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Abstract. In this paper, the first-order shear deformation theory is used to derive theoretical formulations 

illustrating the nonlinear dynamic response of functionally graded porous plates under thermal and mechanical 

loadings supported by Pasternak’s model of the elastic foundation. Two types of porosity including evenly 

distributed porosities (Porosity-I) and unevenly distributed porosities (Porosity-II) are assumed as effective 

properties of FGM plates such as Young’s modulus, the coefficient of thermal expansion, and density. The strain-

displacement formulations using Von Karman geometrical nonlinearity and general Hooke’s law are used to obtain 

constitutive relations. Airy stress functions with full motion equations which is employed to shorten the number of 

governing equations along with the boundary and initial conditions lead to a system of differential equations of the 

nonlinear dynamic response of porous FGM plates. Considering linear parts of these equations, natural frequencies 

of porous FGM plates are determined. By employing Runge-Kutta method, the numerical results illustrate the 

influence of geometrical configurations, volume faction index, porosity, elastic foundations, and mechanical as well 

as thermal loads on the nonlinear dynamic response of the plates. Good agreements are obtained in comparison 

with other results in the literature. 

Keywords: Nonlinear dynamic response, Porosity, Porous plates, First order shear deformation theory, Stress function. 

1. Introduction 

   Regarding essential advanced properties compared with conventional features such as high-temperature resistance capacity, 

functionally graded materials (FGMs) have attracted many researchers and scholars worldwide. Functionally graded materials 

are microscopically inhomogeneous composites usually made by a mixture of metal and ceramic with a volume faction index, 

which made the material properties of FGM vary continuously through the thickness of the plate from the metal-rich surface to 

the ceramic-rich surface. By varying the volume fraction index, new genres of FGM with specifically tailored characteristics 

have been made, which is applicable to various working conditions including mechanical, thermal, or thermo-mechanical 

loadings in several industries such as aerospace, power plants, and vessels. Therefore, a lot of research has been conducted to 

investigate these advanced material structures, especially in the domain of dynamic response and vibration characteristics. 

   In 2013, Wang and Shen [1] employed a two-step perturbation technique to show the nonlinear dynamic response of 
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sandwich plates with FGM face sheets using the Mori-Tanaka scheme of material distribution resting on the elastic foundation 

subjected to varies loading conditions. A four-variable refined plate theory along with the higher-order shear deformation plate 

theory were used by Han et al. [2] to analyze dynamic instability characteristics of S-FGM plates. Hamilton’s principle was 

used and closed-formed solutions were obtained for simply supported plates resting on the elastic foundation under periodic 

axial excitations. Duy and Noh [3] developed a new refined plate theory based on the classical plate theory by eliminating the 

shear correction factor to investigate the dynamic response of FGM rectangular plates resting on Pasternak foundation 

subjected to transverse loadings. Cong et al. [4] presented the nonlinear dynamic response of the eccentrically stiffened FGM 

plate using Reddy’s TSDT in the thermal environment. Hosseini-Hashemi et al. [5] investigated the free vibration of 

functionally graded rectangular plates using the first-order shear deformation plate theory. Zhao et al. [6] studied the free 

vibration analysis of functionally graded plates using the element-free kp-Ritz method. More recently, Wang and Zu [7] studied 

the linear and nonlinear dynamic response of FGM plates moving in the thermal environment by utilizing D’Alembert’s 

principle, Galerkin’s method, and the harmonic balance method. The analytical results were verified by numerical studies using 

an adaptive step-size fourth-order Runge-Kutta technique. Thom et al. [8] studied the analysis of bi-directional functionally 

graded plates by FEM and a new third-order shear deformation plate theory. Duc et al. [9-13] presented the nonlinear dynamic 

response and vibration of FGM plates.  

   In the production progress, porosities might occur in functionally graded structures, therefore, when investigating 

mechanical, thermal, and thermo-mechanical characteristics of FGM structures, many researchers considered the influences of 

porosities. In 2005, Piazza et al. [14] conducted experimental studies in disk-shaped samples of piezoceramic material showing 

the physical and electrical properties in the planar and transverse direction of the disk under the variation of porosity degree. In 

2015, Rad and Shariyat [15] utilized 3D theory of elasticity and differential quadrature techniques to analyze porous FGM 

circular plates with various thicknesses under non-axisymmetric and non-uniform shear and normal tractions and a magnetic 

actuation resting on the Kerr elastic foundation. Ebrahimi and Zia [16] investigated the nonlinear free vibration of non-

homogeneous functionally graded beams with porosities using Timoshenko beam theory, Hamilton’s principle, and Galerkin’s 

method. The internal residual stress due to thermal mismatch of ceramic and metal in addition to the effects of residual stress 

on mechanical performances of porous functionally graded materials are examined by Zhou et al. [17]. Zhou and co-workers 

[18] also studied the effect of bolt-nut parameters of porous FGM bolted joints under the thermomechanical loading with 

distributed loads in thread using ABAQUS scripts. The linear and nonlinear vibration behavior of FGM beams having 

porosities with various kinds of elastic supports were evaluated by Wattanasakulpong and Ungbhakorn [19] using the 

differential transformation method (DTM). More recently, Ghadiri and SafarPour [20] employed the basis of the first-order 

shear deformation shells and the modified couple stress theory to study the free vibration behavior of FGM porous cylindrical 

microshells considering temperature-dependent characteristics in the thermal environment. An experimental and numerical 

study was carried out by Jahwari and Naguib [21] to analyze plate-like structures of Polylactic Acid whose viscoelastic 

behavior is assumed to obey Boltzmann superposition principle using the author’s newly-developed higher order plate theory. 

Mechab et al. [22] used the two-variable refined plate theory to evaluate the effect of porosities on porous FGM nano-plate 

supported by the elastic foundation considering the nonlocal elasticity theory and the Monte Carlo method. Torres et al. [23] 

developed and characterized samples of titanium with porous functionally radial graded cylinders using bio-inspired and bio-

mimetic approaches for potential bone implant applications. Shafiei et al. [24- 26] studied the nonlinear vibration behavior and 

buckling features of the 2D imperfect functionally graded (2D-FG) tapered Euler-Bernoulli beams in nano- and micro- scales. 

Barati and Shahverdi [27] dealt with the hygro-thermal divergence and the flutter analysis to investigate the aero-hygro-

thermal instability of porous FGM panels under the supersonic airflow using the newly-developed higher-order shear 

deformation theory. The nonlinear free vibration behavior and post-buckling loads of multilayer functionally graded porous 

nanocomposite beams that were made of metal foams reinforced by graphene platelets were studied by Chen et al. [28] using 

Ritz method considering Timoshenko beam theory and von Karman nonlinearity. Ebrahimi et al. [29] proposed a four-variable 

shear deformation refined plate theory to analyze dynamic responses of embedded smart plates made of magneto-electro-

elastic functionally graded materials with porosity resting on the elastic foundation. Şimşek et al. [30] used Mindlin plate 

theory and the modified couple stress theory to investigate static bending features and forced vibration of an imperfect porous 

FG microplate with a moving load. Shahverdi and Barati [31] developed a general nonlocal strain-gradient elastic model to 

study the vibration characteristics of plates with nano-scale porosities supported by an elastic substrate under the hygro-

thermal loading. Akbaş [32] employed the first-order shear deformation plate theory along with Hamilton’s principle to 

scrutinize free vibration and static bending responses of a simply supported FG plate in porous phase. Shojaeefard et al. [33] 

conducted a numerical study analyzing the thermal buckling behavior and free vibration of FG micro-scale porous plate with 

temperature-dependent properties using CPT, FSDT in conjunction with the modified couple stress theory. Wang et al. [34] 

studied the steady-state analytical solutions and nonlinear vibrational responses of a longitudinal travelling porous FGM plates 

and developed a computational model to investigate the vibration behavior of a FG porous cylindrical shell with various 

boundary conditions using a sinusoidal shear deformation theory and Rayleigh-Ritz method [35]. Ziane et al. [36] presented an 

analytical study evaluating the critical moment and critical temperature gradients of simply supported and clamped-clamped 

FGM box beams in the porous phase. 

  Although various analytical methods have been used to analyze static, dynamic, and vibration behavior of FGM beams, 

plates, and shells, few studies have been conducted in nonlinear vibration characteristics of FGM plate using the first-order 

shear deformation theory. This study presented an analytical approach to evaluate natural frequencies and dynamic responses 

of a simply supported FG plate under a uniform temperature rise and uniform compressive forces using FSDT. Numerical 

results illustrated the good agreement of the present study with others in the literature and showed the influence of the volume 

fraction index, porosity degree and types, geometrical configuration, elastic foundations, mechanical loading amplitude, and 
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uniform temperature rise on nonlinear dynamic responses of the plates. 

 

2. FGM plate with porosities 

   Consider a plate on elastic foundations. The plate is referred to a Cartesian coordinate system , ,x y z , where xy  is the 

mid-plane of the plate and z  is the thickness coordinator, / 2 / 2h z h   . The length, width, and total thickness of the 

plate are ,a b , and h  , respectively. 

 

Fig. 1a. Geometry and coordinate system of the FGM plate 

surrounded on elastic foundations. 
Fig. 1b. Power-law distribution of the FGM plate 

 

The reaction–deflection relation of Pasternak foundation is given by: 

2

e w pq K w K w    (1)                          

where 2 2 2 2 2/ /x y       , w  is the deflection of the FGM shell, wK  and 
pK  are Winkler foundation stiffness 

and shear layer stiffness of Pasternak foundation, respectively. In this study, two porosity phases are considered including 

evenly distribution (Porosity-I) and unevenly distribution (Porosity-II) along the plate thickness direction (Fig. 2). 

  
Fig. 2a. Evenly distributed porosities (Porosity – I) Fig. 2b. Unevenly distributed porosities (Porosity – II) 

For a plate made of two different constituent materials, the volume fractions ( )mV z   and ( )cV z  can be written in 

the power law distribution (Fig. 1b) as follows [37]: 

2
( ) 1 , ( ) 1 ( ),

N

c m c

z
V z V z V z

h

     
 

 (2)                                                    

where N  is the power law exponent satisfying 0 N   . The material properties of P-FGM plates are written as 

[22,24] 

    2
1 ,

N

c m m por

z
P z P P P P

h

      
 

 (3)                              

in which, with Porosity-I:   / 2
por c m

P P P   , Porosity-II:   / 2 1 2( / )
por c m

P z h P P   . Accordingly, the 

effective Young’s modulus  E z , thermal expansion coefficient  z , and the mass density ( )z  of porous FGM plates 

can be  written using Eq. (3) as 

Porosity-I:  
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2
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E z E E E E
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z
h

z


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 (4a) 

Porosity-II:  
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 (4b) 

where   is the porosity distribution factor, , ,cm c m cm c m cm c mE E E            , and the Poisson ratio 

 z  is assumed to be constant ( ( )z v  ). 

 

3. Governing equations and boundary conditions 

3.1. Governing equations for the plates  

In the present study, the first-order shear deformation theory is used to establish the motions, obtain the compatibility 

equations, and determine the nonlinear dynamic response of the FGM plates. The nonlinear strain-displacement relations using 

FSDT are [37,38] 

0
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 (6) 

in which 0

x  and 
0

y  are normal strains, 
0

xy is the shear strain in the middle surface of the plate, and xz , 
yz  are the 

transverse shear strains components in the plans xz  and yz , respectively. , ,u v w  are the long ,x y , and z  axes, 

respectively. x  and 
y   are the rotation angles of the normal vector around y  and x  axis. Hooke's law for a plate is 

defined as follows: 

         

   

2
, , , 1 1,1 ,

1

, , , , .
2(1 )

x y x y y x

xy xz yz xy xz yz

E
v T

E

       


     


      




 (7) 

The forces and moments of the plate can be expressed across the plate thickness as                   

   
/2

/2

/2
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h
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
, (8) 

in which 5 / 6   is the correction factor. Substituting Eqs. (5) into Eqs. (7) and the result into Eqs. (8) leads to: 
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The motion equations of FGM plates supported by elastic foundations using FSDT are [37, 38] 
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where q  is an external pressure uniformly distributed on the surface of the plate and 
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The stress function  , ,f x y t  is introduced as                                         
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The reverse relations are obtained from Eqs. (9) as 
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  Replacing Eq. (13) into Eqs. (11a) and (11b) yields 
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By substituting Eqs. (13) and (15) into Eqs. (11c-11e), it can be rewritten as follows: 
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   The deformation compatibility equation for FGM plates can be written as 
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Substitution of Eqs. (14) into the deformation compatibility equation (17) leads to 
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By substituting Eq. (9) into Eqs. (16), the system of motion in Eqs. (16) is rewritten as follows: 

 

2

2

11 12 13 2

21 22 23 1 2

231 32 33 1

2

, 0 0

0 0 0 0 ,

0 0 0 0

o

x
x

y

y

w

t
H H H w P w f q

H H H
t

H H H

t




 
 



 
          
                                        
 
 

 (19) 

where  ij  =1,3,  =1,3H i j ,  0,1q q   and the nonlinear operator P is shown in Appendix I. Boundary conditions and 

initial conditions along with Eqs. (18) and (19) are used for the nonlinear dynamic analysis of porous FGM plates. 

 

3.2. Boundary conditions  

In this study, the FGM plates are assumed to be simply supported. Two boundary conditions, labeled as Case I and 

Case II, are considered [4, 37].  

Case I: Four edges of the plate are simply supported and freely movable (FM): 

0

0

0, 0, ,

= 0, 0, .

xy y x x x

xy x y y y

w N M N N at x a

w N M N N at y b





     

    
 (20) 

Case II: Four edges of the plate are simply supported and immovable (IM): 

0

0

0, 0, ,

= 0, 0, .

y x x x

x y y y

w u M N N at x a

w v M N N at y b





     

    
 (21) 

in which 0 0,x yN N  are pre-buckling compressive force resultants in ,x y  directions, respectively (FM), and  are the 

jets when the edges are immovable in the plane of the plate (IM). The approximate solutions of the system of Eqs. (16) and 

(17) by satisfying the boundary conditions (20, 21) can be written as  

       
       
       

, , sin sin ,

, , cos sin ,

, , sin os ,

m n

x x m n

y y m n

w x y t W t x y

x y t t x y

x y t t x c y

 

  

  



 

 

 (22a) 

          2 2
1 2 0 0

1 1
, , cos 2 cos 2 ,

2 2
m n x yf x y t A t x A t y N y N x      (22b) 

where ,m n

m n

a b

 
   , , ,x yW    - the amplitudes which are dependent-on-time functions. The coefficients 

 1 2iA i    are determined as  

2 2
2 21 1

1 22 2
, .

32 32

n m

m n

E E
A W A W

 

 
   (22c) 

Replacing Eq. (22) into the equations of motion (19) and then applying Galerkin method leads to 
2

2
3

11 2 0 4 0 12 13 2

21 22 23 1 3 1 2

231 32 33 1
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t

h h h

t






 
          
                                         
 
   

(23) 
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while the coefficients     =1,3 =1,3 , 1,3ij qh i j n q  are shown in Appendix II.  

3.3. Nonlinear dynamic analysis of FGM plates subjected to the mechanical load  

Consider a simply supported and freely movable FGM plate (FM - Case I of boundary conditions). Assume that 

the FGM plate is loaded under uniform compressive forces xP  and yP  (Pascal) on the edges 0,x a ,  and 0,y b

  

0 0, .x x y yN P h N P h     
(24) 

Substituting Eq. (24) into Eq. (23) leads to the system of equations for studying the nonlinear dynamic response of the 

FGM plates as follows: 

 

2

2
3

11 2 4 12 13
2

21 22 23 1 3 1 2

231 32 33 1

2

0 0

0 0 0 0 .

0 0 0 0

x y o

x
x

y

y
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th n P n P h h h W W q

h h h n n
t

h h h

t






 
                                                        
 
   

(25) 

The natural frequencies of the plate without load q  can be determined directly by solving the determinant derived from 

Eqs. (25) after eliminating all nonlinear components as 

  2

11 2 4 0 12 13

2

21 22 1 23

2

31 32 33 1

0.

x yh n P n P h I h h

h h h

h h h



 
 

  

 



 (26) 

3.4. Nonlinear dynamic analysis of FGM plates subjected to the thermal load 

 Consider a simply supported and immovable FGM plate (FM - Case II of boundary conditions) under the 

thermal load. The condition expressing the immovability on the edges, 0u   (at 0,x a ), and v 0  (at 0,y b ) is 

satisfied in an average sense as [37] 

0 0 0 0

0, 0.

b a a b
u v

dxdy dxdy
x y

 
 

      (27) 

From Eqs. (5) and (14) one can obtain the following expression: 

22 2

2

2 2

1 1 1

22 2

2

2 2

1 1 1

1 1
,

2

1 1
.

2
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Eu f f w
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Ev f f w

y E E y y Ex y







                   

      
             

 (28) 

 Substitution of Eqs. (22) into Eq. (28) and then the results into Eq. (27) yields  

   
2 2

22 1

0 2 2 2

4
W ,

1 1 8 1

a

x x y

E Em n n m
N v v

v a b b amn v v

   


                             
 

   
2 2

22 1

0 2 2 2

4
W ,

1 1 8 1

a

y x y

E Em n m n
N v v

v a b a bmn v v

   


                             
 

(29) 

 where a P T    with    
/2

/2

.

h

h

P E z z dz


   By substituting Eqs. (29) into Eqs. (23), the basic equations used to 

investigate the nonlinear dynamic response of the FGM plates in the Case II of boundary condition as follows: 
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(30) 

while the coefficients   =1, =4,6ijh i j are shown in Appendix II. The natural frequencies of the plate without load q  can 

be determined directly by solving the determinant derived from Eqs. (30) after eliminating all nonlinear components: 

  2

11 2 4 0 12 13

2

21 22 1 23

2

31 32 33 1

1

0.

P T
h n n I h h

v

h h h

h h h



 

 


  


 



 (31) 

4. Numerical results and discussion 

This study investigates a porous FGM plates in the presence of an excited force sinq Q t  . Q  is amplitude of 

the excited force and   is frequency of the force. Numerical results for the dynamic response of porous FGM plates are 

obtained by Runge–Kutta method. Consider a FGM plate with effective material properties as shown in Table 1 [37].  

Table 1. Properties of the functionally graded material components. 

Material 
Properties 

(GPa)E     0
/ C   3

/kg m  

Aluminum  Al  70 0.3 623 10  2702 

Alumina  2 3Al O  380 0.3 67.4 10  3800 

4.1. Validation 

In order to check the reliability of the method used in this paper, the value of the fundamental frequency parameter 

/N c ch E    of FGM plates without elastic foundations is compared with results of Ref [5, 6] and the comparison on 

dynamic responses is made with results of Ref [12]. Table 2 shows the influence of volume fraction index N  and thickness 

to length ratio  /h a  on the fundamental frequency of the FGM plates. The geometrical parameters for the FGM plates are 

chosen as / 1, ( , ) (1,1), 0, 0, 0x ya b m n P P T      . As can be seen in this table, the values of fundamental frequency 

show a significant difference and a good agreement is obtained in this comparison. 

Table 2. Comparison of fundamental frequency parameter /N c ch E    of FGM plates 

N 
/ 0.05h a    / 0.1h a   / 0.2h a   

Ref [5] Ref [6] Present Ref  [5] Ref [6] Present Ref [5] Ref [6] Present 

0 
0.0148 0.0146 

0.0148 
0.0577 0.0567 

0.0577 
0.2112 0.2055 

0.2112 
0% 1.35% 0% 1.73% 0% 2.70% 

0.5 
0.0128 0.0124 

0.0125 
0.0492 0.0482 

0.0490 
0.1806 0.1757 

0.1806 
2.4% 0.8% 0.41% 1.63% 0% 2.71% 

1 
0.0115 0.0112 

0.0113 
0.0445 0.0435 

0.0442 
0.1650 0.1587 

0.1634 
1.77% 0.89% 0.68% 1.58% 0.98% 2.88% 

10 
0.0096 0.0093 

0.0094 
0.0363 0.0359 

0.0366 
0.1304 0.1284 

0.1328 
2.13% 1.06% 0.82% 1.91% 1.81% 3.13% 

Figure 3 indicates the comparison of the dynamic response of P-FGM plates without elastic foundations and with the same 

geometrical parameters.   
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Fig. 3. The comparison of the dynamic response of P-FGM plates 

 

4.2. The natural frequency and dynamic response of the porous FGM plates 

Table 3 shows the influence of the porosity volume fraction and the volume faction index on the natural frequencies 

of porous FGM plates. As can be noticed in this table, when the value of the porosity volume fraction and the volume faction 

index increase, the stiffness of porous FGM plates and the values of natural frequency decreases, and vice versa. The values of 

natural frequencies of Porosity-II type is consistently higher than that of Porosity-I type. 

Table 3. Effect of the porosity volume fraction and the volume faction index on the natural frequencies  1 310s    of 

porous FGM plates with / 1, / 20, 0, 0, 0, 0.x y w pa b a h P P K K       

N 0.5 1 3 5 10 

Porosity-I 

0   2.5139 2.2663 1.9951 1.9518 1.8885 

0.1   2.5095 2.2164 1.8606 1.8061 1.7494 

0.2   2.5021 2.1445 1.6330 1.5426 1.4936 

Porosity-II 

0   2.5139 2.2663 1.9951 1.9518 1.8885 

0.1   2.5416 2.2785 1.9799 1.9348 1.8771 

0.2   2.5715 2.2907 1.9573 1.9086 1.8579 

Figure 4 illustrates the effect of the volume fraction index 0, 1, 3N   on the nonlinear dynamic response of porous 

FGM plates. As can be seen in the figure, the amplitude of the nonlinear dynamic response of FGM porous plate increases 

proportionally with the volume fraction index. It is obvious that by raising the value of N in Eq. (2), the volume of metal 

increases while the volume of ceramic decreases which leads to the reduction of plate stiffness. 

0 0.01 0.02 0.03 0.04 0.05
-8

-6

-4

-2

0

2

4

6

8
x 10

-6

W
(m

)

t(s)

 

 

N=0

N=1

N=3

a/b=1,a/h=20,=0.1,K
w

=0,K
p
=0,q=1500sin(500t)

 
Fig. 4. Nonlinear dynamic response of porous FGM plates with various volume faction index N. 

Figures 5 and 6 show the effect of the porosity volume fraction ( ) with variously distributed types. Three sets of 

porosity volume factions are considered,  0,0.1,0.2  . As can be observed in these figures, the higher the porosity volume 

fraction  , the higher the amplitude of FGM plates. Moreover, the amplitude of FGM plate in Porosity-I phase is higher than 
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that in Porosity-II phase.  
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Fig. 5. Effect of the porosity volume fraction   of Porosity-I on the nonlinear dynamic response of FGM plates. 
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Fig. 6. Effect of the porosity volume fraction   of Porosity-II on the nonlinear dynamic response of FGM plates. 

Figures 7 and 8 show the influence of geometric parameters on the nonlinear dynamic response of FGM porous plate in 

Case I of boundary condition. In Fig. 7, the value of parameter a and the change value of parameter b are fixed. It can be seen 

that the amplitude of the dynamic response decreases when rising length to width ratio ( /a b ). 

 It is obvious in Fig. 8 that porous FGM plates have significant fluctuation when length to thickness ratio ( /a h ) of the 

plate is observed. It is also understood that /a h  increase makes porous FGM plates thinner which results in the lower load 

capacity of porous FGM plates. 
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Fig. 7. Effect of length to width ratio /a b  on the nonlinear dynamic response of porous FGM plates. 
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Fig. 8. Effect of length to thickness ratio /a h  on the nonlinear dynamic response of porous FGM plates. 

Figures 9 and 10 show the effect of linear Winkler and Pasternak foundations ,w pK K  stiffness on the dynamic 

response of the plate. Considering porous FGM plates (Porosity-I) in the Case I of boundary condition, the amplitude of porous 

FGM plates increases when the modulus of elastic foundation decreases. In addition, the Pasternak type elastic foundation with 

the coefficient pK  has a significant effect compared with the Winkler type elastic foundation on the plate dynamic behavior. 
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Fig. 9. Effect of the Winkler modulus parameter wK  on the dynamic response of porous FGM plates. 
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Fig. 10. Effect of the Pasternak modulus parameter pK  on the dynamic response of porous FGM plates. 

Figure 11 presents the influence of excited force amplitude on the nonlinear dynamic response of porous FGM plates in 
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three cases of the excitation force amplitude  21500,2000, 2500 /Q N m . Clearly, when Q decreases, the amplitude of 

plates decreases as well. Figure 12 illustrates the effect of pre-loaded axial compression xP  on the nonlinear dynamic 

response of porous FGM plates. It can be seen in this figure, the value of the amplitude of porous FGM plates decreases when 

the value of axial compressive force xP  decreases. 
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Fig. 11. Effect of amplitude Q  on the dynamic response of porous FGM plates. 
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Fig. 12. Effect of pre-loaded axial xP  compression on the dynamic response of porous FGM plates. 

Figure 13 shows the effect of temperature increment  0,50,100 ( )T K   on the nonlinear dynamic response of 

porous FGM plates in Case II of boundary condition.  The value of amplitude decreases when the temperature T  

decreases. In other words, the temperature field has a negative effect on the dynamic response of porous FGM plates. 

5. Conclusions  

   This paper investigates the nonlinear dynamic response of porous FGM plates on the elastic foundation based on the first 

order shear deformation theory and Airy stress function. Numerical results for the dynamic response of porous FGM plates are 

obtained using Runge-Kutta method. The conclusions obtained from this study are as follows:  

 The value of the amplitude and natural frequency of FGM plates is effected by various distribution of porosity. The value 

of the amplitude of FGM plates in Porosity-I phase is higher than that in Porosity-II phase. However, the value of the 

natural frequency of FGM plates in the case Porosity-I is lower than the other. 

 The time-amplitude response curves of porous FGM plates are obtained and the influences of geometrical parameters, 

elastic foundations, excitation force, and mechanical as well as thermal loads on the nonlinear dynamic response of porous 

FGM plates are examined.  

 The temperature field has a significant effect on the nonlinear dynamic response of porous FGM plates. On the other hand, 

the temperature increment has a negative effect on the amplitudes of porous FGM plates. 

 The results of the present study are compared with that of other studies by using methods to validate the reliability of the 

corresponding method used in this research. 
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Fig. 13. Effect of temperature on the nonlinear response of porous FGM plates. 
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