
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10

A Toolchain for Source Code Quality Assurance of
Java EE Applications

Cuong Quang Bui∗, Loc Tien Dinh, Anh Viet Luu, Hoa Viet Nguyen,
Quy Ngoc Pham, Pham Ngoc Hung

Faculty of Information Technology,
VNU University of Engineering and Technology,

144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract
This paper presents a novel tool named JCIA-VT for source code analysis and quality assurance of Java EE

applications using Hibernate, Struts, and Spring frameworks. Specifically, the tool applies static program analysis to
construct a data structure called Java Dependency Graph (JDG) demonstrating the dependencies among components
of a Java EE project, then uses this structure to predict impacted components under a set of changed components.
Besides, JDG is used as an input for analyzing several structural analysis functions including business data graph,
and cyclomatic complexity computation. The experimental results have been shown the effectiveness of the tool in
practice for both developers and testers to analyze change impact and understand application systems.

Received May 2018, Revised May 2018

Keywords: program analysis, change impact analysis, data flow, enterprise application

1. Introduction

Nowadays, the enterprise applications are
usually developed in a long time with high
complexity. After many update patches,
they don’t have complete specification and
design documents. Even the source code
becomes the only document in many cases.
Meanwhile, maintenance and upgrade happen
regularly. To ensure software quality for the
new version, the development team need to
test the entire system. This is impossible

∗ Corresponding author. Email: 14020577@vnu.edu.vn

because of enormous cost. As a result,
the development team can not control full
impact of the changes, which may lead
to significant risks for the business during
the operation. This is a difficult problem
because the solutions depend closely on the
used technology. Therefore, proposing the
solutions and developing appropriate tools to
address this problem is one of big challenges
and received research attention.

Change Impact Analysis (CIA) is
considered as a solution to solve the problem.
CIA plays an important role in the stages of

1

2 B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10

development, maintenance and regression
testing. CIA can be an impact assessing and
cost estimating tool. It also helps to reduce
the number of required test cases. The CIA
technique has two main approaches, including
static CIA and dynamic CIA [1]. In fact,
results of researches indicate the methods
related to static CIA such as CIA Based on
Change Types [2], Control Call Graph-based
Technique [3], and WAVE-CIA [4]. The
inputs of CIA techniques are the result of
dependency analysis from the application.
This process cannot be generalized to all
available technologies and platforms.

Java EE is a popular solution to deploy
modern enterprise web applications with many
core technologies and many other frameworks.
To solve this problem for Java EE applications,
a tool called JCIA [5] has been proposed
and developed. However, this method is
still rudimentary and can only analyze some
built-in technologies of Java EE such as
JSF, CDI, JAX-WS. JCIA is unfinished
and unattainable high efficiency. This tool
cannot analyze completely a practical Java
EE project. Industrial projects usually are
built by a complex bundle of technologies
and frameworks rather than Java EE built-in
technologies.

Therefore, a complete method has been
researched and proposed to perform change
impact analysis for cross-platform Java EE
applications. Popular frameworks such as
Spring, Struts, Hibernate will be supported
at first. Then we will gradually improve
the method for all other platforms. In
addition, we also propose other solutions
to provide the additional objective views of
the application system such as building data

flow, visualizing architecture and computing
cyclomatic complexity. A toolchain named
JCIA-VT has been developed to implement
the proposed solution.

The rest of this paper is structured as
follows. Section 2 presents the methods
of implementation including preprocessing
source code; dependency analysis for Java
Core, Struts, database technology. Section
3 and Section 4 describe some approaches
to analyze change impact and building
business data flow. Next, Section 5 presents
the JCIA-VT toolchain and results are
obtained through experiment analysis. Finally,
Section 6 summarizes the obtained results,
conclusions, drawbacks and directions for
research and development in the future.

2. Dependency Graph Generation

Definition 1. (Java EE Dependency
Graph). Given a Java EE project, a Java EE
Dependency Graph, denoted JDG, is defined
as a pair (V, E), where V = {v0, v1, ..., vn} is
a list of nodes representing components such
as packages, files, classes, methods, attributes,
etc. and E = {(vi, v j)|vi, v j ∈ V ⊆ V × V},
is a list of directed edges. Each edge (vi, v j)
represents a dependency between vi and v j

that means vi depends on v j.
Before building the JDG, the given Java EE

project had been preprocessed to construct
a structure tree whose nodes represent
project components such as folders, files,
classes, methods, attributes, XML tags,
etc. First, every file of the project is
scanned and added to the tree. Then,
the checker analyzes and defines what type
of these files and their children are. A
Java EE project usually contains Java and

B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10 3

XML-based source code. If a file is a Java
source code file, its children are classes,
methods, and attributes. Those children
are XML-tags if that file is an XML-based
source file. Finally, this tree would be used
to construct a JDG of which vertices are
nodes of the tree and edges are dependencies
between source code components. These
dependencies are collected and added to JDG
by dependency analyzers corresponding to
Java EE technologies and frameworks such
as Struts, Hibernate, JDBC.

2.1. Collecting Java Core dependencies

There are three major types of dependencies
in Java Core: inheritance, method invocation,
and field access. In the Change Impact
Analyzer, three independent components are
corresponding to each of the dependencies
mechanisms. For any given Java source
files, the Abstract Syntax Tree (AST) would
be generated by using Java Development
Tool (JDT), then the dependencies among the
components are identified and inserted into
JDG based on the obtained AST.

For instance, from given sample source
code in Fig 1, Java Core dependency analyzer
could detect three types of dependencies:
inheritance from node A to node B, field access
from node A/f() to node B/f() and method
invocation from node B/f() to node A/f().

2.2. Collecting Struts dependencies

Struts is a popular open-source Java EE
framework which is built on top of Servlet API
and JavaServer Pages. It is designed based
on Model-View-Controller (MVC) design
pattern and allows developers to define
clearly Controller, Model and View in order

public class A {
int a;
public int f() {return a++;}

}
class B extends A {

public int f() {return super.f()+5;}
}

Figure 1. Example of Java program

to build maintainable and understanding
applications. Dependency relationships of
Struts usually exist between source code
elements corresponding to components in
MVC.

Struts configuration components written
in XML format need collecting at first
because they determine the definitions of
Struts components (Package, Action, Result,
Interceptor, etc) in the application which
provide necessary information to define
dependencies among them. Because the
definitions of components could be written
discretely in multiple files (e.g. configural
information of a Package can be declared
in separate files, Struts engine collects them
when the application is running), it is hard to
collect configuration information and define
dependencies at the same time. To solve
this problem, a refinement process would
be performed before defining dependencies
to aggregate Struts configurations. The
new XML-file vertices contain additional
configuration components information are
created and replaced for the old ones on
JDG even though they still keep necessary
information by using Decorator design
pattern.

The new vertices are analyzed to define

4 B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10

<action name="AddBookAction"
class="vn.sample.action.AddBookAction">

<result name="success">
/addbook-success.jsp

</result>
<result name="error">

/addbook-error.jsp
</result>

</action>

Figure 2. Example of Struts configural source

<html>
<h1>You’ve added book

<s:property value=”bookName”>
</h1>

</html>

Figure 3. Example of data usage in Struts

dependencies. Almost type of dependencies
can be retrieved directly by analyzing Struts
definitions. They are dependencies from
Controller to View and Model components,
some of them are dependencies between
configural components. Figure 2 shows
an example of Struts configural source.
After refining process and analyzing this
source, three dependencies are easily defined:
ActionConfigurationDependency from
<action> tag to AddBookAction class, the
rest are ResultConfigurationDependency
from <result> tags to addbook-error.jsp
and addbook-success.jsp. There are also
dependencies from View to Model, they
represent for data usage relationships to
Model components. Configural information
from refining process is necessary to define
these components. Figure 3 shows the content
of addbook-error.jsp. <s:property> is

Figure 4. Flow graph convertion rules

a Struts tag for accessing data from Model.
Data property has the name bookName. To
find out where bookName is declared, we
have use configural definitions to check
which action mapping with this View. Here,
that is AddBookAction and the Model
is AddBookAction class. Therefore, we
know that bookName comes from that
class. A PropertyMappingDependency is
created, starts from <s:property> tag of
addbook-success.jsp to bookName field
of AddBookAction class. The result of Struts
depenency analyzer is shown in Fig 4.

2.3. Collecting database dependencies
Java applications use JDBC for connecting

to database and executing SQL queries to
retrieve data. The aim of database dependency
analysis is to try to recreate queries from
source code and determine the affected tables.
The method getStock() in Fig 5 illustrates
how SQL query is dynamically generated for
a JDBC binding to a database. The query
analysis starts by finding all locations using

B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10 5

ResultSet getStock(int id, int ord) {
String q = "SELECT * FROM stock"

+ " WHERE stockId = " + id;
if (ord == -1)

q = q + " ORDER BY id ASC";
else if (ord == 1)

q = q + " ORDER BY id DESC;
return session.executeQuery(q);

}

Figure 5. Example of a method using SQL Query

Figure 6. String flow graph of getStock method

method executeQuery in source code, called
hotspot. Next, the analysis creates a flow
graph representing the creation of all possible
string expressions. The vertices in a flow
graph corresponding to variables, methods,
expressions or operations (replace(),
insert(), trim(), ...). If string expressions
is used in condition statement, such as
switch-case or if-else, the flow graph
will put expressions of all clauses in one
vertex. The edges use two label “init”,
“concat” to describe how the next vertices is
used by the previous vertex. The label “init”
is only used by variable vertex or method
vertex. The flow graph for getStock method
looks as Fig 6. In the next step, the flow
graph will be converted to string value. First,
variable and method vertices which have
“init” edge are removed. Flow graph remains
only “concat” edges. Then we construct a

Figure 7. Flow graph conversion rules

set of rules for the string generation. Detail
of these rules is described in Fig 7. The
result of conversion is a string value in
regular expression form. For the getStock
method, the generated string value is
SELECT * FROM stock WHERE stockId =
id (ORDER BY id ASC|ORDER BY id DESC).
Because id is an external variable, the
convertion does nothing with this variable and
keep its name as a part of result string. After
completely generating the string value, the
analysis splits out each word of query, finds
the name of tables and generates dependencies
between the invoking methods and used
tables.

3. Change Impact Analysis

The change impact analysis could be
performed based on two major approaches:
static information analysis or dynamic
information analysis. The static information
analysis contains three main methods such
as structural static analysis, textual analysis,
historical analysis. Currently, the researches
on CIA are mainly focused on structural
analysis which consists of two primary phases,
generating dependency graphs of applications,
and calculating potential change impact sets

6 B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10

based on those graphs. There are several
algorithms to calculate the impact sets at
method or attribute level and combine CIA
based on change types and WAVE-CIA which
is used in the change impact analyzer has been
known as an appropriate solution to solve that
problem.

The main idea of WAVE-CIA method is the
water-wave propagation [4]. The ripples on
water surface will meet as they spread and
generate new spreading centers. Like this
natural process, the WAVE-CIA procedure
follows two steps: identifying the core set
from the Change Set (CS) of the call graph
and computing Potential Impact Set (PIS)
by adding more components generated from
the propagation analysis of the core. In the
toolchain, this new CIA approach is proposed
to be implemented automatically by giving
the change set as the result of comparing the
source code between two versions.

4. Data Flow Analysis

A data flow graph (DFG) represents a
task or a real-life business function of an
application. It contains an ordered set
of application’s components, describes the
movement of data in the application and
how components transfer data to each other.
To analyze data flow of applications, we
consider two type of dependency: data
dependency and logical dependency. The
logical dependency is created by the relations
of two nodes such as is-a, has-a or parent-child
and the data dependency is created by data
usage in two nodes. After determining the
types of dependency, we define a function
that transforms these dependencies into a
list of vertices and edges of DFG. Figure

Figure 8. Example of data flow generated by
converting data dependency

8 illustrates a typical data flow of Struts
application. The first vertex of the graph,
which is usually a JSP file, starts the flow
of data. Each <form> tag is mapped to a
Struts Action corresponding to a Java class
which implemented the application’s logic and
retrieve data from the database. Struts Action
also consists of a list of Struts Result which
define the JSP file that displays final data.
Because the created graph is not expressed
the sequence of data transfer, the graph needs
normalizing. We define two types of edge in
data flow graph, Request Edge and Response
Edge. Request edges represent for data
transferred from View layer to Database layer,
and response edges represent for data with the
inverse direction. The type of each edge is
specified in transformation function of data
dependency.

To facilitate the normalization and
visualization, the graph has to be converted to
a simple form. All edges are still preserved
in the simple graph but vertices only remain
necessary attributes from the origins for
displaying such as id, name, path, type. The
normalization of data flow follows two steps.
The first step is eliminating all bi-direction
edges. A bi-direction edge exists when two

B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10 7

Figure 9. Eliminate bi-direction step in data flow graph
normalization

vertices have both request and response edges
between them. The purpose of this step is to
make sure all incoming and outgoing edges of
a vertex have only one type. However, there
are some special vertices called Endpoint
include both types of edge (e.g. the database
vertice). The original vertex keeps one type
of edge and all edges of the other types are
moved to the new vertex. Figure 9 explains
the elimination. From endpoint vertex (fifth
vertex), the graph will be traversed up to
find all vertices contain bi-direction edges
(vertex 2, 3, 4). The original vertices retain
only request edges. All the response edges
are moved to vertices 2’, 3’, 4’ which are the
duplication of vertices 2, 3, 4. The second
step of the normalization is cycle removing. A
cycle exists if it still has both request edge and
response edge after bi-direction elimination
step. A graph containing cycles could not
show the start and end vertices using the
data. The solution to remove cycle is similar
to bi-direction elimination step. Figure 10
clarified the removal.

Figure 10. Cycle removal step in data flow graph
normalization

5. Tool and Experiments

5.1. Tool Implementation
JCIA-VT has been implemented in Java and

can be deployed as a Web application with
architecture in Fig 11. Given source code of
a Java EE project, the Preprocessor module
analyses the whole project to construct Java
dependency graph of source code components.
Next, Dependency Analyzer module including
four dependency analyzers corresponding
to Java EE technologies and frameworks
determine dependency relationships between
components. This graph is used as input
for Change Impact Analyzer and Structural
Analyzer modules. The result of analyzing is
shown to users by Visualizer module which
has been implemented by D3.js1.

JCIA-VT is a completely upgrade version
of JCIA [5], added structure analysis and
a more efficiently change impact analyzer
method. JCIA-VT would display the JDG
of application’s source code and let users
choose the changed components. However,
the chosen components are marked as blue
and the impacted ones are red. This change
makes users differentiate analyzed nodes of

1https://d3js.org

8 B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10

Figure 11. Architecture of JCIA-VT

JDG with their types. Figure 12 shows a
Dependency View of a JCIA-VT. Moreover,
JCIA-VT provides users to choose depth
level of the change impact analysis. This
feature allows analyzer restrict the number of
impacted components for purposes of users.

Beside the dependency view and change
impact implementation, JCIA-VT also
provides three structure views:

• Data Flow View: analyze and show a data
flow graph based on the data movement
between components.

• Class Diagram: describe the structure
of application by showing classes, their
attributes, methods and relationship
among objects. JCIA-VT’s class diagram
obeys the UML 2.5.1 spec2.

• Cyclomatic: calculate the complexity of
classes based on source code using many
criteria. Each class is represented as a
cycle. The size and color of cycle depend
on LOC (Line Of Code) per class and the
source code’s complexity.

2https://www.omg.org/spec/UML/2.5/PDF

Table 1. Experiments on case studies of JCIA-VT

Sample 1 Sample 2
of files 1,177 1,739
LOC 235,969 363,021
of vertices 43,667 106,556
of dependencies 36,961 88,281
Time 38s 69s
Memory 760MB 1300MB

5.2. Experiments

In order to show the effectiveness of
JCIA-VT, we tested by using Java EE projects
which are provided by Viettel Technology
and Software Quality Management Center.
They both use Struts, Hibernate and JDBC
technology. Table 1 shows experiments when
JCIA-VT analyzes case study projects on a
laptop with Intel Core i5-3320M CPU @
2.6GHz and 8GB Memory.

Result of change impact analysis using
WAVE-CIA with depth = 1 is shown in
Fig 12. Methods editProfileConfig() and
addProfileConfig() are requested to change.
CIA algorithm computes Core Set such
as fields log, profileConfigForm; methods
copyBeanFromBO(), checkExistActionCode();
and database PROFILE_CONFIG because
both two elements in change set have
dependency relationships with them. Next,
PIS is computed from Core Set. That is
method findById() because it calls elements in
Core Set and an element in Core Set also calls
it. As a result, the final impacted elements are
overlaid with red color in Fig 12.

Figure 13 represents a data flow
graph generated by using the Sample 2
project. The flow graph is started from
prepareChannelType.jsp. The data
of this JSP file is transfered to a Struts

B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10 9

Figure 12. User Interface of JCIA-VT

Figure 13. Example of Data flow analyzed by
JCIA-VT

Action tag node (<action> tag). Moreover,
this Action node is mapped to an Action
Method, prepareChannelType(). We also
detect the method getChannelTypeBean()
which retrieves data from CHANNEL_TYPE
table in database, is used in
prepareChannelType(). After querying
the database, getChannelTypeBean()
returns all data to prepareChannelType()
and this Action Method continues doing
its business. Action tag node <action>

defines five <result> children tags that
match up all possible cases of return data in
prepareChannelType(). All these result
tags both use the same <tile-definition>
which declares channelTypeList.jsp
in its put-attribute property. All the
movement of data we just genenerated
can be considered a real life business.
Based on the data, users fill in the form in
prepareChannelType.jsp, JCIA-VT will
show all the data (in this case is the channels)
from database to channelTypeList.jsp
view.

6. Conclusion

This paper has presented a tool and
proposed several methods of source code
quality assurance of Java EE applications. At
this time, the main functions of this toolchain
have been basically completed in order to

10 B.Q.Cuong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–10

analyze the source code of applications which
were built based on Struts 2 and Hibernate
framework. This toolchain provides not
only the change impact analysis at method
or attribute level in Java source code files
but also business data flow analysis of
applications based on constructing JDG and
considering different types of dependencies.
Besides, it is also integrated a graphical user
interface extended from D3 Javascript library
to visualize the results of these analyses and
allow users to interact with the toolchain.

In the future, we plan to upgrade this
toolchain to increase the correctness of
change impact set by including more
dependencies on components or applying
more complicated and accuracy CIA
technologies. First, the version comparison
management toolchain would be integrated
with others common version control tools
like Git3 and SVN4 which would let the
change impact analysis and result reporting
could be done automatically. Next, an
application source code components to
views and functions mapping should be
created to make this toolchain truly effective
and be used broadly in quality assurance
procedures in businesses. Furthermore, we
would also conduct researches on taking
more perspectives of applications so that
users could add different information about
their applications such as sequence diagram
between packages, control flow diagram,
assessment tools of source code complexity
and application security, etc. Finally, we are
exploring more to enhance this toolchain to
make it support not only more Java basis

3https://git-scm.com
4https://subversion.apache.org

and technology but also others programming
languages like C#, PHP, JavaScript, etc.

Acknowledgment

We would thank Dr. Vo Dinh Hieu, VNU
University of Engineering and Technology for
his useful reviews.

References

[1] B. Li, X. Sun, H. Leung, S. Zhang, A survey of
code-based change impact analysis techniques 23.

[2] X. Sun, B. Li, C. Tao, W. Wen, S. Zhang,
Change impact analysis based on a taxonomy of
change types, in: Proceedings of the 2010 IEEE
34th Annual Computer Software and Applications
Conference, COMPSAC ’10, IEEE Computer
Society, 2010, pp. 373–382.

[3] L. Badri, M. Badri, D. St-Yves, Supporting
predictive change impact analysis: A control call
graph based technique, in: Proceedings of the 12th
Asia-Pacific Software Engineering Conference,
APSEC ’05, IEEE Computer Society, 2005, pp.
167–175.

[4] B. Li, Q. Zhang, X. Sun, H. Leung, Wave-cia: A
novel cia approach based on call graph mining, in:
Proceedings of the 28th Annual ACM Symposium
on Applied Computing, SAC ’13, ACM, 2013, pp.
1000–1005.

[5] L. Ba Cuong, V. Son Nguyen, N. Duc Anh,
P. Ngoc Hung, D. Hieu Vo, Jcia: A tool for change
impact analysis of java ee applications, 2018, pp.
105–114.

