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Abstract—In this age of IoT (Internet of Things), Indoor
Positioning (IPS) is considered as one of the most popular topics
and has been researched widely all around the world, as the
result of various applications it can provide. However, IPS is also
a challenging topic that has a number of stringent requirements,
such as cost, energy efficiency, availability and accuracy. The
development of Bluetooth Low Energy (BLE) iBeacon has opened
great opportunities for researchers to solve those challenges. In
this paper, we present our iBeacon based positioning system,
which we built as an application running on iOS platform. We
also present Fingerprinting — the main positioning technique
used in our system, in which we configure its fingerprints to
improve accuracy. With that, a machine learning algorithm called
k-Nearest Neighbor (kNN) is applied to extract the most probable
user location. In addition, we also use Kalman Filter in order to
enhance the stability of iBeacon’s signal. Our system results in a
60% — 71.4% accuracy rate and an error of up to 1.6 m, which
is acceptable in IPS.

Index Terms—Indoor Positioning, Bluetooth Low Energy, Ap-
ple’s iBeacon, iOS, Fingerprinting, k-Nearest Neighbor, Kalman
Filter.

I. INTRODUCTION

Indoor positioning is the process of obtaining a device or
a user location in an indoor setting or environment [1]. In
the last few decades, it has been researched and applied in a
variety of aspects, such as robot navigation, indoor location
tracking, disaster management, health-care, and other indoor
location based services.

A number of methods including Wi-Fi, Radio Frequency
Identification Device (RFID), Ultra Wideband (UWB) and
ultrasound, etc. have been applied in order to implement indoor
localization. However, these techniques do not quite meet the
requirements of IPS, as they either highly consume power,
require high cost and complex extra hardware, or provide low
accuracy [1] [2].

In 2013, Apple Inc. introduced iBeacon — a small, battery
powered, wireless device that uses Bluetooth Low Energy
(BLE) technology to send its advertisement to compatible
smartphones or tablets within its proximity [3]. By using iBea-
con technology together with iOS platform, developers can
create proximity based applications that can be used in public
indoor places, such as shopping malls and museums. The
development of BLE iBeacon also brings new opportunities to
indoor positioning, as it is simple to deploy, energy efficient
and can provide better accuracy with lower cost.

Following the development of BLE iBeacon technology,
there have been a wide range of methods and algorithms
studied by researchers around the world to implement BLE
based indoor positioning. The most popular method is received
signal strength indicator (RSSI) based, which can be devided
into 2 main approaches: triangulation and fingerprinting. In
this paper, we built a system using fingerprinting. This method
requires building an offline radio map for the interested indoor
area. That can be done by collecting and storing beacons RSSI
data at different location points of that area. There have been
several studies focusing on using BLE based fingeprinting.

Zhang et al. [9] compared 3 algorithms that are usually
applied with Bluetooth based fingerprinting. This included
kNN, Neutral Networks and Support Vector Machines. The
authors proved that kNN was the better candidate for real-life
localization compared to the other two.

The work of Kajioka et al. [11] is among the first studies that
apply fingerprinting with BLE beacons. The authors installed
22 beacons inside and outside a room and then gathered
beacons data at 56 observation points. The data for each point
contained that points ID, beacons ID and their corresponding
RSSI. A Google Nexus tablet was used to collect and send
these data to database/estimation server via wireless LAN.
Finally, a Sum of Squared Difference (SSD) algorithm was
then applied for matching the current location point with the
observation points.

Faragher and Harle study [12] investigated a number of
key factors for accurate positioning with BLE and fingerprint-
ing. This comprised fading mitigation method, its window
selection, beacon advertising period, beacon density, beacon
transmitting power and fingerprinting dimensionality. At the
end, the authors showed that BLE based fingerprinting resulted
in a significant improvement compared with Wi-Fi based
fingerprinting.

In the work of Peng et al. [13], a detailed description
on constructing offline fingerprinting database was included.
In the online phase, instead of the conventional kNN, the
authors proposed an enhanced algorithm comprising Similarity
Improved kNN and Weighted kKNN. This new method is called
Iterative Weighted kNN (IW-kNN). The studys experimental
results showed that IW-kKNN outperform the conventional one.
Wang et al. [14] also proposed an improved kNN algorithm
called Euclidean Distance Correction in their study.



Zhuang et al. [15] showed that signals and noises in RSSI
measurements from 3 channels of the BLE band can be
different. Because of this, the authors generated separate radio
map database of each channel for fingerprinting. Another work
also applied separate-channel fingerprinting is from Ishida
et al. [16]. In their study, fingerprints from each channel
contributed to build a big offline database. Wen et al. [17]
developed an algorithm called Dynamic RSS feedback to
characterize the indoor environment.

Most of the mentioned studies include methods to reduce
the instability of beacons RSSI, which is the main issue of
fingerprinting. In order to overcome this problem, our work
applies Kalman Filter.

In this paper, we propose an indoor positioning system, in
which our main approach is fingerprinting. In this technique,
we configure the offline data in order to enhance the position-
ing accuracy. A machine learning algorithm called k-Nearest
Neighbor (kNN) is used to decide the user location. Also, as
mentioned above, to tackle the RSSI problem of fingerprinting,
we include a Kalman Filter. To test the performance of the
system, we build an application running on iOS devices that
returns the users current position on the screen.

The paper is structured as follows: Section II introduces
Apple’s iBeacon and an overview of our positioning system.
In section III, the positioning methodology used in the system
which includes Kalman Filtering, Fingerprinting and kNN is
described. In section IV, we discuss about our experiments and
their results. Section V concludes our paper.

II. BLE IBEACON AND INDOOR POSITIONING

A. BLE iBeacon

1) Characteristics of iBeacon: An iBeacon’s advertisement
includes 3 following components, which provide the identify-
ing information for that beacon [4]:

o Universally Unique Identifier (UUID): a 16-byte value.
e Major: a 2-byte value.
e Minor: a 2-byte value.

Hierarchically, the UUID value can be used to differentiate an
organization’s beacon from others, the major value is used to
specify a small group of beacons, and the minor value is for
identifying a particular beacon [5]. After each amount of time
called advertising interval, the beacon send its advertisement
to the nearby mobile devices via BLE.

Originally, iBeacon is developed for proximity based ser-
vices [6]. Once the user device receives the advertisement of
a beacon, the application running on the device can identify
that the user is in the proximity of that beacon. The application
can then display on the device’s screen the corresponding
information related to the area where the beacon is placed.

2) iBeacon and iOS platform: Apple provides a framework
called CoreLocation for iOS application development [4] [5].
By using this, developers can build different applications to
provide proximity based services with beacons on iOS devices.

B. Overview of our indoor positioning system

As mentioned above, our positioning system is based on
RSSI, or the strength of the received signal at user device.
The value of RSSI from a beacon varies as the user changes
his/her location. The closer the user is towards the beacon,
the stronger the RSSI from that beacon is. Making use of this,
we apply Fingerprinting — a technique relevant to RSSI [1],
in which we collect and store RSSI data at different points
on an indoor location, and later on with kNN algorithm, use
those stored data to compare with the RSSI data received by
the user device in real time, to decide his/her location [1] [2].

Fingerprinting technique is cost efficient and simple to
implement. However, RSSI values are often unstable due to the
indoor environment and can be severely affected by a number
of factors, such as multipath fading and indoor noises [1] [2],
which therefore can lower the accuracy of fingerprinting. So
as to reduce the fluctuation of RSSI and improve positioning
accuracy, we apply Kalman Filtering — a method proposed by
R. E. Kalman in 1960 [7], which has now become a standard
approach for optimal estimation [8].

In our system, RSSI values from beacons received at the
user device are forwarded to Kalman Filter. The smoothened
RSSI values are then compared with the data collected in the
first stage of fingerprinting using kNN, to estimate the user
location and display it on the device screen. Figure 1 shows
a clearer view of how our system works.

T — Smoothened
Kallman —————» Fingerprinting
\ Filter RSSI
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Fig. 1. Overview of the proposed system.

IIT. POSITIONING METHODOLOGY

In this section, we introduce Kalman Filter, Fingerprinting
and k-Nearest Neighbor — 3 techniques used in our system.

A. Kalman Filter

Kalman Filter is a linear optimal state estimation method
which uses the following state model [8]:

rp = Axp_1 + Bug_1 + wy, (1)

zp = Hap + v 2

In this model, the state x;, which is the RSSI value to be
estimated in our case at time k, is a function of the previous
state at time k — 1, the control signal ug_; and the process
noise wy. The measurement z;, which is the observed RSSI
value from a beacon at time k, is a function of the state at time
k and the measurement noise v;. A and B in Equation 1 are
called state transition matrices, H is called the observation



matrix. In our case, wy and vy are assumed as zero mean
Gaussian white noises, or more specifically, w, ~ N(0, Q)
and vy ~ N(0, R).

There are 2 stages in Kalman Filter: the time update
(prediction) stage and the measurement update (correction)
stage.

o Time update:

Z, = AZp_1 + Buy 3)
Py = AP, 1 AT +Q (4)
o Measurement update:
Ky=P,H'(HP H" + R)™* )
T =2, + Ki(ze — Hip) (6)
P, =(1-K.H)P, 7

In these formulas, &, is the prior estimate at time k, which
in a way, means the rough estimate before the measurement
update correction. P~ is the prior error covariance. K}, is the
Kalman gain. #j, is the posterior estimate at time k, which is
the smoothened RSSI values in our case. Py is the posterior
error covariance.

[ 1

. Time update . . Measurement update .
(Prediction) (Correction)

1)Compute the Kalman gain
Ki =P (P +5)7*
2)Update/correct the estimate
via the measurement z;
X =X + K (ze — %)
3)Update the error covariance
P, = (1 -Ki)P,

[ )

The output at & will be the input for k + I

1)Project the state ahead,
compute the prior
estimate
X =Xy
2)Compute the prior
error covariance
Py =Py

Initial
estimate at
time k=0

Fig. 2. Working process of applied Kalman Filter.

In our study, we use a one-dimensional Kalman Filter in
order to smoothen RSSI values observed at fixed location
points, i.e., Kalman Filter is used to smoothen RSSI values
observed when we stand still at each of those points. Because
of this, there is no control signal uy. Also, because the RSSI
values from a beacon at time £ — 1 and k£ at a same location
point should be the same, we let A equal to 1. We choose H
to be 1, as we know that an observed RSSI value is composed

of the state RSSI value and the measurement noise, as in
Equation 2. Parameters (), R and the initial value of P used
in our system are obtained from doing experiments, and are
given as follows: R =5, ) =0, P = 10. The final time update
and measurement update are shown in Figure 2

B. Fingerprinting and k-Nearest Neighbor

Fingerprinting is a prior scene analysis based technique
which include 2 stages [1] [2] [9]:

o Offline stage: In this stage, signal measurements, or
the RSSI values in our case, are collected at different
location points on the indoor area where the positioning
system to be used. Each location has a different set
of RSSI measurements from the beacons, each set is
called a fingerprint. The fingerprints are then stored in
the database.

o Online stage: Once the positioning system is deployed,
the online measurements, or the current RSSI values
observed in real time, are compared with the offline mea-
surements, i.e, fingerprints to estimate the user location.

In the second stage of fingerprinting, to compare the online
observed data with the one stored in the database, we use an
algorithm called k-Nearest Neighbor — a machine learning
method which has been widely applied in indoor position-
ing [10]. The idea of kNN is that for each user location, it
computes the distance between online data observed by the
user and every fingerprint recorded in the database, and then
return k locations that have the corresponding fingerprint with
smallest distances [9]. In our case, k is 1. Assuming that the
signal measurements data of the user location is V, = (v,
V2, ..., Unp), in which v; (5 =1, 2, ..., m) is the observed
signal measurement from the j*" beacon. These data are then
compared with the fingerprint data by calculating the following
Euclidean distance:

d(Va, Vi) = ®)

m
> vy — il
j=1

In which: V; = (vi1, vigs ..., Vi) is the ith fingerprint data
stored in the database. v;; (7 = 1, 2, ..., m) is the offline
signal measurement from the j*" beacon.

After that, the location corresponding to the fingerprint data
that has the smallest value of d is chosen to be the user
location. In order to improve the accuracy of the system,
instead of using only RSSI values from the beacons as a
fingerprint, we configure the fingerprint for a location point
as follows:

Location = (z, y) = [Nearest Beacon's Major, RSSI[0],
RSSI[1], ..., RSSI[n — 1]]

In which: RSSI[0], RSSI[1], ..., RSSI[n — 1] are RSSI
values of n nearest beacons whose values are in descending
order. Nearest iBeacon's Major is the major of the beacon
that has the RSSI value of RSSI[0].

Using this kind of fingerprint, we mostly base on the major
and the RSSI value of the nearest beacon (which are Nearest



iBeacon's Major and RSSI[0]) to compare the online
measurements with the ones in the database. As the RSSI value
of this beacon is the strongest and the most reliable compared
to the further beacons, using it to decide user location is likely
to provide higher accuracy.

C. Proposed system workflow

Figure 3 shows the workflow of our indoor positioning
system. After the beacons send signal to the user device, if
n or more beacons are found nearby the user, the system
then chooses n beacons that have strongest RSSI values.
These values are smoothened by Kalman Filter, before being
compared with fingerprints in the database using kNN to
extract the most probable user location.
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Fig. 3. Proposed system workflow.

An example of the workflow is illustrated in Figure 4. Three
BLE beacons are deployed in this example. Their majors are
36616, 7503 and 64882, respectively. In the offline phase, the
beacons’ RSSI values are filtered by Kalman Filter. The data
for each location points are then stored in the database. In
the online phase, the user receives data from the beacons.
As the system detects that the number of nearby beacons
is equal to 3, their RSSI are filtered. We then achieve an
online data vector as shown in Figure 4. After that, the
Euclidean distance between this vector and each of the offline
vectors in the database is computed using Equation 8. In
this example, location 1’s data vector results in the smallest
distance. Therefore, location 1 is chosen to be the user current
position.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we show our experimental results. To
evaluate the accuracy of our indoor positioning system, we

BLE Beacons
36616 7503 64882

[
hd
Online
RSSI
v
Kalman Filter
Numbers of

] beacons >=3

v

Database

Yes

v
Kalman Filter

Online data =
[36616, -63, -74, -77]

Location 1 = (0, 0) =
[36616, -63, -75, -79]

Location 2 =(0, 1) =
[36616, -69, -69, -80]

Location 3 =(0,2)=
[7503, -62, -68, -75]

kNN
using Equation (8)

Location 1 data has
smallest distance

User’s location is
Location 1

Fig. 4. Example of the workflow.

built an application running on iPhone 5S and implemented 2
experiments, which were done on the first floor of one of our
university’s buildings. The deployed area was 14 m x 5.5 m.
Table I summarizes the equipments related information used
in both of our experiments. The number of beacons used in
each of them were 3 and 4, respectively, with 2 different ways
of placing them.

A. Experiment 1: Using 3 beacons

1) Experiment set-up: In this experiment, we placed 3
Estimote beacons in 3 positions, with the distance between
2 beacons of 6 m. In the offline stage of fingerprinting, we
collected RSSI values from the 3 beacons at 21 location points
on the first floor of the building, each point was assigned with
coordinates. The distance between 2 neighboring points was



TABLE I
SUMMARY OF DEVICES PARAMETERS
User Device iPhone 5S
Wireless Interface BLE v4.2/ 2.4 GHz
Operating System i0S 11.2.6
Beacons Estimote iBeacons
Broadcasting Range 50 m
Advertising Interval 100 ms
Broadcasting Power 0 dBm (Strong)
Major Yes
Minor Yes

1.6 m. The set-up of this experiment is illustrated in Figure 5.

e

Fig. 5. Experiment 1 set-up.

After that, we registered the data corresponding to 21
location points into our application’s database. An example
of a point’s data can be viewed as follows:

Location 1 = (x : 0, y: 0) = [36616, —65, —75, —79]

Then, as we walked through the location points, the applica-
tion tracked our position and displayed it on the phone screen.
Figure 6 shows a screenshot from our application.

In order to show the influence of Kalman Filter on our
system, we carried out this experiment in 2 following cases:
one with our system with Kalman Filter, Fingerprinting and
kNN, as we mentioned in section II and III; and the other one
with the same system, but without Kalman Filter.

2) The system without Kalman Filter: The result of this
case is shown in Figure 7, as the red line indicates our true
walking path, and the blue dashed line indicates the path
tracked by the application.

Without Kalman Filter, the system resulted in a low accu-
racy rate of 20% with the error up to 3.6 m. The average error
was 2.23 m. The locations that the application returned on the
device screen was also unstable. This is due to the instability
of RSSI caused by the indoor environment.

3) The system with Kalman Filter: Figure 8 shows the
result for this case. Our system with both Kalman Filter,
Fingerprinting and kNN correctly tracked 60% of the location
points with the error between 0 — 1.6 m. The average error was
0.71 m. The results returned by the application was also more
stable. The remaining 40% of points that were inaccurately
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=
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Fig. 6. Screenshot of the application.
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Fig. 7. Result of the system without Kalman Filter.

tracked were still due to the RSSI values being affected by
the indoor environment. However, this result showed great
improvement in term of accuracy and stability compared to
the system without Kalman Filter.

B. Experiment 2: Using 4 beacons

1) Experiment set-up: Similar to experiment 1, we col-
lected and stored data from 21 location points. The difference
in this experiment compared to the previous one was the use
of 4 beacons, which were placed as described in Figure 9.

In addition, we included in our walking path 6 location
points whose offline data were not stored in the database.
These were named G1 to G6, which is shown in Figure 10.
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Fig. 9. Experiment 2 set-up.

2) Results: In tracking the points included in the database,
the system resulted in 71.4% accuracy, an error of 0 — 1.6
m with the average of 0.32 m. For the points that were not
stored, i.e., G1 to G6, the location returned were the stored
points that were nearest to them, which we named G1’° to G6’
in Figure 10. Thus, the overall average error in this experiment
was calculated to be 0.77 m.

These results show that by increasing the number of beacons
used and changing how they are placed, the positioning
accuracy can be improved.

V. CONCLUSION

In this paper, we have introduced our BLE iBeacon based
indoor positioning system, which we built as an application
running on the i0S platform. The system used Kalman Filter
in order to reduce the fluctuation of RSSI, and this showed
good results in improving the stability of both RSSI and
the system. Fingerprinting and k-Nearest Neighbor method
was also applied with our configured fingerprint to improve
positioning reliability. In tracking a user location, our system
resulted in a 60% accuracy rate in the case of using 3 beacons,
and 71.4% in using 4 beacons, with an error of up to 1.6 m
for both cases. In the future, we plan to study and apply a
motion model with the use of smartphone’s internal sensors
to track the user location while he/she is moving.
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