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Abstract
How can we efficiently search an object in a room? This report introduces a method for a single indoor mobile

robot to find a hidden item based on states of the room when the robot is moving. A 2D distribution, called cognitive
map, is built during robot movements to boost the exploring time. It is known that in the filed of exploring algorithms,
A∗ usually takes more time to reach the target than recent invented algorithms such as rapidly-exploring random trees
(RRT) and probabilistic roadmap (PRM). However, by adapting the cognitive map as a cost map, the A∗ algorithm
is significantly improved and surpasses the two algorithms in Scannet 3D dataset. We also introduce application
of depth sensors and SLAM solvers on reconstructing the room and updating cognitive map. By running a virtual
robot in Gazebo simulator, it is proved that our method can work well on synthetic environment and hence, is very
promising to be worked on real-life environment.
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1. Introduction

Motivation
In real life, autonomous robot has a wide

range of applications. Several practical
examples can be listed: robotics arms
in factory, people recuse after disasters,
autonomous transport robot, etc. A traditional
approach for self-governing robot is to
divide it into sub-problems: data acquisition,
localization, transfer acquired data to a higher
level of understanding, decision making (path
planning), motion control, etc.

Among these tasks; we chose to handle
the navigation task for indoor mobile robot,
which is a combination of localization and
path planning. There are two main reasons of
our decision: robot sensors and computer have
signification growths nowadays; navigation is
the final step before hardware control. For
the first reason, Janai et al. [1] listed a lot of
recently released data capture devices, which
are ready for autonomous vehicles. Higher
data quality would lead to more accurate
understanding and smarter decisions. He
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also mentioned big step of computer vision
in processing these data within the help of
deep learning. For the second reason, it
is known that robot can be simulated and
run virtually without real hardware control.
Meyer [2] built an autonomous UAVs system
that demonstrates the ability of building a
complete self-driving robot without hardware.
It means with careful simulations, a study on
virtual is enough to prove the feasibility of
work on soft parts. Additionally, we focus on
indoor mobile robots since it is much cheaper
to build compared to outdoor robots. The
drawback of the indoor mobile robot is low
nature of data. However, this environment
can be manual refined and all the data can be
retrieved and stored.

A survey is taken on some well-known
navigation approaches: step by step, end to
end, fuzzy logic and reinforcement learning
[3, 4, 5]. It is figured out that the end-to-end
and reinforcement learning approaches require
an enormous amount of data to make good
decisions. Fuzzy logic gives hidden and
unpredictable decisions. The step-by-step
approach divides the task into sub-tasks. Error
would increase after each step, but the system
is manageable and less depends on data.
Having said in the previous paragraph, indoor
data is not natural. And indoor mobile robot
is low-cost hardware; hence, we chose a
step-by-step approach to handle the navigation
task for indoor mobile robot.

This report focuses on developing
navigation algorithms. Based on cognitive
map, a map created from previous step
of navigation step, we design a modified
A* algorithm to decide robot trajectory.
To prove the feasibility of the idea, three

types of experiment: on Scannet dataset, on
Gazebo simulator and on synthetic maps are
performed and presented in Chapter 4.

Problem statement
The problem can be formulated as below:

let the robot to find an object O without
its exact position. The robot has the input
of positions of each object in the room,
appearance distribution of object O (on
each known object), RGB and depth images
acquired by robot’s cameras. Our main goal
is to derive a trajectory for the robot in order
to find the object O as soon as possible.

Specifically, Figure 1 illustrates the map
with known fixed objects, an input of problem.
In this figure, each pixel is labeled with a color
identifying its object type.

2. Background

2.1. Autonomous robots
An autonomous robot is a robot which is
designed to work on a specific environment
in a long period of time without human

Figure 1. An example of fixed objects with their label.
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intervention. There are many kinds
of autonomous robot with their notable
candidates that can be listed: Stanley, a
famous autonomous vehicle [6]; NVIDIA
self-driving cars and drones [3]; Bigdog, the
robot that can move like a dog, created by
Boston Dynamics; ASIMO, a human-like
robot that is designed by Honda [7]; etc.
Autonomous robots also have a variety in
working environment. Some works in
buildings like MIT RACECAR [8] while
many other autonomous robots work outdoor.
For example, most of NASA’s robot in the
moon are fully autonomous [9]. Yuh and
Junku presented a number of studies for
autonomous underwater robots [10] in 2000.
The researches on making underground and
mining robot automation are also noticeable
as described in Bakambu et al. survey [11].
In this report, only indoor robots are being
analyzed as they are affordable but still have a
number of applications.

Indoor robots are designed for many
purposes. Freund at el. mentioned some
common scenarios such as: dangerous areas,
rescue after disasters, transportation, health
care, etc. Many robot systems can be
applied to achieve a specific purpose. Some
common autonomous systems are listed by
Arai et al in their editorial [12]: single robot
only, single robot with outside supplements,
multi-robot with pair-wise communications,
human-interactive robots, etc. For simplicity,
this report focused on a single indoor
robot with surroundings supplements such as
observing system and workstations.

There are many approaches for building
an autonomous robot. A common way is
to derive the whole process into sub-tasks

such as data acquisition, data processing, map
reconstruction, path planning, robot control,
etc. Each task can be implemented in the robot
or outside device. Usually, data processing,
path planning, robot controls are directly
implemented in the robot. Data processing
and map reconstruction can be handled by
a strong computation device, and the results
are forwarded to the robot. Recently, as
the growth of hardware and software in this
field, a strong single robot can handle all the
task and learn how to give decisions without
explicit rules. This approach is well-known as
the end to end system. A notable research
in this approach is NVIDIA "End to end
learning for self-driving cars" [3]. For
more understandings on the two approaches,
brief introductions about mentioned tasks are
presented in later parts in this section.

2.2. Data acquisition

2.2.1. RGB sensor
Color camera is one of the most common
sensors in robot. The sensor takes light
waves as input and after the quantization, the
wave strength is converted into some numbers.
Usually, they are represented as three values:
red, green and blue. There are many reasons
behind the decision of representing as R, G
and B. Further details and analysis on color
representing are extensively studied by Mukai
at el. in their publication [13];

2.2.2. Depth sensor
There are two approaches to get depth

information from the environment. The first
is passive acquisition where the camera only
receives data and infers the distance. A
notable method in this approach is the stereo
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camera where many cameras are used to
reconstruct the 3D-like scene. The second
is active acquisition. In this approach,
sensors take some action in the environment
and infer depth based on the responses.
Microsoft Kinect v2 1 is a famous example.
This camera projects a bunch of light rays
into the environment and calculates their
time-of-flight. Based on the difference
between the shooting and receiving time of
each ray, the distance is calculated with a very
high accuracy.

2.3. Data processing

RGB information
RGB image was used in the early steps of
autonomous robots. Many features within
the environment can be derived from the
color image capture by robot camera. In this
part, we present two examples of using RGB
information in developing an autonomous
robot.

In figure 2, many semantic meanings of
the objects are retrieved. This kind of
understanding can be used to reconstruct the
map or derive a movement for the robot. There
are some well-known studies on this step
such as: Yolo9000, a fast object detection
network by Redmon et at. [25]; ENet, a deep
learning architecture for real-time semantic
segmentation by Paszke et al. [26]; Scannet, a
segmentation network for 3D scene by Dai et
al. [27]

There is also a trend of using the methods
on embedded Kit. In kit Jetson TX1, ENet
performs 3.8 fps on a 1280 × 720 image and
21.1 fps on a 480 × 320 image. In kit Jetson

1https://en.wikipedia.org/wiki/Kinect

Figure 2. Some well-known computer visions tasks on
RGB image

TX2, Yolo9000 have a speed of 16-17 fps in a
1280 × 720 image.

Depth information
Depth information processing is a recent
trend on autonomous robots. Despite a large
number of studies on this kind of data, there
still not a dominant representation of 3D
data. Hartley mentioned some commonly
used representations: voxel, polygon faces,
octo-map and point cloud in his famous book
"Multiple view geometry" [19]. Voxel is a
three dimensions array which has the same
idea as two dimensions array of 2D image.
Polygon face is a common representation of
objects in computer graphic. Octo map is the
way of representing the 3D image as a tree.
Quality of the image increase with the depth
of the tree but also the memory consumption.
Some recent applications of octo map in 3D
image processing can be found in [28] and
[24]. Point cloud is a sample of the original
scene with a number of 3D points. This
representation allows point cloud to have a
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small memory consumption compared to other
methods. However, the neighborhoods in
point cloud representations are not explicit. In
2017, Qi et al. proposed PointNet, an efficient
3D image classification network using point
cloud. The paper presented a method to make
the use of 3D information and reduce the
disadvantages of point cloud.

Apart from the representation, the work on
3D tasks such as reconstruction, navigation,
semantic segmentation also has an increasing
attention. In 2013, Gupta et al. published a
work on RGB-D data perceptual organization
and recognition [16]. In 2017, Dai et al.
proposed a Scannet, method to reconstruct
and get semantic meaning of objects in
real environments with the help of depth
information[27].

3. Method

Modifications on a-star algorithm

With mentioned geometric information (by
RGB-D camera) and semantic meaning
(data processing step) of objects in the
environments, the robot can derive a belief
about local objects. As the robot may
not know the exact position of the goal,
knowledge about current objects in its view
and their relations with the goal plays an
important role in navigation the robot. We
formulated this belief as a cognitive map, a
local probabilistic map p where each pixel
in the camera view is assigned to a value in
(0,+∞). The usage of the cognitive map in
our method is presented first, then the details
of cognitive map calculation.

As discussed in the previous chapter, A∗

algorithm is a best-first search algorithm with

the heuristic function:

f (ni) = g(ni)+h(ni) ∀ni ∈ Neighbors(c) (1)

Where c is current position, Neighbors is a
set of positions that the robot can reach, g(ni)
is path length taken by the robot from the
source to ni and h(ni) is an estimation of path
length from ni to the goal. The estimation h
should guarantees that h(x) ≤ length of true
shortest path from x to the target. Usually,
h(x) is measured as Manhattan distance for
four neighbors, Chebyshev for eight neighbors
and Euclidean for any-angle neighbors. In this
study, we add a weight w to the of which value
is a positive scalar:

f (ni) = g(ni)+w(ni)∗h(ni) ∀ni ∈ Neighbor(c)
(2)

Actually, the weight w is based on belief map
p about the local environment. In our problem,
the belief involves only two factors: geometric
distance and semantic meaning. Values of p
range from 0+ to 1− and w is calculated with
formula 3

w(c) =
1 − p(c)

p(c)
(3)

In equation 3, values of p in (0, 1) are
mapped into (0,+∞). It is easy to aware that
when all positions have the same belief of
0.5,w(c) = 1 ∀c; hence, our algorithm is same
as traditional A∗ algorithm. As the algorithm
mainly used the cognitive map, from now
on, we will use cognitive map-based a-star
algorithm (CMA) as the name of our method.
It is noted that we set w(c) = INF, where INF
is a big constant number, when w(c) goes to
infinity.
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Cognitive map

In this report, we derive a simple version of
the cognitive map based on objects’ semantic
meaning only. Assume we are finding the
book. The probability p(c) is defined as
the distribution of appearance of the book in
the whole map. Assuming there are countc

separated objects of type c in the map and the
book is put in that object Nc times throughout
N surveys. The probability of containing the
book in each instance of object c is:

p(c) =
1

N × Nc

∑
countc

Algorithm details

Actually, the cognitive map is divided into a
set of objects that each object is a connected
component of pixels with the same label. A
specific object is assigned to a value in (0, 1)
where sum of all objects’ probability is equal
to 1. While exploring the map, the robot marks
pixels in its field of view as visited. If an
object is partly discovered; in other words,
only some pixels of the object is visited, the its
probability remains the same. However, when
the robot fully discovered an object but could
not find the target, that object is eliminated
and its probability is redistributed to other
non-visited objects.

Beside the prior knowledge of appearance
distribution, the robot also take the advantage
of the global map and RGB-D camera to
retrieve distance to objects; hence, can
calculate the exact position of each object in
its field of view. As we are consider a grid map
where robot can view and move to a position in
its view, the distance is measured as Euclidean
distance. Specifically, for a position cur, the

estimation distance h(cur) is evaluated by the
formula:

h(cur) = ‖cur − goal‖

This estimation guarantees that the h(cur) is
always less or equal the length of true shortest
path from cur to current goal.

With p() and h() are calculated as above
explanation, we can evaluate the estimation
w(ni) ∗ h(ni) for all neighbors of current
position. From a set of non-visited neighbors,
we choose the one with lowest value of w()∗h()
to reach.

4. Experiment and evaluation

4.1. Experiment setting
The algorithm is experimented on Scannet

dataset and customized grid maps. Figure 3
illustrates the scene 001 of Scannet dataset
containing 1513 labeled scenes. Scene 001
has 23 objects: table, bed, chair, salon, etc.
In this scene, we let the robot to find the a
book with appearance distribution p(x) where
p(table) = 0.2, p(bed) = 0.11, p(chair) =

0.04, etc. means that on the average, the book
appears on the table with a probability of 0.2,
on the bed with a probability of 0.11 and so
on.

To verify the feasibility of the algorithm, we
deployed our idea on Gazebo simulator and
real-life. Figure 4 presents Xbot, our real-life
robot.

Figure 5 illustrates and overview of our
virtual robot on simulator.

To verify the performance of our method,
the cognitive map-based a-star algorithm
(CMA) is compared two well-known
algorithms. The first is greedy maximum
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Figure 3. Scannet dataset scene 001

Figure 4. Xbot, the robot in real-life

Figure 5. The robot on Gazebo simulator

probability (GMP). In GMP method, the
robot always reach to the object with largest
probability of containing the target. The
second is rapidly-exploring random tree
(RRT). In RRT, the robot set some milestones
in the global map and tries to explore the map
by traveling throughout the milestones as a
tree.

4.2. Result
We recorded the results of 10000 queries

for each algorithm in each map. Figure 6
demonstrates the expected path length of the
algorithms on some notable maps. Figure 7
presents average run time of each algorithm
on mentioned maps. Figure 8 describes the
runtime of each process of our robot on
Gazebo simulator. As can be seen from
the figures, our CMA algorithm has slightly
shorter path compared to other methods. To
achieve the better paths, our method needs
to spend larger computations; hence, longer
runtime. However, Figure 8 shows that the
path planning algorithms has much smaller
runtime compared to image acquisition and
object detection parts. That means the robot
still works smooth with our method and the
trade off is worth doing.

5. Conclusion

In conclusion, this report has studied a simple
cognitive map-based A∗ (CMA) algorithm.
This study has shown advantages of CMA
over traditional A∗ and RRT algorithms where
the semantic meanings of environment are
retrieved. The method is experimented on
Gazebo simulator, Scannet 3D dataset and
one thousands custom grid map scenarios. It
is turned out that our algorithm has shorter
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Figure 6. Expected path length of three algorithm

Figure 7. Average run time of three algorithms

exploration time compared to A∗ and RRT
algorithms and can be run on embedded kit
NVIDIA Jetson TX2.

Future work

For future direction, we are planning to
compare the performance of the method with
most-recent approaches and run the algorithm
on the real-life robot. Here are the main
follow-ups are considered to be taken care of
right after the report.

Figure 8. Runtime of each process or robot on Gazebo
simulator

Comparisons with state-of-the-art methods

Some recent deep learning-based methods
are mentioned in this report. Nonetheless, they
are not appeared in the experiment because
of their huge resource consumption. For
example, cognitive mapping and planning
method by Gupta et al. [17] requires at least
500GB of disk to store a scene (out of five)
in the dataset including pre-trained models,
raw XYZ point cloud of the whole room,
annotations of objects. This is due to the
methods are currently designed for end-to-end
system where strong computational devices
are always available.

It is a luck that all the datasets above are
opened for all people to access and most of the
benchmarked scenes in the paper are labeled.
With current workstation, we hope that a deep
learning-based method will be performed to
take a comparison between an end-to-end and
a step-by-step approach.
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Lanching the real-robot
Currently, Xbot can run some simple
autonomous tasks such as lane marker
detection, people detection, etc, run in some
custom lanes. However, it is impossible to
launch a sequence of autonomous processes
from acquiring the data to giving the decision.
This is due to our incomplete work on 3D
SLAM task. Currently, we are focusing
on this task and when the whole room is
reconstruct, the robot can be launched as the
one in synthetic environments.
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