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Abstract—AUTOSAR OS is a standard for automotive op-
erating systems, which provides a specification that consists of
functionalities such as scheduling services, timing services, and
memory protection. In this paper, we focus on memory protection
features among them. As the AUTOSAR OS specification is
described in natural language, its ambiguity may confuse devel-
opers as well as cause the contradiction of the specification, then
eventually lead to serious problems of automotive systems such
as bugs and errors. These problems in automotive systems relate
directly to the safety of human being. Thus, it is very important
to ensure the unambiguity and consistency of the specification.
Our solution for the problems is formalizing the AUTOSAR OS
specification using Event-B specification language which allows
us to formally specify the functionalities of AUTOSAR OS
and reduce the ambiguity of natural language. We developed
a formal specification of the memory protection of AUTOSAR
OS and verified its consistency. In this verification, we found
the inconsistency of the specification during discharging proof
obligations generated by RODIN which is a tool for Event-B.
This inconsistency comes from the ambiguity of the original
specification, and finding it by reviewing based on natural
language description is very hard. In this paper, we explain
how we found the inconsistency existed in the AUTOSAR OS
standard after showing our approach to formalize and verify it
with Event-B.

Index Terms—AUTOSAR OS, memory protection, formaliza-
tion, verification

I. INTRODUCTION

AUTOSAR (AUTomotive Open System ARchitecture) is a
worldwide development partnership of vehicle manufacturers,
suppliers, service providers and companies from the auto-
motive electronics, semiconductor and software industry [1];
AUTOSAR OS (AUTOSAR Operating System) is a standard
proposed by AUTOSAR. AUTOSAR OS specification is ex-
tended from OSEK/VDX OS specification [2] with a numerous
of protection facilities such as timing, services, and memory
protection. Protecting memory is important because the main
purpose of the memory protection is to minimize the potential
risks that could harm the memory of the system. Thus, in this
paper, we focus on the AUTOSAR OS memory protection
facilities. In the rest of this paper, the terms AUTOSAR OS
specification [3], original specification, and informal specifi-
cation are used equivalently to the specification of AUTOSAR
OS memory protection.

AUTOSAR OS specification defines memory protection
features to protect data and stacks of an OS-Application from

the possible corruption of Non-Trusted OS Applications. The
OS-Applications are introduced as basic entities of AUTOSAR
OS. There are two types of OS-Application. The first type
is Trusted OS-Applications, which are allowed to run in
privileged mode at runtime. The second one is Non-Trusted
OS-Applications, which have restricted access to memory.
Each OS-Application contains OS-Objects such as Tasks and
ISRs!. OS-Applications and OS-Objects have their own stack
and may have data section. The code of an OS-Application is
saved in the code section.

The problem is that these features are written in natural
language, which may cause ambiguity. For example, the
description “OS-Applications can have private data sections
and Tasks/ISRs can have private data sections” has two
ambiguous words including “can have” and “private”. In detail,
the word “can have” of this description has several kinds of
implementation such as (1) OS-Application and Tasks/ISRs
do not have private data section; (2) OS-Application and
Tasks/ISRs have data section; (3) OS-Application has the
data section but Tasks/ISRs do not have; and (4) Tasks/ISRs
have the data section but OS-Application does not have.
In addition, developers also are confused about the phrase
“private data section”. The meaning can be understood that the
OS-Application owns the data section or all the data sections
of the OS-Application cannot be shared.

In addition, the original specification may contain implica-
tions. For example, a requirement of the original specification
said: “OS-Application is permitted to read and write its own
data section”, so the implicit understanding can be found is
“OS-Objects which belong to an OS-Application are permitted
to read and write the OS-Application’s data section”. From
these problems of the AUTOSAR OS specification, there is a
concern that the specification contains some contradiction.

Our solution for the problems is writing a specification using
Event-B formal specification language [4]. Event-B uses set
theory as modeling notation. Thus, it can remove the ambigu-
ity of the descriptions in AUTOSAR OS specification. In this
research, the structure of AUTOSAR OS is described in the
context part of the Event-B description and the requirements
are written as events in the machine part of Event-B. This for-
mal specification strictly describes the structure of AUTOSAR
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OS using set theory. Thus, it reduces the ambiguity caused
by natural language. This formal specification is then used
to verify the consistency of the AUTOSAR OS specification.
There are two purposes for the verification. The first one is
to evaluate that the formal specification faithfully formalizes
the AUTOSAR OS specification. The other is to verify the
consistency of the AUTOSAR OS specification. In order to
do that, invariants are defined as constraints. Each invariant is
written corresponding to each event and the implication in the
form of “Conditions = Permission”, where the left-hand-side
(LHS) of the invariant describes the guards of the event and
the right-hand-side (RHS) describes the action of the event.

In this research, there are three obtained results of the
formalization and verification of the AUTOSAR OS standard’s
memory protection. Firstly, the formalization removed the
ambiguity of the AUTOSAR OS specification, which is written
in natural language. Secondly, the formalization described
the implications come from the AUTOSAR OS structure and
the memory protection requirements. Thirdly, the verification
found the inconsistency of the original specification. Then,
we proposed an improvement to make the AUTOSAR OS
specification consistent.

The remainder of this paper is organized as follows: sec-
tion II shows problems and ideas of our approach. Section III
presents formalization of AUTOSAR OS. The verification is
illustrated in the section IV. Section V presents how to find
the inconsistency. Section VI makes some discussions based
on the result of the previous section. Some related works are
presented in the section VII to compare with our research.
Finally, section VIII presents some conclusions and future
works.

II. APPROACH

In this section, we explain our approach to formalizing the
AUTOSAR OS specification, which can be verified the con-
sistency of the specification. The figure 1 shows an overview
of our approach.

There are three main steps of the formalization. The first
step is analyzing the original specification to find components
constructing the architecture of AUTOSAR OS. Most of
the information about AUTOSAR OS’s structure is written
in natural language and scattered distributed in the original
specification. The original specification is arranged to figure
out the components of AUTOSAR OS and is analyzed to
show the evidence that this specification contains the implicit
understanding. In order to present AUTOSAR OS architecture
and the implicit understanding clearly, we present such com-
ponents using sets and relations. The requirements are then
described on top of the structure’s components.

The second step is writing the formal specification of
AUTOSAR OS, which is used to verify the consistency of
the AUTOSAR OS specification. The formal specification is
written to reduce the ambiguity of the original specification.
For example, the formal specification should cover all meaning
of the “can have” word in the AUTOSAR OS descriptions.
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Fig. 1. Overview of formalizing the memory protection of AUTOSAR OS.

A list of transformation rules is defined to map the ana-
lyzed components as formal notations in Even-B language.
These transformation rules aim at bi-directional traceability
between the formal specification and informal specification
to ensure the integrity of AUTOSAR OS specification. They
also support to establish trace links between elements in
the original specification and the formal specification. We
choose Event-B to write the formal specification. Event-
B is a formal specification language based on mathematics
and it supports set theory, which is suitable to describe the
analyzed components of AUTOSAR OS in the previous step.
However, the protection is described as if-then-else event in
the original specification. For example, “read and write access
from a non-trusted application to the data section of another
OS-Application is prevented”. These events of the original
specification are not real events because it does not contain
behavior. Thus, the notion of the events is used to represent
such if-then-else in Event-B. By applying transformation rules,
each component of AUTOSAR OS is formalized in Event-
B notations. An Event-B specification is made of several
components of two kinds: Contexts and Machines. Machines
contain the variables, invariants, theorems, and events of an
Event-B specification, whereas contexts contain carrier sets,
constants, axioms, and theorems. In the AUTOSAR OS formal
specification, the context is used to formalize the architecture
of AUTOSAR OS and the machine formalizes requirements.

The third step is verification. The purpose of this step is to
verify the consistency of the original specification. In order
to do that, the invariants are written corresponding to the
memory protection’s requirements to ensure the correctness
of our formalization. The implicit understanding is also for-
malized as invariants using events and facts defined in the
context. Then, proof obligations are generated by the Rodin



platform [4], which is an Eclipse-based IDE for Event-B that
provides effective support for refinement and mathematical
proof. These proof obligations are then discharged to verify
the consistency of the AUTOSAR OS specification. If all
proof obligations are discharged, the original specification is
consistent. Otherwise, there is some inconsistent description
of it. If there is any inconsistency, the original specification
should be improved. According to this approach, the incon-
sistency of the AUTOSAR OS specification was found in the
description “OS-Applications private data sections are shared
by all Tasks/ISRs belonging to that OS-Application”.

III. FORMALIZATION OF AUTOSAR OS STANDARD’S
MEMORY PROTECTION

In this section, we present the formalization of AUTOSAR
OS standard’s memory protection. The main point is to in-
troduce the structure of AUTOSAR OS. After analyzing the
informal specification to find components of the structure, a
list of transformation rules is used to write the formal specifi-
cation. Then, AUTOSAR OS’s requirements are described on
top of the structure.

A. Analyzing the AUTOSAR OS specification

In this step, the input is AUTOSAR OS specification
document. From this document, our formalization focuses on
three representation kinds of operating system’s components
in Event-B: entity, relation, and constraint.

Entities: From the AUTOSAR OS specification document,
entities relating to the memory protection are identified and
extracted the description of their attribute. There are four kinds
of entities are shown in table I.

TABLE I
ENTITIES OF AUTOSAR OS SPECIFICATION
Entities Description
OS_Applications| The basic realms of spatial isolation in AUTOSAR
OS [5]
OS_Objects The set of elements inside an OS_Applications like
Tasks and ISRs
Memory The object of protection, which contains

Data sections and Stack
This part contains source codes of an AUTOSAR OS

Code Sections

Relations: To formalize the memory protection specifica-
tion, the structure of the system is visualized using entities
and relationships between them. However, descriptions of
the relations are scattered in the original specification. Thus,
analyzing AUTOSAR OS specification is necessary to collect
the relations. For example, The relation “each object has their
own stack” is found by analyzing the description “The stack
for these objects, by definition, belongs only to the owner
object and there is, therefore, no need to share stack data
between objects, even if those objects belong to the same
OS-Application”. Moreover, there is a constraint from this
description is that “the stack data of an object cannot be shared
with others”

Constraints: They are limitations which the system is
expected to accomplish. The description of the constraints is

scattered throughout the original specification as shown in the
above example. Therefore, it takes the effort to identify each
of them.
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Fig. 2. The structure of AUTOSAR OS

The structure of AUTOSAR OS is visualized as figure 2.
In the aspect of accession, the AUTOSAR OS’s structure is
shown that the source of the accession is Subjects and the
destination is Objects. The set Subjects has two subsets are
OS_Applications and OS_Objects. Two kinds of OS_Applica-
tions are Trusted_OS and Non-Trusted_OS. The OS_Objects
also has two kinds are Tasks and ISRs (Interrupt Service
Routine). The set Objects has two subsets are CodeSections
and Memory. The Memory has two parts are Data Section
and Stack. Two types of function are used to present the
relationship between system’s elements are: partial function
and fotal function, where the partial function and total function
presents “at-most-one” ownership (—+) and “always have”
ownership (—) respectively.

B. Formalizing the AUTOSAR OS structure

After analyzing the AUTOSAR OS specification, the AU-
TOSAR OS components are collected. The idea of the for-
malization is formalizing AUTOSAR OS’s memory protection
features based on accession’s description. For more detail, the
entities are classified into two sub-classes: Subjects describes
the source of the accession, including OS_Application and
OS_Objects. Objects describes the destination of the accession
including Memory and Code Section. The formalization is
performed by writing each sub-class, relation, and constraint
by a proper Event-B notation. Transformation rules are defined
in the table Il to write a formal specification in Event-B
based on the analysis. The detail of transformation rules are
explained as follows:

Table III show the applications for the rules 1,3, and 7.
Subjects and Objects are defined in the Event-B as carrier



TABLE 11
TRANSFORMATION RULES
Rule Components Event-B notations
rule 1 Entities classes Carrier sets
rule 2 Attributes Variables
rule 3 | System’s objects Constants
rule 4 Requirements Events, Invariants
rule 5 Accession Conditions Guards
rule 6 Permissions Actions
rule 7 Relationships and Global con- | Axioms
straints

sets. The relations ObjData, ObjStack and the objects OS_Obyj,
OS_App are defined as constants. Then, the related constraints

are defined in the axioms.

TABLE III

FORMALIZING AUTOSAR OS’S ELEMENTS

Type

Event-B notations

Explanation

Carrier Sets

Subjects, Objects

The source and destination
of an accession

Constant and

OS_O0bj C Subjects
OS_App C Subjects \

Two subsets of set Subjects

Memory C Objects \
CodeSection

oo | s 0y
Jects CodeSection C | This Object contains the
Objects code of an OS_Application

This element presents the
AUTOSAR OS’s memory

0S_Obj — OS_App

Constant and | ObjData € | An OS_Object has at most
axioms of OS_Obj + DataSecs one data sections
relations ObjStack € | An OS_Object always have
OS_Obj — Stacks stack
ContainerOf € | An OS_Object belongs to an

OS_Application

In the original specification, the relations ObjData and App-
Data describe that OS_Objects and OS_Applications can have
data section. The word “can have” can be understood in two
ways: they have no data section, and they have data section.
Both of the understanding are satisfied the specification. Thus,
the formal specification should cover all the meaning of the
original description. In the formalization, the partial function
is used to formalize the “can have” word.

The remaining rules are applied to formalize requirements
of AUTOSAR OS specification. Each AUTOSAR OS stan-
dard’s memory protection requirement is described in the same
name event. Conditions of the requirements are described as
guards and the permission is described as the action of the
event. The permission is not a real action but we use the notion
of events to describe the requirement. Thus, the permission
is considered as an action. For instance, the requirement
SWS_OS_086 “The Operating System module shall permit an
OS-Application read and write access to that OS-Application’s
own private data sections” is written in Event-B follows:
event_ SWS_Os_00086 ANY app
GUARDS
grdl: action = read V action = write
grd2: app € dom(AppData)
grd3: src = app
grd4: dst = AppData(app)

grd5: status = initStt
ACTION status := shall_permit

By following the transformation rules, the structure of
AUTOSAR OS is faithfully formalized. We ensure that no
feature or element is missed or added redundantly during the
formalization because the traceability is ensured using these
rules.

IV. VERIFICATION OF AUTOSAR OS MEMORY
PROTECTION SPECIFICATION

In this section, we first define the consistency of the memory
protection. Then, we explain how to ensure the consistency by
discharging proof obligations in Event-B. In the verification,
invariants are defined as AUTOSAR OS properties which
are maintained to be always true all reachable states in the
Event-B state machine. Based on the invariants and events,
the Rodin platform generates proof obligations and discharges
them to prove the consistency of the AUTOSAR OS memory
protection.

A. Purpose of the verification

The first thing needs to be clarified is the purpose of the
verification. The verification aims to:

1) Clarifying implications of the original specification, and

2) Verity the consistency of the original specification.

In order to deal with the first one, the original specification
is analyzed carefully to discover all possible implications
and define them as invariants. Basically, the implications are
defined based on the invariants expression of the corresponding
event but changed the conditions of the invariant. In particular,
the events which have “sr¢” is an OS-Application imply
that all Tasks/ISRs belonging to that OS-Application can be
“src”. These implications are then formalized to verify the
consistency of the original specification.

As described in chapter III, the formal specification is
faithfully described the original specifications. Hence, the
traceability has been ensured and it is possible to verify the
consistency of the original specifications through the formal
specifications. The consistency is defined that “Each access
has an unique permission”.

Definition 1. Access
Let S be the set of subjects and O be the set of the objects.
a(s,0) presents an access from s to o where s € S and o € O.

Definition 1 defines accesses in AUTOSAR OS memory
protections, where Subjects consists of OS-Application and
0OS-Objects and Objects consists of Memory and Code sec-
tions.

Definition 2. Consistency
Vs,s' €8,0,00 €0.s=5No=0 = a(s,0) =d(s,0)

The consistency is defined based on the access as the
definition 2. For all access a from subject s to object o and
access a’ from subject s’ to object o’. If s is s” and o is o’,
then the access a and a’ is the same. In the other words, the
access from a subject to an object is unique.



B. Defining invariants to generate proof obligations

The transformation rule 4 describes that each requirement
is described not only as an event but also as an invariant
as “C A status # initStt = P” where C is the set of the
condition’s expressions and P is the permission expression.
The LHS of the invariant describes the guards of the event
and the RHS describes the action of the event. Expression
“status # initStt” is used to ensure that each event is executed
once for an invariant where initStt is the initial value of the
system’s status.

There are many kinds of proof obligations such as well-
definedness and invariant preservation. In this research, we
focus on the Invariant Preservation Proof Obligations. For
each event and invariant, the Rodin platform [6] generates
a corresponding invariant preservation proof obligation. This
proof obligation is then discharged to verify the consistency
of the two requirements (once from the event and another one
from the invariant).

After executing an event, the value of variables appearing
in the event is updated. The consistency is then verified
by checking the following condition which ensures that the
invariant is preserved for each of events.
(C A status # initStt = P) = (C' \ G A status’ # initStt = P')

where C’, status’ and, P’ are the updated value of C, status
and, P respectively; and G is the conjunction of an executed
event’s guards. In fact, for each executed event, status is
updated but the variables appearing in C are not updated.
Furthermore, “status # initStt” is used to ensure that each
event is executed once for an invariant. Thus, the condition
becomes

(C=P)=(CANG=P)

If the C A G is satisfiable and P = P’, that condition
becomes true, that is, the two requirements are consistent. If
the C A G is satisfiable but P # P’, that condition becomes
false, that is, the two requirements are inconsistent.

C. Discharging the proof obligations

After writing the formal specification of AUTOSAR OS
memory protection, proof obligations will be generated by
Rodin platform to verify their consistency. There are two kinds
of the proof obligations including:

o The invariant and the event are the same requirement:
This proof obligation is used to prove that the approach
of the formalization is true.

o The invariant and the event are the different requirements:
If the proof obligation generating from them cannot be
discharged, there is a contradiction between the require-
ment of the event and the requirement of the invariant.
Otherwise, these requirements are consistent.

Rodin platform provides some provers to discharge these proof
obligations. The provers are useful for discharging the well-
definedness proof obligations. However, it was impossible to
discharge all Invariant Preservation proof obligations using
the provers. 108 of 171 proof obligations are discharged
using automated proof including 31 well-definedness proof

obligations and 77 Invariant Preservation proof obligations.
Therefore, we apply interactive proof methods to discharge
this proof obligation.

Interactive proving

It was impossible to discharge all proof obligations au-
tomatically using the provers. Interactive proof methods are
used to discharge the remaining proof obligations. There are
some important methods to discharging the proof obligation
as follows: (1)Re-ordering hypotheses: removing unnecessary
hypotheses; adding needed hypotheses which have been miss-
ing; (2) Creating a case distinction: applying case distinction
to find the cause of the problem; (3) Instantiate quantifiers
variable; and (4) Applying abstract expression to replace the
complicated expression with fresh variables.

For example, table IV describes two parts of the obli-
gation “SWS_Os_00026/prf_086/INV” are hypotheses in the
first column and goals in the second column. This proof
obligation is undischarged because the goals is not sat-
isfied by the hypotheses. In the first step, the hypothe-

TABLE IV
PROOF OBLIGATION SWS_Os_00026/prf_086/INV

Hypotheses
action = read —read = write
appl € NonTrusted_OS —initact = read
app2 € OS_App —initact = write
src € appl —may_permit = shall_prevent
dst = AppData(app?2) —may_prevent = shall_prevent
app2 € dom(AppData) —init = may_prevent
status = init —init = may_permit
set_of _action={initact, read,  —shall_permit = may_prevent
write}
set_of _status={initStt, —may_permit = may_prevent
shall_permit, may_permit,
may_prevent, shall_prevent}
—appl = app2 —init = shall_prevent
action = read —init = shall_permit

Goals

V app .(action = read V action = write) N app €
dom(AppData) N src = app A dst = AppData(app) N
may_prevent # initStt N\ = may_prevent = shall_permit

ses —read = write, —initact = read, —initact = write,
—may_permit = shall _prevent, —may_prevent = shall
_prevent, —init = may _prevent, —init = may _permit,
—may_permit = may _prevent, —init = shall _prevent,

and —init = shall _permit are removed. These hypotheses
are generated from set_of _action={initact, read, write} and
set_of _status={init, shall_permit, may_permit, may_prevent,
shall _prevent} to ensure that elements of the sets are different
but it is unnecessary. The hypotheses set is then added some
axioms from the Event-B context to satisfy the goals. In this
example, the hypothesis AppData € OS_App -+ DataSecs
is added to describe the function AppData. The goals of the
proof obligation SWS_Os_00026/prf_086/INV is satisfied by
applying the hypotheses set.

In our work, the method Re-ordering hypotheses is used
to discharge proof obligations. 62 of 63 remaining proof
obligations were discharged using this method. However, the
last poof obligation SWS_Os_00195/prf_086g/INV cannot be



discharged by all above methods. We worry that it may present
the inconsistency of the AUTOSAR OS specification.

V. THE INCONSISTENCY OF AUTOSAR OS
SPECIFICATION

The re-ordering hypotheses method solved almost all
proof obligations. However, the proof obligation SWS_Os_-
00195/prf_086g/INV cannot be discharged by any proof
method. This proof obligation is generated to prove that the
invariant prf_086g is preserved by event SWS_Os_00195.
These requirements are described as follows:

e SWS_Os_00195: “The Operating System module may
prevent write access to the private data sections of a
Task/Category 2 ISR of a non-trusted application from
all other Tasks/ISRs in the same OS-Application.”, and
the corresponding formalized description is:
Vappl,objl,obj2 . ((action = write) AN appl €
NonTrusted_OS N objl € OS_Obj N obj2 €
dom(ObjData) N\ obj2 € (Tasks U Category_2_ISRs) A
objl # obj2 N appl = ContainerOf(objl) A

appl = ContainerOf (obj2) N  src = objl A
dst = ObjData(obj2) A status # initStt = status =
may_prevent)
( Non-Trusted )
appl
obj1 obj2
& J

Fig. 3. Requirement SWS_Os_00195.

The requirement SWS_Os_00195 is visualized as Fig. 3.
o SWS_Os_00086g: “OS-Objects contained in an OS-
Application shall be permitted to read and write this OS-
Application’s private data sections”, and the correspond-
ing formalized description is:
Vappl,objl . ((action = read V action = write) N
appl € dom(AppData) AN objl € 0S_Obj A
appl = ContainerOf (objl) N  src = objl A
dst = AppData(appl) N status # initStt = status =
shall_permir)

Figure 5 visualizes the goal for discharging the proof obli-
gation between SWS_Os_00195 and SWS_Os_00086g. If the
goal is true, the two requirements are consistent. Otherwise,
they are inconsistent. The goal of this proof obligation is:
—app2 € dom(AppData) V —obj3 € OS_Obj V —app2 =
ContainerOf (obj3) V —objl = o0bj3 V —0bjData(obj2) =
AppData(app2).

If one of these expressions is true, we can conclude that the
goal is held. From the description of the requirements, three
expressions —app2 € dom(AppData), —obj3 € OS_Obj, and

4 R
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Fig. 4. Requirement SWS_Os_00086g.

—app2 = ContainerOf (0bj3) are always false. Therefore, we
just considered the correctness of expressions —objl = o0bj3,
and —ObjData(obj2) = AppData(app2).
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V -~app2 = ContainerOf (obj3)
V -obj1 = obj3
V -~ObjData(obj2) = AppData(app2)

Fig. 5. The goal for discharging the proof obligation SWS_Os_00195/prf_-
086g/INV.

The case distinction method is used to discharge the proof
obligation as follows:

e appl # app2: The appl and app2 are different implies
objl # obj3 is true. Then, the proof obligation SWS_-
Os_00195/prf_086g/INV is hold.

e appl = app2: When appl = app2, we cannot ensure
whether expression objl # 0bj3 and —~ObjData(obj2) =
AppData(app?2) are true.

The correctness of the expression —ObjData(obj2) =
AppData(app2) is not identified because the description
“OS-Applications private data sections are shared by all
Tasks/ISRs belonging to that OS-Application”, which is a
global constraint could be understood in two different mean-
ings. The first meanings is that an OS-Application is initiated
a memory partition, then each task or ISRs is distributed
appropriate memory partition from the OS-Application’s mem-
ory for running. This approach is presented in the figure 6
and the formal description as follows: Yobj,app . (app €
dom(AppData) N obj € OS_Obj A obj € dom(ObjData)
= ObjData(obj) # AppData(app). In this case, the expression



—O0bjData(0bj2) = AppData(app2) is true. Hence, the goal is
satisfied.

OS_App’s data section 0x00000000
0OS_Objl’s data section

0S 0Obj2’'s data section

OxO0Offffff

Fig. 6. Os-Application distributes memory partitions to its OS-Objects.

The other considers the memory partition of an OS-
Application as a resource and each OS-Object like Task, ISR
can access to it. Therefore, the case that the OS-Application
and OS-Objects have the same resource can be occurred as the
presentation of figure 7. Then, the formal description of this
global constrain is: V obj, app . (app € dom(AppData) N obj €
OS_O0bj N obj € dom(ObjData) N\ app # ContainerOf (obj))
= ObjData(obj) # AppData(app). The figure 7 shows that

( OS-Application
appl
— oato Je
write
obj2 | obj1 |
 Data 4——wre
\_ J

Fig. 7. OS-Application and its OS-Object are considered as subjects

the OS-Application appl which contains two OS-Object objl
and obj2 has a data section. appl shares this data section to
objl. Regarding the requirement SWS_QOs_00195, the write
access from objl to obj2’s data section is prevented. However,
requirement SWS_Os_00086g describes that the write access
from objl to appl’s data section is permitted. This is the
counterexample of the definition 2.

As the result of the verification, the ambiguous de-
scription of the original specification is discovered is that
“OS-Applications private data sections are shared by all
Tasks/ISRs belonging to that OS-Application”. The original
specification needs to be improved to ensure the consistency.
From the above analysis, we propose the new description is:
“The data section of an OS-Application should not be shared
to the Tasks/ISRs belonging to it”.

VI. DISCUSSION

In our formalization, the traceability between two spec-
ifications is achieved by following the specification policy.
In detail, the elements of the formal specification formalize
exactly the components of the AUTOSAR OS specification. If
there is any component of the original specification cannot be
found in the corresponding element in the formal specification,

it means that the component lost during formalization. Then,
the formal specification must be added the corresponding
elements. On the other side, the components can be traced
back from elements of the formal specification. If a formalized
model has not corresponded to any component in the original
specification, it must be removed because it has been added
redundantly into the formal specification. It was proved that
the approach of this thesis is appropriate for preventing not
only the loss but also the redundancy of the formalization.

In the formalization, there may be many ways to understand
and formalize from a description of the original specification.
We carefully analyzed and picked the appropriate Event-B
notations to cover all possible understanding of a description.
Then, the consistency of the specification is verified by dis-
charging proof obligations, which are generated automatically
by Rodin platform. From 9 events and 18 invariants, there are
171 proof obligations are generated including 140 invariant
preservation proof obligations and 31 well-definedness proof
obligations. By applying automatic proof, 108 of 171 proof
obligations including all 31 well-definedness proof obliga-
tions are discharged accounting for 63.2% of the total proof
obligations. 62 other proof obligations are discharged using
interactive proof accounting for 36.3%. The last obligation
cannot be discharged is then analyzed and the inconsistency
is discovered from this analyzing.

As the result of the verification, the inconsistency of the
AUTOSAR OS memory protection’s specification has been
found. This inconsistency comes from the ambiguous descrip-
tion of the original specification is that “the data section
of an OS-Application is shared by all its own OS-Objects”.
Our approach is effective for verifying the consistency of the
memory protection specification because it is hard to verify
the consistency by reviewing the formal specification. Finally,
we proposed an improvement based on the ambiguous descrip-
tions in the original specification making the inconsistency.

VII. RELATED WORK

Our formalization methodology includes three main steps:
Analyzing, Formalization and Proving corresponding to three
steps of a general formalization process mentioned in [7].
Tools or frameworks are proposed to formalize informal
specification such as A. Fantechi et al. [8] develops a tool
for translating informal specification into formulae of the
action-based temporal logic ACTL. Huang et al. [9] employ
process algebra CSP to describe and reason about a real
code-level OSEK/VDX operating system (Offene Systeme und
deren Schnittstellen fr die Elektronik in Kraftfahrzeugen). The
expected properties are described and expressed in terms of the
first-order logic. They propose a framework to establish and
verify the properties to check the deadlock-free of the system
and the soundness of the scheduling scheme. In contrast, our
work uses sets and relations to represent the structure of
AUTOSAR OS. The requirements are then described on top
of this structure.

Some other works propose the integrating between formal
and informal methods in order to provide an evolutionary path



to the use of more formal approaches to software develop-
ment [10] or increase the complement formal and informal
specification [11]. In our research, the equivalent between
formal and informal specification is evaluated based on the
bi-directional traceability instead of proving the completeness
of such specifications. Craig used Z and Object-Z as formal
specification languages to formally specify a conventional
paradigm of operating system [12]. However, this work makes
the formal specification from scratch but the input of our
formalization is a given informal specification.

Huong et al. proposed a method which can faithfully
formalize the OSEK/VDX operating system using Event-
B [13]. Comparing with our work, the features of OSEK/VDX
operating system has already contained system behavior, so
events presenting these features are created directly. On the
other side, AUTOSAR OS memory protection features are
not a real event. Thus, such features are formalized using the
notion of the events. D. Bertrand et al. are interested in timing
protection, which is another facility of AUTOSAR OS [14].
The purpose of this work is evaluating the timing protection
mechanism proposed in the AUTOSAR OS standard. This
evaluation shows that the present version of the mechanism
is not fully adapted to multi-critical systems because it does
not handle soft/non real-time applications.

VIII. CONCLUSION

In conclusion, we proposed a formal specification of AU-
TOSAR OS memory protection. The requirements of the orig-
inal specification are static constraints which do not contain
the behaviors of the system. Thus, the notion of events is used
to formalize such requirements. Although proving a complete
equivalence between the original and formal specifications is
impossible, the confidence of the formalization is ensured
by applying transformation rules. Hence, the formalization
reaches two goals: (1) the formal specification can formalize
exactly every element and requirement of the AUTOSAR
OS memory protection and (2) the formal specification does
not contain redundant elements. The formal specification is
the input of the verification to verify the consistency of
the memory protection. The result of the verification is the
ambiguous description in the original specification. Thus, we
improved this description to remove the inconsistency. This
improvement will be sent to the related organization to confirm
our works.

There are some advantages of our research. Firstly, this
approach is able to find the inconsistency, which is hard
to be found in natural language. We introduced a formal
specification to formalize faithfully the AUTOSAR OS spec-
ification. This formal specification can cover all possible
implementations from a description. Secondly, our research is
practical enough to deals with the AUTOSAR OS, which is a
real standard. Thirdly, our approach is able to be supported by
platforms. In fact, using set theory in the formalization makes
it easy to be supported by proof mechanisms such as Rodin.
Last but not least, our method is able to verify the consistency
of other standards such as AUTOSAR OS timing protection

and services protection. These standards are described based
on the AUTOSAR OS structure. Thus, it is able to formalize
them using set and relation in Event-B. Furthermore, the
requirements of these standards contain system’s behaviors.
Hence, they can be directly formalized in Event-B instead of
using the notions of the events like the memory protection
requirements.

The limitation of our research is that the formalization is
not fully automated. It requires human actions like analyzing
and writing the formal specification and discharging proof
obligations. In addition, verifying the specification is not
sufficient to validate AUTOSAR OS memory protection. The
implementation should be verified as well. Therefore, testing is
needed to ensure that the implementation is protected against
memory attacks. In future, we will propose a method to
generate test cases for the implementation. These test cases
are considered as attacks on the memory because the main
purpose of memory protection is controlling access rights.
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