
1

Integrating a Testing Technique into the RTL Tool

Nguyen-Hoang Pham, Ngoc-Huyen Luong, Thi-Hanh Nguyen, Duc-Hanh Dang*

VNU University of Engineering and Technology

Abstract
Model transformation is an indispensable part in model-driven engineering. Such an importance has created a demand

for transformation testing strategies and tools. This paper introduces an approach for testing model

transformations using classifying terms. Classifying terms enable users to easily exercise equivalence class

partitioning in order to validate model transformations, by giving them fine-grained control over the selection of

input data and test oracles. By integrating this technique into an existing framework, we provide a way to

validate model transformations using a graphical interface, in which the generation of input models and

validation of output models are handled automatically.
Keywords: Model Transformation, Restricted Graph Transformation Language

1. Introduction
*

Model transformation, as one of the

essential parts of Model Driven Engineering

(MDE), is becoming more and more widely

used for different objectives. In MDE, models

which are generated from model

transformations, are key artefacts of software

projects. Thus, the quality of models depends

on the quality of model transformations.

Testing is an effective way to validate

model transformations. It allows detecting most

common errors related to specification and

implementation of model transformations.

Model transformation testing has faced two

main challenges that are the generation of test

models and oracle functions [8, 13].

Firstly, testing model transformation

generally tries to automate the generation of test

cases. Test models are complex structures with

data and behavior, which must conform to

constraints defined in the source meta-model.

Generating realistic test models automatically

and efficiently is nontrivial. Secondly, a major

challenge in model transformations testing

concerns test oracles. The oracle procedure

requires the comparison between the generated

target model and the expected output model

*
 Corresponding author. Email: hanhdd@vnu.edu.vn

determined in a given test case. This task can be

done either syntactically or semantically.

Syntactically, the comparison algorithm must

compare two graphs, and the task is often

highly complex. Therefore, checking the

semantics of a target model against pre-existing

sources of knowledge given as constraints, e.g.,

post-conditions of transformations or invariants

on the output language, is a more common

method.

Additionally, model transformations deal

with models, which are graph-based, therefore,

the complexity of the testing process is much

higher than code testing, especially when the

model transformation involves a large number

of classes and associations. Testing model

transformation manually is therefore very time-

consuming and error-prone. This has led to the

need for techniques and tools to support testing

model transformation automatically.

In this paper, we propose an approach for

testing bidirectional model transformations

using the classifying term concept as introduced

in [4]. We also develop a graphical tool to

realize our approach and to automate the two

phases of testing, test case generation and

oracle function generation, in a fast and reliable

method. This tool is integrated into the existing

2

transformation framework RTL [1] on the

UML-based Specification Environment (USE).

The rest of this paper is organised as

follows. Section 2 presents the background of

our work: Restricted Graph Transformation

Language (RTL) and Classifying Terms (CTs).

Section 3 introduces our proposal about testing

transformations. Then, a support tool for black-

box testing technique realizing our approach is

presented in Sect. 4. Section 5 presents

experimental results and discussions. Section 6

comments on related work. The paper is closed

with conclusions and future work.

2. Preliminaries

2.1. A Running Example

a) BixTeX file meta-model

b) DocBook file meta-model

Figure 1. The meta-models of transformation

To better demonstrate our approach we

consider the BibTeX2DocBook transformation

that converts the information about proceedings

of conferences in BibTeX format into the

corresponding information encoded in

DocBook format. Although two formats are

different, they can be used for the same purpose

– to store bibliography documents. Converting

between the two formats is necessary when, for

example, a user wants to import a BibTeX

bibliography into his existing work in DocBook

or vice versa. This example is a simple version

of the BibTeX2DocBook model transformation

example in ATL Transformation Zoo created by

Eclipse [3] and is used to demonstrate a testing

technique in [7]. The source and target meta-

models used for the transformation are shown

in Fig. 1.

This transformation will perform the

following tasks:

- Transforming a BibTeXFile to a DocBook

file and vice versa

- Transforming each Proc of the BibTeXFile

to one Book with the same title in the

equivalence DocBook file and vice versa.

- Transforming each Inproc in the BibTeXFile

to one Chapter with the same title and

belong to the Book whose title is the same as

the Inproc booktitle and vice versa.

- Transforming each Person to one PersonD

with the same name and role (author/editor)

and vice versa
2.2. Implementing the transformation in RTL

There are many different languages for

model transformations. Some aims at

transforming models in one direction, like the

ATL transformation language [8]. Others allow

transforming models bi-directionally.

One of the approaches toward bidirectional

model transformation is by using Triple Graph

Grammar (TGG), a transformation language

that is highly suitable for specifying

bidirectional transformations [5]. In TGG

model transformation specifications, the source

models and target models are connected via

correspondence model that represents the

relationship and/or constraints between source

and target model and the constraints between

source elements and target elements in

matching patterns. Pattern matching is a central

concept in TGG.

In order to produce a target model from a

source model, a transformation engine must

perform pattern matching to find objects and

links that match the left-hand side of a TGG

rule, then create additional elements to match

the TGG rule’s right-hand side. Certain

characteristics of triple graph grammar, such as

its solid mathematical foundation and graph-

based concept, enable users to specify model

transformation rules in a declarative, high-level

and even graphical manner.

 3

 Restricted Graph Transformation

Language (RTL) is a language and framework

for bidirectional model transformation using

TGG integrated with OCL (Object Constraint

Language) constraints. The TGG rules are used

to specify the transformation, while OCL

defines the constraints on the source and target

models and constraints on source and target

elements in form of pre/post-condition, and

invariants.

In order to specify the transformation, the

user has to define a set of rules describing how

to transform an element of the source model

into its equivalence in the target model.

Figure 2 demonstrates the RTL language syntax

for a transformation rule. Thus, a

transformation specification includes the source

and target meta-models and a set of RTL rules

presenting mapping patterns between source

elements and target elements. The

transformation specification with RTL can be

automatically transformed into USE command

to implement the transformation [1].

However, there are cases when a source

model is used as input of the transformation

program. The transformation program translates

the source model into a target model, but the

result of the transformation is incorrect.

Figure 3 demonstrates the result when

performing a model transformation on a

BibTeX model (on the left), which consists of

the equivalent DocBook model (on the right),

and a correlation model (objects and links

representing the mapping between source and

target elements). It can be observed that the

object PersonD1 has the ChapterAuthorship

relationship with both Chapter1 and Chapter2;

while its corresponding object, Person1, is only

the author of InProc1. This is an unwanted

behaviour which points to a mistake related to

the transformation program or the specification.

Thus, additional validation measures must

be introduced in order to ensure the

transformation’s correctness. In model

transformation, the input is usually a set of

source models, and validation is done by

comparing the produced target models with

expected ones. However, there are cases when

only certain classes of source models reveal

specification faults. Classifying terms, the

technique underlying our implementation, can

help users define custom model classes and

generate input models that cover all classes.

2.2. Classifying terms
One of the difficulties in validating model

transformation is how to select effective test

cases among the infinite object model space. A

large number of object models having the same

Figure 2. A TGG rule to convert a Proc object to a Book object and its visualisation in USE.

4

properties and behaving the same in the

transformation might be taken into account.

This would make the validation more time-

consuming and might not guarantee to cover all

possible scenarios.

To deal with this problem, we employ

classifying terms introduced in [4] to divide the

input model space into a finite set of

equivalence classes. Classifying terms are OCL

expressions which can be applied to a class

model to calculate a characteristic value for

each object model. The characteristic values

can be either integral or Boolean, which will

decide the number of equivalence classes each

classifying terms can define. We would like to

use multiple Boolean classifying terms, each

defines a single piece of the classifying

requirement, and then combine those

classifying terms to get our desired equivalence

classes.
oneProc
BibTeXEntry.allInstances->
 selectByType(Proc)->size() = 1
authorXorEditor
PersonB.allInstances->forAll(p|
 p.proc->isEmpty() xor
 p.inProc->isEmpty())

To demonstrate the use of classifying

terms more clearly, we would like to give an

example of two simple classifying terms being

defined on the source meta-model of the

BibTeX2DocBook transformation.

The first classifying term divides the input

space into two equivalence classes. In the first

equivalence class, BibTeXFile can only have

one proceeding. The classifying term in this

case will have the value True. While in the

second equivalence class, BibTeXFile can

have more than one proceeding (BibTeXFile

cannot have zero proceedings as constrained

by the meta-model invariant). The classifying

term in this case will have the value False.

Similarly, the second classifying term

focuses on the characteristic of whether a

person can be both an editor of a proceeding

and an author of a paper (InProc). These two

terms in combination will divide the test input

space into 4 equivalence classes. Each

equivalence class can satisfy or not satisfy one

or more classifying terms.

 By using the USE plugin ModelValidator

[9], which uses SAT solvers to generate

different object models, in combination with

these classifying terms, we can get one

representative object model from each

equivalence class.

Figure 4 demonstrates an object model

corresponding to one solution of the resulting

object models with the values of given

Figure 3. Example of a model produced by a faulty transformation

 5

classifying terms ([oneProc] = true and

[authorXorEditor] = true).

The using of classifying terms for testing

model transformation in our approach are

introduced in the following section.

[oneProc] = True, [authorXorEditor] = True

Figure 4. Object model generated by Model

Validator.

3. Approach overview

In this paper, we provide an automatic

validation method that integrates an existing

transformation framework, RTL in [1].

Figure 5 presents a high-level overview of

the proposed approach. The source meta-model,

classifying terms and a set of parameters are

used as input to the SAT solver to generate a set

of source models. The transformation engine

takes the source and target meta-models, the

RTL transformation rules as well as the source

object models to produces a set of

corresponding target models.

The validation is achieved by using two set

of classifying terms. One set of classifying

terms is applied to the source meta-model to

partition the input space into equivalence

classes and generate corresponding input

models. The other set of classifying terms is

applied to the corresponding transformed

models. These classifying terms will define the

properties that the output models are expected

to possess.

Each input model, with its distinctive

properties, when going through the

transformation, will result in an output model

with certain properties. By mapping the

equivalence classes of the source and target

models, we can determine if the model

transformation behaves in the way as expected.

4. Support tool

In this section, we present our

implementation of model validation using

classifying terms in RTL. The framework is

available as a plugin for USE (UML

Specification Environment [10]).

There are several reasons for this choice.

First, USE has support for the Object Constraint

Language, which can be used to specify model

invariants and classifying terms. Second, it

possesses an extensible plugin system – as a

result, its functionality has been enhanced with

several plugins, including RTL and

ModelValidator. Moreover, classifying term

handling is incorporated into ModelValidator,

greatly simplifying the development process.

USE’s graphical user interface enables users to

create, visualize and edit models easily and

interactively.

The result of the implementation, we

developed a support tool for our approach. In

following subsections, the input, output and

workflow of the tool are presented.

4.1. Input

The support tool takes as input the source

and target meta-models, transformation rules,

ModelValidator configuration files, and

source/target classifying terms; all of which are

plain text files.

The source and target models are UML

models specified in USE’s syntax. They are

represented as class diagrams in USE. The

ability to show and hide model features (e.g.,

6

operations, role names, association names) is

supported, as well as printing and PDF

exporting.

Transformation rules are triple graph

grammar rules written in the RTL language.

The RTL plugin provides the ability to visualise

them using object diagrams. The transformation

direction (forward or backward) is specified in

the rule file as a keyword.

In order to limit the search space, a

configuration file is required to restrict size and

domain information of object models. This file

can be created manually or with the help of a

GUI included in the plugin; and options such as

the number of objects/links and possible values

for each attribute are configurable.

In our implementation, each classifying

term is defined in two consecutive lines in a

text file – the former contains the name of the

term while the latter is the OCL query

associated with it.

Finally, an optional mapping file can be

provided. It contains a list of patterns in the

format of sourceCTs -> targetCTs, in

which each side specifies a list of

Integer/Boolean values. Support for negative

patterns (by appending the ‘!’ character) and

wildcards (represented by the ‘*’ character) is

also provided.

4.2. Workflow

After the input artefacts have been created,

the user provides them to the RTL plugin by

means of a dialogue box, shown in Fig. 6. The

plugin performs three steps to show the result

of validating model transformation with the

given classifying terms.

The first step is test case generation. The

plugin first parses and validates the

transformation-related artefacts (i.e., meta-

models and TGG rules). The classifying terms

are then checked for syntactical correctness.

The source classifying terms (in the case of

forward transformation) or the target classifying

terms (in the case of backward transformation)

together with the configuration file and

Bitwidth are used to configure

ModelValidator’s SAT solver. ModelValidator

comes with several SAT solvers, which can be

selected from USE’s command line interface.

Subsequently, the SAT solver is executed. For

each combination of classifying term values, it

tries to generate a model with the data provided

in the configuration file. If an error occurs

during the process or no valid models can be

found, the process is halted and the user

receives an error message.

Figure 6. The input specification dialogue box.

 7

In the second step, the RTL engine

executes the transformation on the generated

input model in order to generate a

correspondence output model that conforms to

the target meta-model.

The third step is oracle checking. The

input and output models are checked against the

mappings. The plugins will generate a report

based on the result to show which test passes

and which test fails. In our approach, we use the

partial oracle checking using contracts on the

target model after transformation. These

contracts are constructed in target classifying

terms that used to check whether the output

models satisfy requirements come from users.

4.3. Output
If the process completes successfully, a

report is displayed, as shown in Fig. 7,

containing the values of the classifying terms

for each source – target model pair. A number

of additional outputs are provided to assist in

the debugging process.

More specifically, selecting a classifying

term brings up its associated OCL query and

evaluation log; and selecting a model pair

displays its validation result in detail, as well as

the list of executed commands produced by the

transformation engine.

The result can be visualised by selecting a

model pair, in which case the state of the

system is reflected in an object diagram, as in

Fig. 8. When a specific transformation is

selected, its affected objects (matched objects

and created objects) are shown in a different

colour.

Figure 7. The validation result dialogue

8

Figure 8. The selected model pair from the validation results shown in Fig. 7.

For each model pair, the values of the

classifying terms are matched against the

patterns in the mapping file. Only the patterns

whose left side matches the source classifying

term values take part in the validation process.

If for all these patterns, the right side matches

the target classifying term values as well, the

model pair is considered to have passed the

validation. On the other hand, the existence of a

pattern whose right side does not match the

target classifying term values suggests that the

transformation specification does not meet the

requirements.

5. Results and discussion
5.1. Experiments

In this section, we present some results

when RTL is utilised in the development of

TGG rules for the BibTeX to DocBook

transformation.

For this experiment, we used the same

classifying terms for source and target models

as in [4], listed Fig. 9. Our main focus lies on

the noSelfEditedPaper on both sides,

whose value is true if no authors are also the

editor of one of their own papers. It can be

concluded that a correct transformation should

produce target models having the same

noSelfEditedPaper value as their

corresponding source models.

On the other hand, on each modelling

language ones are interested in different

information, so they can define specific

requirements on the source and target model by

the different classifying terms.

Suppose that we want to concentrate on

different characteristics of the input models of

the BibTex2DocBook transformation. First,

proceedings have two dates: the year of the

conference event (yearE) and the year in which

proceedings were published (yearP). This

situation is expressed in the term

“yearE_EQ_yearP”. Second, we want to have

some input models in which two editors of

proceeding are not allowed to invite the other to

have a paper there. This situation is presented in

the term “noManusMamumLavat”.

Besides, in output models of

BibTeX2DocBook transformation we are

interested in normal books, i.e. those which are

not composition of papers selected by an editor;

but instead all chapters are written by the same

person, the book author. Also, books in which

no author writes more than one paper could be

of interest too. We define these situations in

two classifying terms “onlyNormalBooks”

and “noRepeatedAuthors”, respectively.

For validating the model transformation

BibTeX2DocBook, we experimented the

transformation program using the set of above -

 9

explained terms as in Fig. 9 and an appropriate

configuration file as well as the Bitwidth set to

12. The validation task took approximately 9

seconds to complete, generating 8 pairs of

source – target model pairs, each source model

representing a different equivalence class

defined by the source classifying terms.

Thanks to the automation of the process,

modellers can have an overview of the results

and easily spot discrepancies, resulting in faster

error diagnosis. In our first run of the test, we

observed that the noSelfEditedPaper term

of the target model is false in some cases

where the term noSelfEditedPaper of the

source model has a value of true as shown in

Fig. 7. This observation of unexpected

behaviour helped us detect a missing condition

in the transformation of the Authorship

association, which created

ChapterAuthorship links when the

behaviour is not appropriate.

5.2. Discussion

Due to the fact that model transformation

with TGG rules requires searching throughout

the system to find candidates, the

transformation step does not scale well when

the input contains too many objects and links.

In practice, since the validation is performed on

models with just enough elements to exhibit

certain characteristics of interest, this limitation

is of little concern. ModelValidator’s

configuration file also helps limit the search

space by defining the maximum number of

objects and links.

ModelValidator’s support for classifying

term values is restricted to Boolean and Integer

types, and ranges are not supported. However,

classifying terms with other types of values can

be rewritten to be compatible with the tool. For

example, a classifying term specifying ranges

of integers can be converted into multiple

Boolean terms using comparison operators.

6. Related work

In the context of model transformation

testing and validation, a number of approaches

for generating and selecting input data have

been put forward. Sen et al. [11] proposed a

similar approach to that implemented in this

paper, in which models are generated with

Alloy from model fragments. However, the

model fragments are automatically extracted

from the meta-model, as opposed to written

manually; thus, the user cannot specify the

exact scenario in which he/she wants to validate

10

the transformation. A model generation tool

called ASSL [12] is built into USE; while it can

also be used to generate models, its imperative

approach means that users have to learn a new

language. ASSL can be used in conjunction

with OCL invariants to replicate classifying

terms, but the ASSL specification may have to

be rewritten in order to comply with the

invariants.

Oracle function is also a challenge in

model transformation testing and validation

[13]. In this paper, the mapping between source

and target classifying terms are used as the

oracle function. According to Mottu et al. [6],

this approach belongs to the group of oracle

functions using an OCL assertion. As

mentioned in [6], other commonly-used

approaches include generic contracts, which is

already implemented in RTL’s post-conditions

[1]; and oracle functions that make use of graph

comparisons, such as model snippets/fragments

[11] and comparing the output with an expected

output model, whether using graph [7] or

textual comparison approaches as survey in [8].

7. Conclusion and future work

In this paper, we have pointed out how the

technique of transformation validation using

classifying terms can help speed up the

software development process. We also discuss

about how to choose requirements that are used

to define classifying terms for different testing

aims.

However, without a proper graphical,

interactive environment, the approach can be

hard to use. Therefore, we have incorporated

this technique into USE – a modelling tool with

visualisation capabilities and good support for

UML/OCL. The technique as well as the

implementation can be streamlined by

introducing the automatic creation of model

generation parameters and the automatic

inference of classifying terms from meta-

models. This is our aim for a future version of

the tool.

Acknowledgment

We would like to thank Assoc. Prof. Dr.

Pham Ngoc Hung, VNU University of

Engineering and Technologies for his useful

reviewing.

References

[1] D.-H. Dang and M. Gogolla, “An OCL-Based

Framework for Model Transformations,” VNU

Journal of Science: Computer Science and

Communication Engineering, vol. 32, no. 1, pp.

44-57, 2016.

[2] J. R. C. J. D. Gehan M. K. Selim, “Model

transformation testing: the state of the art,” 2012 .

[3] A. Kusel, J. Schönböck, M. Wimmer, W.

Retschitzegger, W. Schwinger and G. Kappel,

“Reality Check for Model Transformation Reuse:

The ATL Transformation Zoo Case Study,”

AMT@ MoDELS, 2013.

[4] F. Hilken, M. Gogolla, L. Burgueño and A.

Vallecillo, “Testing models and model

transformations using classifying terms,” Software

& Systems Modeling, pp. 1-28, 2016.

[5] A. Schürr, “Specification of Graph Translators

with Triple Graph Grammars,” International

Workshop on Graph-Theoretic Concepts in

Computer Science, pp. 151-163, 1994.

[6] J.-M. Mottu, B. Baudry and Y. Le Traon, “Model

transformation testing: oracle issue,” ICST, 2008,

pp. 105-112, 2008.

[7] J.-w. Ko, K.-y. Chung and J.-s. Han, “Model

transformation verification using similarity and

graph comparison algorithm,” Multimedia tools

and applications, vol. 74, no. 20, pp. 8907-8920,

2015.

[8] Lukman Ab. Rahim, Jon Whittle, “A survey of

approaches for verifying model transformations”,

SoSyM, Volume 14, Issue 2, pp 1003–1028,

2013.

[9] M. Kuhlmann, L. Hamann and M. Gogolla,

“Extensive validation of OCL models by

integrating SAT solving into USE,” TOOLS, pp.

290-306, 2011.

[10] M. Richters and M. Gogolla, “Validating UML

models and OCL constraints,” International

Conference on the Unified Modeling Language,

pp. 265-277, 2000.

[11] S. Sen, B. Baudry and J.-M. Mottu, “Automatic

model generation strategies for model

transformation testing,”, ICMT, pp. 148-164,

2009.

[12] M. Gogolla, J. B. Bohling and M. Richters,

“Validation of UML and OCL models by

automatic snapshot generation,” International

Conference on the Unified Modeling Language,

pp. 265-279, 2003.

[13] B. Baudry, T. Dinh-Trong, J.-M. Mottu, D.

Simmonds, R. France, S. Gosh, F. Fleurey and Y.

Le Traon, “Model transformation testing

challenges,” ECMDA, 2006.

https://link.springer.com/journal/10270/14/2/page/1

