1

X2
m¼1

Olm−Elmð Þ2
Elm

where Olm are the four categories in the table
(TP,TN,FN,FP) and Elm are the corresponding expected
values under the null hypothesis that this partition has
arisen by chance. Thus, expected values are calculated with

E11 ¼ E TPð Þ ¼ PP � OP
n

E12 ¼ E FNð Þ ¼ PN � OP
n

E21 ¼ E FPð Þ ¼ PP � ON
n

E22 ¼ E TNð Þ ¼ PN � ON
n

For instance, the expected value of TP, E(TP), is the
number of predicted positives (PP) times the probability
of a cell being a positive given as the proportion of
observed positives (OP) in the n tested cells.
This chi-squared test statistic follows a χ2 distribution

with one degree of freedom and thus each p-value was
computed with the R package pchisq from its corre-
sponding χ2 value, χ20; as

Pχ2 ¼ pdf χ2 χ20; df ¼ 1
� �

where pdfχ2 is the probability density function of the
chi-square distribution. The process is sketched in Fig. 2
and leads to an alternative set of p-values from the chi-
squared test (Pχ2). To establish which associations are
significant according to the chi-squared test, we also cal-
culated for this case the FDR = 20% Benjamini-Hochberg
adjusted threshold (0.00940155), that is

Pχ2;ij < 0:00940155

To facilitate reproducibility and the use of this method-
ology to analyse other pharmacogenomics data sets, the R
script to calculate φ, chi-squared test statistic and Pχ2
from gdsc_manova_input_w1.csv is available on request.

Benchmark to validate genomic markers on more recent
GDSC data
This benchmark is based on using more recent GDSC
data as test sets. With this purpose, we downloaded new
data from the latest release using the same experimental
techniques to generate pharmacogenomic data and panel
of selected genes as in release 1 (gdsc_manova_in-
put_w5.csv). This release 5 contains 139 drugs tested on
708 cell lines comprising 79,401 logIC50 values (80.7% of
all possible drug-cell pairs). For the 127 drugs in

common between releases 1 and 5, two non-overlapping
data sets are generated per drug. Training sets using
data in release 1 (the minimum, average and maximum
numbers of cell lines across training data sets are 237,
330 and 467, respectively), along with their logIC50s for
the considered drug. These sets were used to identify
genomic markers as previously explained. Test sets con-
tain the new cell lines tested with the drug in release 5
(the minimum, average and maximum numbers of cell
lines in the test data sets are 42, 171 and 306, respect-
ively). Thus, a total of 254 data sets were assembled and
analysed for this study.
The significant drug-gene associations from each stat-

istical test are next evaluated on these test sets (this is
the inter-association classification problem). A cell line
sensitivity threshold was previously defined to discrim-
inate between those resistant or sensitive to a given
drug. For each drug, we calculated the threshold as the
median of all the logIC50 values from training set cell
lines. Consequently, cell lines with logIC50 lower than
such threshold are sensitive to the drug of interest,
whereas those with logIC50 higher the threshold are
resistant. Lastly, classification performance of a marker
on its test set is summarised with the MCC (this is dif-
ferent from φ, which has the same expression but uses
a different threshold aimed instead at measuring the
degree of separation between mutant and WT cell lines
in the training set).

Results
Improved measurement of discriminative power by the
chi-squared test
Genomic markers of drug response aim at identifying
gene alterations that best discriminate between tumours
regarding their sensitivity to a given drug. The ANOVA
family of statistical tests attempts to determine how dis-
criminative is the gene alteration by comparing the
intra-group variances with the inter-group variances
based on several strong assumptions about the data [30].
In order to enable the application of the non-parametric
chi-squared test, a suitable IC50 threshold is required to
define two auxiliary classes of cell lines, those most sen-
sitive to the drug and those most resistant to the drug,
which permits posing biomarker evaluation as a binary
classification problem. Such threshold cannot be a fixed
IC50 value for all drugs due to the different IC50 ranges
across drugs (otherwise, all cell lines would be sensitive
to the most potent drugs). Likewise, it would not be
meaningful to fix the same IC50 threshold for all drug-
gene associations within a given drug (for example, using
the mean of the drug’s IC50s along with a rare mutation
would result in a threshold splitting the WT cell lines in
about half regardless of how more sensitive the mutant
cell lines could be). For each drug-gene association, this
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issue can be overcome by characterising the typical
sensitivity of each group of cell lines (i.e. those with the
mutated gene and those with the WT gene) and
calculating the threshold as the mean of the sensitivities
of both groups. However, if each group was charac-
terised by the mean of its IC50 values, the presence of
strong outliers and/or a highly skewed IC50 distribution
would distort the position of the threshold. Thus, we
characterise each group of cells by its median IC50 and
define this mutation-dependent threshold as the mean
of both medians (e.g. the dotted red line of the scatter
plot in Fig. 2a). This definition is advantageous in that
the size of each group and their outliers do not alter the
position of this decision boundary, which is equidistant
to both classes and leads to an intuitive notion of class
membership as distance from the threshold.
Once this IC50 threshold is calculated, the mutation-

based prediction of drug response of a cell line can be
categorised as a true positive (TP), true negative (TN),
false positive (FP) or false negative (FN). These relative
measures of drug sensitivity are only intended to quan-
tify the discrimination between mutated and WT cell
lines and must not be mistaken by absolute measures of
drug sensitivity (e.g. a cell line can be defined as sensi-
tive to a drug if its IC50 is better than the median IC50 of
all cell lines for that drug, however such threshold may
poorly measure how different are the drug responses of
mutated and WT tumours). From this contingency table
at the intra-association level, the discrimination offered
by a drug-gene association can be summarised by its
Matthews Correlation Coefficient (MCC) [29], as speci-
fied in the Methods section. Since cells are now parti-
tioned into four non-overlapping categories with respect
to their response to a drug, the chi-squared test statistic
(denoted as χ2) can be computed from this 2 × 2 contin-
gency table to identify those drug-gene associations with
statistically significant discriminative power (χ2 measures
how far is the contingency table obtained by the classifi-
cation method from the values that would be expected
by chance). The process is sketched in Fig. 2 and leads
to an alternative set of p-values from the chi-squared
test (Pχ2), whose definitions and calculations are pro-
vided in the Methods section. To establish which associ-
ations are significant according to the chi-squared test,
we also calculated for this case the FDR = 20%
Benjamini-Hochberg adjusted threshold (0.00940155).
Overall, 403 statistically significant drug-gene associa-
tions were found using the chi-squared test from the
same set of 8637 associations that were downloaded (i.e.
seven significant associations more than with the
MANOVA test). Importantly, only 171 associations of
these markers were found by the MANOVA test. These
deviations of the MANOVA test with respect to the
results provided by the non-parametric test will be

investigated in the next section to highlight potential
false and missed biomarkers.
A last aspect to discuss about the proposed method-

ology is the duality of MCC and χ2. In statistics, MCC is
known as the φ coefficient, which was introduced [31]
by Yule in 1912 and later rediscovered [29] by Matthews
in 1975 as the MCC (interestingly, despite being more
recent, the MCC has become a much more popular
metric for binary classification than the φ coefficient
[32–37]). As χ2 = n∙φ2 holds [31], so does χ2 = n∙MCC2

with n being the number of tested cell lines for the con-
sidered drug and thus MCC will be highly correlated
with Pχ2. To avoid confusion, we will use φ to refer to
discrimination at this intra-association level (i.e. to iden-
tify the markers) and reserve MCC for the validation of
the identified markers as a separate binary classification
problem at the inter-association level that we will intro-
duce later. Figure 3a presents the number of drug-gene
associations for each number of tested cell lines, from
which it is observed that each drug has only been tested
on a subset n of the 638 cell lines (i.e. gene associations
for a given drug will be all evaluated on the same
number of cell lines n). Two distinctive groups of drugs
emerge: those tested on around 300 cell lines (red bars)
and those tested around 450 cell lines (black bars).
Figure 3b shows that φ and -logPχ2 are highly correlated
even across different n (for associations with the same n,
a perfect Pearson and Spearman correlation is obtained
as expected – data not shown). Given the observed φ
distribution of n values, all markers with an φ of 0.15 or
more are found unlikely to have arisen by chance. This
connexion is useful in that φ is widely used [32–37] but
without establishing its statistical significance for the
tackled problem instance.

Potential false-positive and false-negative markers of the
MANOVA test
We have introduced a new method directly measuring
the discriminative power of a drug-gene association
using the φ along with its significance using Pχ2. We
analyse next those associations where the MANOVA test
deviates the most from this non-parametric test. First,
we identified the association with the largest difference
between PMANOVA and Pχ2 among those not significant
by the chi-squared test. The left scatter plot in Fig. 4
shows that this drug-gene association (GW441756-
FLT3) discriminates poorly between mutant and WT cell
lines despite a very low PMANOVA~ 10− 10. In contrast, a
high Pχ2~ 10− 1 is obtained which means that the chi-
squared test rejected this potential false positive of the
MANOVA test.
Conversely, to assess the consistency of the MAN-

OVA test, we searched for the drug-gene association
with smallest Pχ2 among those with a similar
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PMANOVA to that of GW441756-FLT3, which is
Dasatinib-BCR_ABL (Fig. 4 right). The BCR_ABL
translocation is a highly discriminative marker of
Dasatinib sensitivity (φ =0.65), as evidenced by the
barely overlapping drug response distributions from

each set of cell lines. Note that, whereas the p-value
for Dasatinib-BCR_ABL is of the same magnitude as
that for GW441756-FLT3 using the MANOVA test
(PMANOVA~ 10− 10), the p-values for the same associa-
tions using the chi-squared test are almost 27 orders

Fig. 3 φ vs. -logPχ2 across all the 8637 drug-gene associations from GDSC. (Left) Number of drug-gene associations for each number of tested cell lines
(n). Two distinctive groups of drugs emerge: those tested on around 300 cell lines (red bars) and those tested around 450 cell lines (black bars). (Right)
φ versus -logPχ2 across the drug-gene associations (same colour code). The Spearman and Pearson correlations between both metrics are 0.99 and
0.82, respectively. The vertical blue line marks the significance cutoff for the chi-squared test. The plot shows that all markers with an φ of 0.15 or more
are too discriminative to have arisen by chance (above an φ of 0.12 if we restrict to the markers evaluated with more data shown as black crosses)

Fig. 4 Potential false-positive marker of the MANOVA test incorrectly rejected by the chi-squared test. (Left) The scatter plot for the drug-gene
association (GW441756-FLT3) with the largest -logPMANOVA among those not significant according to the chi-squared test. Hence, mutated-FLT3 is
a marker of sensitivity to the experimental drug GW441756 according to the MANOVA test, but not according to the chi-squared test. In the
plotted training set, this marker offers practically no discriminative power as further evidenced by a φ of just 0.05 and similar drug response
(logIC50) distributions of mutated and WT cell lines. However, this marker provides an MCC of 0.10 on the test and hence this is a false negative
of the chi-squared test. (Right) Conversely, to assess the consistency of the MANOVA test, we searched for the drug-gene association with largest
-logPχ2 among those with a similar -logPMANOVA to that of GW441756-FLT3, which is Dasatinib-BCR_ABL. Whereas the p-value for Dasatinib-
BCR_ABL is of the same magnitude as that for GW441756-FLT3 using the MANOVA test (PMANOVA~ 10− 10), the p-values for the same associations
using the chi-squared test differ is almost 27 orders of magnitude. Thus, unlike the chi-squared test, the MANOVA test is unable to detect the
extreme difference in discriminative power offered by these two drug-gene associations. Indeed, the BCR_ABL translocation is a highly
discriminative marker of Dasatinib sensitivity (φ = 0.65), as also evidenced by the barely overlapping drug response distributions from each set of
cell lines. This is confirmed in the test set, where the Dasatinib-BCR_ABL marker obtains an MCC of 0.21
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of magnitude apart. Thus, unlike the chi-squared test,
the MANOVA test is unable to detect the extreme
difference in discriminative power offered by these
two drug-gene associations.
The next experiment consists in searching for the lar-

gest discrepancy in the opposite direction. First, we identi-
fied the association with the largest difference between
PMANOVA and Pχ2, this time among those not significant
by the MANOVA test. The left scatter plot in Fig. 5 shows
marked difference in the two drug response distributions
of this drug-gene association (Dasatinib-CDKN2a.p14),
suggesting that this is a potential false negative of the
MANOVA test despite a high PMANOVA~ 10− 1. In con-
trast, a low Pχ2~ 10− 9 is obtained, which means that the
chi-squared test detected this potential false negative of
the MANOVA test. Conversely, to assess again the
consistency of the MANOVA test, we searched for the
drug-gene association with smallest PMANOVA among
those with a similar Pχ2 to that of Dasatinib-CDKN2a.p14,
which is SB590885-BRAF (Fig. 5 right). Whereas the p-
values for Dasatinib-CDKN2a.p14 and SB590885-BRAF
differ 27 orders of magnitude using the MANOVA test,
the p-values for the same associations have similar p-
values using the chi-squared test (Pχ2~ 10− 9). Thus, unlike
the chi-squared test, the MANOVA test is unable to
detect that both markers have similar discriminative
power as also indicated by the MCC (SB590885-BRAF has
a φ of 0.29 for 0.35 of Dasatinib-CDKN2a.p14).

Validation of single-gene markers on a more recent GDSC
data set
We propose a new benchmark based on using the most
recent comparable GDSC data as test sets. For the 127
drugs in common between releases 1 and 5, two non-
overlapping data sets are generated per drug. Training
sets from data in release 1 along with their logIC50s for
the considered drug, which were used to identify gen-
omic markers as previously explained. Further, test sets
contain the new cell lines tested with the drug in release
5. Thereafter, the significant drug-gene associations from
each statistical test are evaluated on these test sets. A
cell line sensitivity threshold was previously defined in
order to discriminate between those resistant or sensitive
to the considered drug. For each drug, we calculated the
threshold as the median of all the logIC50 values from
training set cell lines. Consequently, cell lines with
logIC50 lower than such threshold are sensitive to the
drug of interest, whereas those with logIC50 higher the
threshold are resistant. Lastly, classification performance
of a marker on its test set is summarised with the MCC.
Figure 6 presents a comparison between detection

methods using this benchmark. The three compared
methods are those based on the chi-squared test (B), the
MANOVA test (C) and their consensus (A; the associ-
ation is significant if it is significant by both tests). We
can see that the consensus method is the most predictive
(full results in Additional file 1), followed by associations

Fig. 5 Potential false-negative marker of the MANOVA test detected by the chi-squared test. (Left) The scatter plot for the drug-gene association
(Dasatinib-CDKN2a.p14) with the largest -logPχ2 among those not significant according to the MANOVA test. Hence, mutated-CDKN2a.p14 is a
potential marker of sensitivity to the marketed drug Dasatinib according to the chi-squared test, but not according to the MANOVA test. However, this
marker has predictive value as it provides MCC = 0.13 on the test set. Therefore, the chi-squared test detected this potential false negative of the
MANOVA test. (Right) Conversely, to assess the consistency of the MANOVA test, we searched for the drug-gene association with largest -logPMANOVA

among those with a similar -logPχ2 to that of Dasatinib-CDKN2a.p14, which is SB590885-BRAF. Whereas the p-values for Dasatinib-CDKN2a.p14 and
SB590885-BRAF differ in 27 orders of magnitude using the MANOVA test, the p-values for the same associations have similar p-values using the chi-
squared test (Pχ2~ 10− 9). Thus, unlike the chi-squared test, the MANOVA test is unable to detect that both markers have similar discriminative power
(SB590885-BRAF has a φ of 0.29 for 0.35 of Dasatinib-CDKN2a.p14). SB590885-BRAF is a true positive of both tests as its MCC on the test set is 0.27

Dang et al. BMC Medical Genomics  (2018) 11:10 Page 8 of 14



only significant with the chi-squared test (Additional file
2) and those only significant by the MANOVA test
(Additional file 3). These results show that the overall
predictive value of the markers revealed by the chi-
squared test is higher than that arising from the
MANOVA test and also that the consensus of both tests
is more predictive than any of these two tests alone.
While most of the markers provide better prediction
than random classification (MCC = 0 [38]), their gener-
ally low test set MCC values regardless of the employed
detection method highlight how hard is to identify pre-
dictive markers of drug response.
We also use this framework to further validate in vitro

the markers shown in Figs. 4 and 5 as examples. The

GW441756-FLT3 marker provides an MCC of 0.10 on
the test despite having weak discriminative power on the
training set and hence this is a false negative of the chi-
squared test. The Dasatinib-BCR_ABL marker obtains
an MCC of 0.21 on the test set. Dasatinib-CDKN2a.p14
provides MCC = 0.13 on the test set. Therefore, the chi-
squared test detected this confirmed false negative of the
MANOVA test. SB590885-BRAF is a true positive of
both tests since its MCC on the test set is 0.27.

128 new markers unearthed by the chi-squared test and
validated in vitro
The rest of the study will focus on unearthing these missed
discoveries using the chi-squared test and further in vitro
validation based on a test set made of more recent GDSC
data. Indeed, these new genomic markers constitute add-
itional knowledge that can be extracted from existing data,
i.e. without requiring any further experiment. In the data
released by the GDSC, the 396 genomic markers from the
MANOVA test were distributed among 116 drugs, leaving
the remaining 14 drugs without any maker.
Of the 403 single-gene markers identified by the chi-

squared test, 187 were not found by the MANOVA test
and could not be evaluated on the test set because there
are only 127 drugs in common between the training and
test sets and some markers did not have mutant test set
cell lines (i.e. test set MCC cannot be evaluated for these
markers because these yield no prediction). For the same
reasons, the situation is similar for the MANOVA test:
only 182 of the 396 MANOVA-significant drug-gene
associations were not found by chi-squared test and
could not be evaluated on the test set. Further, there are
128 of the 187 associations from the chi-squared test
with test set MCC greater than zero (115 of the 182
associations from the MANOVA test).
Figure 7 shows two examples of new chi-squared

markers for drugs with previously-proposed MANOVA
markers. The scatter plot at the top left identified the
mutational status of CDK2NA as a new marker of
sensitivity to Temsirolimus, which was missed by the
MANOVA test. This marker predicts well which cell
lines are sensitive to this drug (MCC of 0.30 on the test
set; top right plot). The second example is shown at the
bottom of Fig. 7. The EWS_FLI1 translocation is also a
new response marker for the drug BMS-754807, which
was also missed by the MANOVA test. This marker pro-
vides good predictive performance on cell lines not used
to identify the markers (MCC of 0.25 on the test set;
bottom right plot). Overall, we have found new markers
unearthed by the chi-squared test in 77 of the 127 drugs
(see Additional file 2).
New genomic markers are particularly valuable in

those drugs for which no marker is known yet. From
our analysis, we have also identified seven new markers

Fig. 6 Test set performance of three methods to identify single-
gene markers. The methods are evaluated by their ability to correctly
classify more recently-tested cell lines as sensitive or resistant to the
considered drug via the MCC on the test set. There is no overlap
between test sets and those employed to identify all drug-gene
associations (training sets). The three compared methods are those
based on the chi-squared test (B), the MANOVA test (C) and their
consensus (A; the association is significant if it is significant by both
tests). We can see that the consensus method is the most predictive,
followed by associations only significant with the chi-squared test
(B) and those only significant by the MANOVA test (C). These results
show that the overall predictive value of the markers revealed by
the chi-squared test is higher than that arising from the MANOVA
test and also that the consensus of both tests is more predictive
than any of these two tests alone. While most of the markers
provide better prediction than random classification (MCC = 0), their
generally low test set MCC values regardless of the employed
detection method highlight how hard is to identify predictive
markers of drug sensitivity
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with MCC better than random classification for the five
drugs for which the MANOVA test did not find any po-
tential marker [9]: NU-7441, Cyclopamine, BI-2536,
Gemcitabine and Epothilone B (see Additional file 2).
Figure 8 shows the performance of two of these markers.
On the right, the mutational status of the NOTCH1
gene is the most discriminative marker for the develop-
ment drug BI-2536 (MCC = 0.23 on the test set). On the
left, EWS_FLI1-positive cell lines exhibit increased sensi-
tivity to Gemcitabine (MCC = 0.18 on the test set).

Discussion
To improve the search of genomic markers of drug
response, we have presented a new non-parametric

approach that directly measures the discriminative
power of a drug-gene association by posing it as a binary
classification problem. This change of perspective has
been enabled by the introduction of an auxiliary thresh-
old that is tailored to each association. Thus, discrimin-
ation can be measured with the χ2 statistic and its
significance with the chi-squared test, which provides a
better alignment of the statistical and biological signifi-
cance of a drug-gene association. Furthermore, we have
shown that, since φ is linked to χ2, the significance of a
φ value can also be calculated with the chi-squared test.
Next, the chi-squared test has been applied to the

identification of genomic markers from GDSC data and
these markers compared to those arising from the

Fig. 7 Examples of new genomic markers for drugs with previously-proposedMANOVA markers. (Top) The mutational status of the CDKN2A gene
is found to be the most discriminative marker for the approved drug Temsirolimus (MCC = 0.30 on the test set,), which was missed by the
MANOVA test (PMANOVA = 9∙10− 3). (Bottom) The EWS_FLI1 translocation is found to be the most discriminative marker for the development drug
BMS-754807 (MCC = 0.25 on the test set), which was also missed by the MANOVA test (PMANOVA = 0.01). While both tests are being applied to
exactly the same data, only the chi-squared test could identify these confirmed false negatives of the MANOVA test
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MANOVA test [9]. Unlike the chi-squared test, statis-
tical tests from the ANOVA family are parametric and
thus expected to lead to inaccuracies when the data do
not conform to the underlying modelling assumptions
[27, 28]. Unlike the MANOVA test, the chi-squared test
has the drawback of requiring the binarisation of logIC50

values, which leads to all misclassification errors having
the same weight on the chi-squared test statistic regard-
less of the magnitude of this error. The largest discrep-
ancies arising from both sets of p-values have been
discussed in detail as shown in Figs. 4 and 5, which pro-
vide examples of false negatives of both tests. False
positive markers of either test are less important because
they do not represent new knowledge, but resource-
consuming false alarms, and may also become true posi-
tives with the arrival of more data.
Using the new benchmark, we have carried out a system-

atic comparison across 8637 drug-gene associations for
which a p-value from the MANOVA test had been calcu-
lated in the GDSC study [9]. The MANOVA test
highlighted 396 of these associations as statistically signifi-
cant, for 403 from the chi-squared test looking at the same
data. However, only 171 associations were deemed statisti-
cally significant by both tests. Ultimately, we have found that
216 of the 396 MANOVA-significant markers offer better
than random performance. These drug-gene associations
are those with positive MCC in Additional files 1 and 3.
We have also found that 229 of the 403 χ2-significant

markers offer better than random performance. Of these
229, 128 are new markers only detected by the chi-
squared test (see Additional file 2) and hence are false
negatives of the MANOVA test. Temsirolimus-

CDK2NA, 17AAG-CDK2NA or BMS-754807-
EWS_FLI1 are among the most predictive of these new
in vitro markers. Furthermore, we also identified 7 new
markers with MCC better than random classification for
the 5 drugs for which the MANOVA test did not find
any marker [9]: NU-7441, Cyclopamine, BI-2536,
Gemcitabine and Epothilone B. Overall, the predictive
value of the markers revealed by the chi-squared test is
higher than that arising from the MANOVA test and
also that the consensus of both tests is more predictive
than any of these two tests alone (see Fig. 6). The former
means that the chi-squared test should be preferred over
the MANOVA test for this problem, the latter showing
that the consensus of both tests highlights markers that
are more likely to be predictive than those that are
significant by only one of the tests.
Regarding best practices to compare two statistical

tests for biomarker discovery, it could be argued that it
is better to base the comparison on the ability of the
tests to identify clinical markers. However, there are sev-
eral reasons why this is inadequate. First of all, only a
fraction of GDSC drugs have FDA-approved markers.
Second, whereas clinical markers are so discriminative
that are easily found by both methods, the challenge is
to identify more subtle markers in the data. Indeed, the
goal of the GDSC study was to search for still unknown
markers to increase the ratio of patients that could bene-
fit from personalised treatments (low for most clinical
markers) as well as to find new markers for those drugs
without clinical markers. Lastly, a gene mutation dis-
criminative of in vitro drug response may be discrimina-
tive of human drug response, without still having been

Fig. 8 Examples of new genomic markers for drugs without previously-proposed known MANOVA markers. (Left) The EWS_FLI1 translocation is
found to be the most discriminative marker for the approved drug Gemcitabine (MCC = 0.18 on the test set), which was missed by the MANOVA
test (PMANOVA = 0.06). (Right) The mutational status of the NOTCH1 gene is found to be the most discriminative marker for the development drug
BI-2536 (MCC = 0.23 on the test set), which was also missed by the MANOVA test (PMANOVA = 0.03)
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assessed in the clinic. A validation based on comparing
the tests on clinical markers will be thus blind to the
MANOVA test missing these discoveries.

Conclusions
Discovering markers using more than one statistical test
and testing them on independent data is unusual. We
found this helpful to discard statistically significant
drug-gene associations that were actually spurious corre-
lations. This approach also revealed new, independently
validated, in vitro markers of drug response such as
Temsirolimus-CDKN2A (resistance) and Gemcitabine-
EWS_FLI1 (sensitivity). Importantly, these markers were
originally missed by the MANOVA test when applied to
exactly the same data. Overall, the predictive value of
the markers revealed by the chi-squared test is higher
than that arising from the MANOVA test. Furthermore,
the consensus of both tests is more predictive than any
of these two tests alone. Based on these results, the chi-
squared test should be preferred over the MANOVA test
if only one statistical test is to be used. We have also
shown that genomic markers highlighted by both tests
are more likely to be predictive than those that are
deemed significant by only one of the statistical tests.
Predictive biomarkers are highly sought after in drug

development and clinical research [39, 40]. A vast amount
of cancer genomics data is nowadays being generated [41]
and thus there is an urgent need for their accurate analysis
[42]. In the area of drug sensitivity marker discovery, recent
multilateral efforts have been made [43, 44] to investigate
the consistency of high-throughput pharmacogenomic data,
which are collectively important to promote an optimal use
of this valuable data by the relevant communities [45].
However, the impact of the strong modelling assumptions
made by standard parametric tests on the discovery of gen-
omic markers from data has not been analysed until now.
This study is therefore important in a number of ways.

First, these new genomic markers of in vitro drug
response represent testable hypothesis that can now be
evaluated on more relevant disease models to humans.
Second, they may also constitute further evidence sup-
porting newly proposed oncology targets [46]. Third,
beyond the exploitation of these results, the widespread
application of this methodology should lead to the dis-
covery of new predictive biomarkers of in vitro drug re-
sponse on existing data, as it has been the case here
with the GDSC. Indeed, this new approach has been
demonstrated on a large-scale drug screening against
human cancer cell lines, but it can also be applied to
other biomarker discovery problems such as those
adopting more accurate disease models (e.g. primary tu-
mours [47, 48], patient-derived xenografts [49, 50] or
patients [51, 52]), those employing other molecular
profiling data (e.g. transcriptomics [53], secretome

proteomics [54], epigenomics [55] or single-cell genom-
ics [56]) or those involving drug combinations [57].
Looking more broadly, the methodology can also be
applied to large-scale drug screening against human or
non-human molecularly-profiled pathogen cultures,
such as those in antibacterial or agricultural research.
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